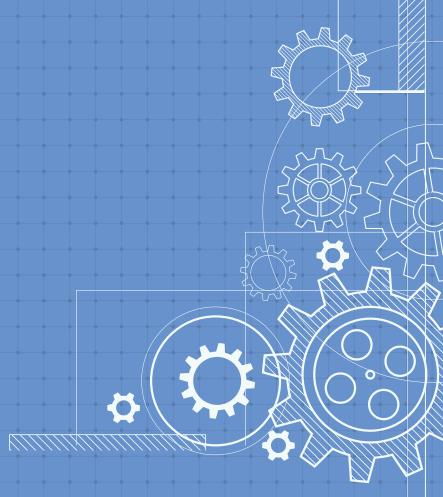
한글판

KG STOCK GEARS Metric Gears


CAD데이터 다운로드

協育歯車工業株式会社

KG STOCK GEARS

Gears for Every Need.....

URL http://www.kggear.co.jp/

인사말

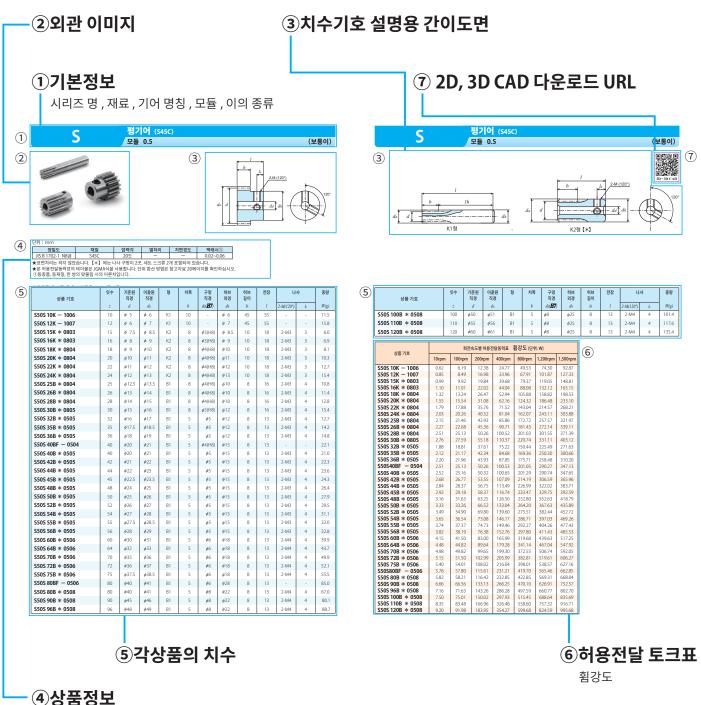
저희 KG 기어 카탈로그를 사용해주셔서 고맙습니다.

이번에 새 카탈로그 KG STOCK GEARS KG5000 시리즈를 준비하였습니다.

저희 「KG STOCK GEARS」는 손님 여러분들의 여러가지 수요를 미리 이해하며 상품을 만들어 가는 것을 취지로 하고 있습니다.

창업당시 부터 만들어 오고 있는 상품도 있고 최첨단의 가공기술로 새로 만들고 있는 상품도 있습니다 . 이 모든것은 손님여러분들의 수요를 반영한 결정체 입니다 .

약 2,700 개의 아이템의 하나 하나를 안정된 품질로 [언제나 • 어디서나 • 즉시] 사용하실수 있도록 노력하는것이 저희들이 창업초기 부터 현재까지 가지고 있는 신념입니다 .


이 카타로그를 잘 활용하시고 저희 KG STOCK GEARS 를 애용하시길 바랍니다.

KG 기어 종합 카탈로그 내용

KG STOCK GEARS 인포메이션 KG STOCK GEARS 치수표

상품 소개

정밀도, 재질, 압력각, 열처리, 치면경도, 백래시 주의사항, 특기사항 등

기어 박스 시리즈 HY-BOX, BS-BOX, BSB-BOX, BSH-BOX B-SET, WS-BOX

P. 29~P. 50

노 백래시 기어

치면 연마 컨트롤 백래시 기어, 노 백래시 기어 ASG 시리즈 (SCM435, 440), NSG 시리즈 (SCM435, 440) 노 백래시 기어 NS 시리즈 (S45C, AL), NSU 시리즈 (SUS304)

P. 51~P. 60

평기어

치면 연마 평기어

SG 시리즈 (SCM435, 440), **SGR 시리즈** (S45C) 평기어

P. 61∼P. 180

S 시리조 (S45C, SUS304, 황동 , 청색 POM, 백색 POM, 백색 POM (황동부시있음))

랙

모듈치수 랙 RK 시리즈 (S45C, SUS304, 황동, 청색 POM), ORK 시리즈 (SUS304) 서큘러 피치 치수 랙

P. 181~P. 190

RKP 시리즈 (황동, S45C), SP (S45C)

헬리컬 기어

나선각 45° H 시리즈 (S45C, SUS304, 청색 POM, 백색 POM)

P. 191~P. 204

마이터 기어

MG 시리즈 (SCM440), MGE 시리즈 (SCM435・440) M 시리즈 (S45C, SUS304, SUS304L, 황동, 청색 POM, 백색 POM, 백색 POM (황동부시있음)) MGH 시리즈 (S45C), ML 시리즈 (SUS304), ML-N 시리즈 (S45C)

P. 205~P. 238

베벨 기어

BG 시리즈 (SCM440) B 시리즈 (S45C, SUS304, 황동)

P. 239∼P. 256

웜과 웜 휠

W 시리즈 (SUS304, S45C) **G 시리즈** (황동, 청색 POM, 백색 POM, 백색 POM(황동부시있음), C6191BE, CAC702)

P. 257~P. 278

영어 참고자료 <u>(영어로 되어 있</u>습니다 .)

- 치형크기 확인용 기본 치수
- 기어 조립의 포인트
- 평기어 및 헬리컬기어의 중심거리와 축의 평행도
- 백러시의 측정방법 베벨기어 웜 웜휠
- 각종기어 치면닿는 부분형태 및 효율
- 기어의 윤활 소음 진동
- 허용전달 동력표의 해설과 사용예
- 단위 환산표

- 기어기호와 용어 JIS 규격 규격품의 정밀도 등급
- 경도 환산표
- 자주쓰는 치수허용차 맞물림 구멍 맞물림 축
- 미터법 보통 및 가는 치수 나사피치 와 드릴구멍 치수
- 육각구멍 볼트에 대한 스폿페이싱및 볼트구멍의 치수
- 평행 키 및 키홈의 형태와 치수
- C 형 , E 형 스냅링 (참고)
- 본 카탈라그 재료표기의 설명

참고자

상품 검색

※정밀도등급등 상세한 기술부분은 뒤부분의 영문 참고재료 확인 부탁합니다 .

기어 박스						
상품 기호	HY-BOX	BS-BOX	BSB-BOX	BSH-BOX	B-SET	WS-BOX
형상		a marine				
페이지	P. 38	P. 40	P. 42	P. 44	P. 46	P. 48
재질	보디 : 알루미늄 축 : SCM435,440 • S45C	보디 : 알루미늄 축 : SUS303	보디 : 알루미늄 축 : SUS303	보디 : 알루미늄 or FC250 축 : SUS303 • S45C	보디 : 알루미늄 축 : SUS303	보디 : 알루미늄 축 : S45C
축 형상	엇갈림 축	L형,T형	L형	L형,T형	L형	엇갈림 축
백러시	20'	15'~ 25'	15'	10'~ 15'	관능검사	30'∼ 45'
사용 기어	하이포이드	스트레이트 베벨기어	스트레이트 베벨기어	스파이럴 베벨기어	스트레이트 베벨기어	웜과 웜휠

노백래시 기어					
상품 기호	ASG	NSG	NS	NSU	NS
형상		(a)	tot)	303	
페이지	P. 56	P. 56	P. 58	P. 58	P. 58
재질	SCM435, 440	SCM435, 440	S45C	SUS304	A5056
모듈	$m1\sim2$	m $0.5 \sim 1$	m $0.8 \sim 1$	m 0.5	m $0.5 \sim 1$
기구 특징	고정볼트	원호 / 코일 스프링	코일 스프링	코일 스프링	원호 스프링
치부처리	치부 고주파 • 연삭	연삭	절삭 • 연질화	절삭 • 테프론	절삭 • 알루마이트

평기어					
상품 기호	SG	SGR	S	S	S
형상					ALABAMATA AND THE STREET OF TH
페이지	P. 66	P. 82	P. 94	P. 136	P. 146
재질	SCM435 • 440	S45C	S45C	SUS304	황동
모듈	m $0.5 \sim 3$	m $0.5 \sim 3$	m $0.5 \sim 3$	m $0.5 \sim 2$	m $0.3 \sim 0.8$
정밀도 등급	JIS N5급	JIS N6급	JIS N8급	JIS N9급	JIS N9 ~관리 범위 외
치부처리	치부 고주파 • 연삭	치부 고주파・연삭	절삭	절삭	절삭

평기어				
상품 기호	S	S	S	S
형상				0
페이지	P. 158	P. 160	P. 170	P. 176
재질	백색 POM / 백색 POM (황동 부시 있음)	청색 POM	백색 POM	백색 POM (나사 구멍있음)
모듈	m 1	m $0.5 \sim 3$	m $0.5 \sim 1$	$m 0.5 \sim 1$
정밀도 등급	JIS N9 ~ 10 급 *	JIS N9 ~ 10 급 *	JIS N9 ~ 10 급 *	JIS N9 ~ 10 급 *
치부처리	절삭	절삭	절삭	절삭

※제작 시의 정밀도 입니다 .

목 차

모듈 랙					
상품 기호	RK	ORK	RK	RK	RK
형상	AND THE PARTY OF T		Management of the Control of the Con	Comment of the Commen	No. of the last of
페이지	P. 183	P. 184	P. 184	P. 185	P. 185
재질	S45C	SUS304	SUS304	황동	청색 POM
모듈	m 1 ~ 3	m $0.5 \sim 1$	m $0.5 \sim 1.5$	$m 0.3 \sim 0.8$	$m 0.5 \sim 1$
열처리	_	_	_	_	_
치부처리	절삭	절삭	절삭	절삭	절삭

서큘러 피치 (CP) 릭	H			
상품 기호	RKP	SP	RKP	SP
형상	······································		MANAGE STATE	A CONTRACTOR OF THE PARTY OF TH
페이지	P. 188	P. 188	P. 189	P. 189
재질	황동	S45C	S45C	S45C
서큘러 피치 (CP)	CP2	CP2	CP5 • 10	CP5 • 10
열처리	_	_	_	_
치부처리	절삭	절삭	절삭	절삭

헬리컬 기어 (나선	각 45 도)			
상품 기호	Н	Н	Н	Н
형상		and the same of th		The state of the s
페이지	P. 194	P. 196	P. 198	P. 202
재질	S45C	SUS304	청색 POM	백색 POM
모듈	m 1 ~ 3	m 1 ∼ 1.5	m 1 ~ 3	m 1 ∼ 1.5
정밀도 등급	JIS N9급	JIS N9 급	JIS N9 ~ 10 급 *	JIS N9 ~ 10 급 *
치부처리	절삭・치부 고주파	절삭	절삭	절삭

※제작 시의 정밀도 입니다 .

상품검색

마이터 기어 기어비	1:1					
상품 기호	MG	MGE	M	M	М	MGH
형상						
페이지	P. 212	P. 214	P. 216	P. 218	P. 220	P. 222
재질	SCM440	SCM435 • 440	S45C	S45C	S45C	S45C
모듈	m 1.5 ∼ 3	m 1.5 ∼ 3	$m 0.8 \sim 3$	m 1 ~ 3	$m 1 \sim 3$	m 1 ~ 2
잇줄 형상	스파이럴	스파이럴	스파이럴	스파이럴	스파이럴	스파이럴
정밀도 등급	JIS 1급	JIS 2급	JIS 3급	JIS 4급	JIS 4급	JIS 4급
치부처리	치부 고주파・연삭	치부 고주파・연삭	절삭	절삭 • 치부 고주파 • 흑색 염색	절삭ㆍ치부 고주파	절삭・치부 고주파

마이터 기어 기어비	1:1					
상품 기호	ML-N	ML	M	M	MGH	M
형상	3	3				
페이지	P. 224	P. 224	P. 226	P. 228	P. 230	P. 232
재질	S45C	SUS304	S45C	S45C	S45C	SUS304
모듈	$m 1 \sim 2.5$	m 0.8 ∼ 2	m 0.5 ∼ 4	m 1.5 ∼ 4	m 2.5 ∼ 3	m 0.8 ∼ 3
잇줄 형상	스트레이트	스트레이트	스트레이트	스트레이트	스트레이트	스트레이트
정밀도 등급	JIS 3급	JIS 4급	JIS 3급	JIS 4급	JIS 4급	JIS 4급
치부처리	절삭	절삭	절삭	절삭ㆍ치부 고주파	절삭ㆍ치부 고주파	절삭

마이터 기어 기어비	1:1			
상품 기호	M	M	M	M
형상			8	
페이지	P. 232	P. 234	P. 234	P. 236
재질	SUS304L	황동	백색 POM	청색 POM
모듈	m $0.5 \sim 1$	$m0.5 \sim 1$	m 1	m 0.8 ∼ 3
잇줄 형상	스트레이트	스트레이트	스트레이트	스트레이트
정밀도 등급	_	JIS 4급	_	_
치부처리	MIM 사출성형	절삭	절삭	절삭

베벨기어 기어비 1	:1.5/1:2/	1:3				
상품 기호	BG	В	В	В	В	В
형상	G. The state of th			Signal II		
페이지	P. 244	P. 246	P. 248	P. 250	P. 252	P. 254
재질	SCM440	S45C	S45C	S45C	S45C	SUS304
모듈	m $1.5 \sim 2.5$	$m1 \sim 3$	m 1 ~ 2.5	m $0.5 \sim 3$	m 1.5 ∼ 4	m 0.8 ∼ 2
잇줄 형상	스파이럴	스파이럴	스파이럴	스트레이트	스트레이트	스트레이트
정밀도 등급	JIS 1급	JIS 3급	JIS 4급	JIS 3급	JIS 4급	JIS 4급
치부처리	치부 고주파・연삭	절삭	절삭 • 치부 고주파	절삭	절삭ㆍ치부 고주파	절삭

베벨기어 기어비 1: 1.5 / 1: 2 / 1:3					
상품 기호	В				
형상					
페이지	P. 254				
재질	황동				
모듈	m $0.5 \sim 0.8$				
잇줄 형상	스트레이트				
정밀도 등급	JIS 4급				
치부처리	절삭				

웜, 웜 휠

웜과 웜 휠 모듈 0.	5 ~ 3					
상품 기호	W50	W50	G50	G50	G50	W80
형상					0	
페이지	P. 262	P. 263	P. 262	P. 262	P.262	P. 264
재질	SUS304	S45C	CAC702	황동	청색 POM	SUS304
모듈	m 0.5	m 0.5	m 0.5	m 0.5	m 0.5	m 0.8
치부처리	성형압연	성형압연	절삭	절삭	절삭	성형압연

원과 웜 휠 모듈 0.5 ~ 3						
상품 기호	W80	G80	G80	G80	W1	W1
형상			0	6		
페이지	P. 265	P. 264	P. 264	P. 264	P. 266	P. 267
재질	S45C	CAC702	청색 POM	백색 POM	SUS304	S45C
모듈	m 0.8	m 0.8	m 0.8	m 0.8	m 1	m 1
치부처리	성형압연	절삭	절삭	절삭	성형압연	성형압연

웜과 웜 휠 모듈 0.	5 ~ 3					
상품 기호	G1	G1	G1	W1.5	W1.5	G1.5
형상	00	0				6
페이지	P. 266	P. 266	P. 268	P. 270	P. 271	P. 270
재질	백색 POM / 백색 POM(황동 부시 있음)	청색 POM	CAC702	SUS304	S45C	백색 POM / 백색 POM(황동 부시 있음)
모듈	m 1	m 1	m 1	m 1.5	m 1.5	m 1.5
치부처리	절삭	절삭	절삭	성형압연	성형압연	절삭

웜과 웜 휠 모듈 0.	5 ~ 3					
상품 기호	G1.5	G1.5	W2	G2	W2.5	G2.5
형상	0					
페이지	P. 270	P. 272	P. 274	P. 274	P. 276	P. 276
재질	청색 POM	CAC702	S45C	CAC702	S45C	CAC702
모듈	m 1.5	m 1.5	m 2	m 2	m 2.5	m 2.5
치부처리	절삭	절삭	성형압연	절삭	절삭	절삭

웜과 웜 휠 모듈 0.5 ~ 3					
상품 기호	W3	G3			
형상					
페이지	P. 277	P. 277			
재질	S45C	CAC702			
모듈	m 3	m 3			
치부처리	절삭	절삭			

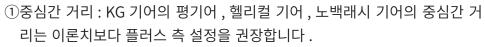
알파벳검색

정밀도등급등 상세한 기술부분은 뒤부분의 영문 참고자료 확인 부탁합니다 .

	싣	붐기호	상품 종류	페이지	재질	정밀도	가공 특징
Α	ASG1S	~ ASG2S	컨트롤 백래시 기어	P. 56	SCM435 • 440	JIS N5 급	치부 고주파 • 연삭
	B50B	∼ B80B	베벨 기어 (스트레이트)	P. 254	황동	JIS 4급	절삭
	B50S	∼ B3S	베벨 기어 (스트레이트)	P. 250	S45C	JIS 3급	절삭
	B1.5S-H	∼ B4S-H	베벨 기어 (스트레이트)	P. 252	S45C	JIS 4급	절삭ㆍ치부고주파
	B1S-L	\sim B3S-L	베벨 기어 (스파이럴)	P. 246	S45C	JIS 3급	절삭
	B1S-R	\sim B3S-R	베벨 기어 (스파이럴)	P. 246	S45C	JIS 3급	절삭
	B1S-L-H	\sim B2.5S-L-H	베벨 기어 (스파이럴)	P. 248	S45C	JIS 4급	절삭ㆍ치부고주파
	B1S-R-H	∼ B2.5S-R-H	베벨 기어 (스파이럴)	P. 248	S45C	JIS 4급	절삭ㆍ치부고주파
В	B80SU	\sim B2SU	베벨 기어 (스트레이트)	P. 254	SUS304	JIS 4급	절삭
D	BE40L	\sim BE88L	베벨기어 세트 (L 형)	P. 46	보디 :AL, 커버 : 플라스틱	_	_
	BG1.5S-L-H	\sim BG2.5S-L-H	베벨 기어 (스파이럴)	P. 244	SCM440	JIS 1급	치부 고주파・연삭
	BG1.5S-R-H	\sim BG2.5S-R-H	베벨 기어 (스파이럴)	P. 244	SCM440	JIS 1급	치부 고주파・연삭
	BS35L	\sim BS105L	베벨기어 박스 (L 형)	P. 40	AL(보디)	_	_
	BS45T	\sim BS105T	베벨기어 박스 (T 형)	P. 40	AL(보디)	_	_
	BSB65L	\sim BSB105L	베벨기어 박스 중공형 (L 형)	P. 42	AL(보디)	_	_
	BSH70L	\sim BSH170L	베벨기어 박스 강화형 (L 형)	P. 44	ALorFC200(보디)	_	_
	BSH70T	\sim BSH145T	베벨기어 박스 강화형 (T 형)	P. 44	ALorFC200(보디)	_	_
	G50A-R	\sim G3A-R	웜 휠	P. 262	CAC702, C6191BE	_	절삭
	G1A-L	\sim G3A-L	웜 휠	P. 268	CAC702, C6191BE		절삭
G	G50B		웜 휠	P. 262	황동	_	절삭
J	G50BP	\sim G1.5BP	웜 휠	P. 262	청색 POM	_	절삭
	G80D	∼ G1.5D	웜 휠	P. 264	백색 POM	_	절삭
	G1DB	∼ G1.5DB	웜 휠	P. 266	백색 POM(황동부시있음)	_	절삭
	H1BP-L	∼ H3BP-L	헬리컬 기어	P. 198	청색 POM	JIS N 9~10 급	절삭
	H1BP-R	∼ H3BP-R	헬리컬 기어	P. 198	청색 POM	JIS N 9~10 급	절삭
	H1D-L	∼ H1.5D-L	헬리컬 기어	P. 202	백색 POM	JIS N 9~10 급	절삭
	H1D-R	∼ H1.5D-R	헬리컬 기어	P. 202	백색 POM	JIS N 9~10급	절삭
Н	H1S-L	∼ H3S-L	헬리컬 기어	P. 194	S45C	JIS N 9급	절삭 • 치부고주파
	H1S-R	∼ H3S-R	헬리컬 기어	P. 194	S45C	JIS N 9급	절삭 • 치부고주파
	H1SU-L		헬리컬 기어	P. 196	SUS304	JIS N 9급	절삭
	H1SU-R	∼ H1.5SU-R	헬리컬 기어	P. 196	SUS304	JIS N 9급	절삭
	HY70R	∼ HY150R	하이포이드 기어 박스 (엇갈림축)	P. 38	AL(보디)	_	_
	M50B	~ M1B	마이터 기어 (스트레이트)	P. 234	황동	JIS 4급	절삭
	M80BP	∼ M3BP	마이터 기어 (스트레이트)	P. 236	청색 POM	_	절삭
	M1D		마이터 기어 (스트레이트)	P. 234	백색 POM	_	절삭
	M50S	~ M4S	마이터 기어 (스트레이트)	P. 226	S45C	JIS 3급	절삭
	M1.5S-H	~ M4S-H	마이터 기어 (스트레이트)	P. 228	S45C	JIS 4급	절삭・치부고주파
	M80S-L	~ M3S-L	마이터기어 (스파이럴)	P. 216	S45C	JIS 3급	절삭
	M80S-R	∼ M3S-R	마이터기어 (스파이럴)	P. 216	S45C	JIS 3급	절삭
M	M1S-L-H	~ M3S-L-H	마이터기어 (스파이럴)	P. 220	S45C	JIS 4급	절삭ㆍ치부고주파
	M1S-R-H	~ M3S-R-H	마이터기어 (스파이럴)	P. 220	S45C	JIS 4급	절삭・치부고주파
	M1S-R-HB	~ M3S-R-HB	마이터기어 (스파이럴)	P. 218	S45C	JIS 4급	절삭・치부고주파・흑색염색
	M1S-L-HB	~ M3S-L-HB	마이터기어 (스파이럴)	P. 218	S45C	JIS 4급	절삭 • 치부고주파 • 흑색염색
	M80SU	~ M3SU	마이터 기어 (스트레이트)	P. 232	SUS304	JIS 4급	절삭
	M50SUM	~ M1SUM	마이터 기어 (스트레이트)	P. 232	SUS304L	_	MIM 사출성형
		I ∼ MGE3S-L-H	마이터기어 (스파이럴)	P. 214	SCM435 • 440	JIS 2급	치부 고주파 연삭
	MGE1.55-R-F	H ∼ MGE3S-R-H	마이터기어 (스파이럴)	P. 214	SCM435 • 440	JIS 2급	치부 고주파 • 연삭

알파벳검색

	1	삼품기호	상품 종류	페이지	재질	정밀도	가공 특징
	ML1S-N	∼ ML2.5S-N	마이터 기어 (스트레이트)	P. 224	S45C	JIS 3급	간이 록
	ML80SU	\sim ML2SU	마이터 기어 (스트레이트)	P. 224	SUS304	JIS 4급	간이 록
	MG1.5S-L-H	H \sim MG3S-L-H	마이터기어 (스파이럴)	P. 212	SCM440	JIS 1급	치부 고주파 • 연삭
М	MG1.5S-R-H	H \sim MG3S-R-H	마이터기어 (스파이럴)	P. 212	SCM440	JIS 1급	치부 고주파 • 연삭
	MGH		마이터 기어 (스트레이트)	P. 230	S45C	JIS 4급	절삭 • 치부고주파
	MGH-L		마이터기어 (스파이럴)	P. 222	S45C	JIS 4급	절삭 • 치부고주파
	MGH-R		마이터기어 (스파이럴)	P. 222	S45C	JIS 4급	절삭 • 치부고주파
	NS50AL	~ NS1AL	노백래시 기어	P. 58	AL	JIS N9 급	절삭
N	NS80S	\sim NS1S	노백래시 기어	P. 58	S45C	JIS N8 급	절삭
N	NS50SU		노백래시 기어	P. 58	SUS304	JIS N9 급	절삭
	NSG50S	\sim NSG1S	노백래시 기어	P. 56	SCM435·440	JIS N5 급	연삭
0	ORK50SU	∼ ORK1SU	원형 랙	P. 184	SUS304	_	절삭
	RK30B	∼ RK80B	랙	P. 185	황동	_	절삭
	RK50BP	∼ RK1BP	랙	P. 185	청색 POM	_	절삭
	RK1SD	\sim RK3SD	랙	P. 183	S45C	_	절삭
R	RK50SU	∼ RK1.5SU	랙	P. 184	SUS304	_	절삭
	RKP2B		랙	P. 188	황동	_	절삭
	RKP5SD	\sim RKP10SD	랙	P. 189	S45C	_	절삭
	S30B	∼ S80B	평기어	P. 146	황동	JIS N 9~11 급	절삭
	S50BP	∼ S3BP	평기어	P. 160	청색 POM	JIS N 9~10 급	절삭
	S50D	\sim S1D	평기어	P. 170	백색 POM	JIS N 9~10 급	절삭
	S1DB		평기어	P. 158	백색 POM(황동부시있음)	JIS N 9~10 급	절삭
S	S50S	∼ S3S	평기어	P. 94	S45C	JIS N 8급	절삭
	S50SU	\sim S2SU	평기어	P. 136	SUS304	JIS N 9급	절삭
	SG50S	∼ SG3S	연삭 평기어	P. 66	SCM435 • 440	JIS N 5급	치부 고주파 • 연삭
	SGR50S	∼ SGR3S	연삭 평기어	P. 82	S45C	JIS N 6급	치부 고주파・연삭
	SP2S	∼ SP10S	CP 피니언 (CP 랙 용)	P. 188	S45C	JIS N 8급	CP 절삭
	W50SU-R	\sim W1.5SU-R	웜	P. 262	SUS304	_	성형압연
W	W1S-L	\sim W3S-L	웜	P. 267	S45C	_	성형압연 or 절삭
VV	W50S-R	\sim W3S-R	웜	P. 263	S45C	_	성형압연 or 절삭
	WS55R	∼ WS90R	웜 기어박스 (엇갈림축)	P. 48	AL(보디)	_	_


검색방법 설명 예 :

마이터기어	M1S30R*2610H	M(모듈)S-R-H
랙기어	RK1SD10-1015	RK(모듈)SD
평기어	S1S100B-1012	S (모듈) S
웜	W1S R1+B	W(모듈)S-R

힘 전달 방향으로 기어 선택

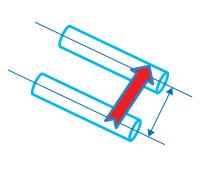
평행축의 회전 전달: 평기어, 헬리컬 기어, 노백래시 기어

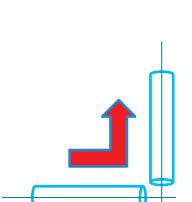
조립상의 주의점:

- ②베어링은 가능한 기어에 가까운 곳에서 양쪽에서 고정하십시오.
- ③헬리컬 기어는 스러스트 하중이 발생하므로 스러스트 베어링 등을 사용하십시오.

사용 예	사용 기어 시리즈
고토크, 고정밀도, 정숙성	SG, ASG(백래시 컨트롤 기능)
고토크, 정숙성, 경제성	SGR
고토크, 경제성	고주파 열처리 제품
백래시를 없앰	NSG, NS, NSU
의료, 식품, 음용수 포장용	SUS304, 청색/백색 POM 재료의 평기어, 헬리컬 기어
습기가 있는 환경	SUS304, 청색/백색 POM 재료의 평기어, 헬리컬 기어

축각 90도 교차축 회전 전달: 마이터 기어, 베벨 기어


조립상의 주의점:


- ①조립거리: KG 에서 설정한 조립거리로 조정하십시오.
- ②기어 치면 닿는 부분 확인: 맞물린 한 세트의 베벨 기어의 치면닿는 부분의 형태가 정확한지 확인 하십시오.
- ③베벨 기어는 스러스트 하중이 발생하므로 스러스트 베어링 등을 사용하십시 오.
- ★샤프트 확인 : 샤프트가 강도가 부족하거나 부하가 걸려 변형이 일어날 수 있습니다 . 직각도 확인도 필요합니다 .

사용 예	사용 기어 시리즈
고토크, 고정밀도, 정숙성	MG, BG
고토크, 정숙성, 경제성	MGE
고토크, 경제성	MGH, 고주파 열처리 마이터와 베벨
조립의 편리성을 추구	BS, BSB, BSH, B-SET, ML, ML-N
의료, 식품, 음용수 포장용	SUS304, 청색/백색 POM 재료의 마이터와 베벨
습기가 있는 환경	SUS304, 청색/백색 POM 재료의 마이터와 베벨

웜 기어 조립시 주의점:

- ①조립거리: KG 기어의 웜과 휠의 중심거리는 이론치보다 플러스 측 설정을 권장합니다.
- ②베어링은 가능한 한 기어에 가까운 곳에서 양쪽에서 고정하십시오.
- ③스러스트 하중이 발생하므로 스러스트 베어링 등을 사용하십시오.
- ④길들이기 운전: 기어 치면 닿는 부분 면적이 늘어나 기어의 허용 토크값으로 사용할 수 있습니다.
- ⑤윤활: 저속의 경우에는 그리스, 고속의 경우에는 유욕윤활을 부탁드립니다. 오일의 양은 아래쪽이 웜일 경우에는 웜의 중심까지, 위쪽이 웜일 경우에는 휠 직경의 1/3 까지 부탁드립니다.

헬리컬 기어 조립시 주의점:

- 이 조립 방법은 기어 치면 닿는 부분이 점접촉이 되기 때문에 기어 소모가 빨라 집니다.베벨 기어와 비교하여 조립이 용이합니다.
 - ①조립 거리: KG 기어의 헬리컬 기어 중심거리는 이론치보다 플러스 쪽 설정을 권장합니다.
 - ②베어링은 가능한 한 기어에 가까운 곳에서 양쪽에서 고정하십시오.
 - ③스러스트 하중이 발생하므로 스러스트 베어링 등을 사용하십시오.

사용 예	사용 기어 시리즈
의료, 식품, 음용수 포장용	SUS304 웜, 청색/백색 POM 휠, 청색/백색 POM 헬리컬 기어
고정밀도, 장착 및 조립의 편리성	WS, HY
습기가 있는 환경	SUS304 웜과 청색/백색 POM 재료의 웜 휠, SUS304와 청색/백색 POM 재료 헬리컬 기어

회전 운동에서 직선 운동으로의 변경: 랙과 CP 랙

사용상 주의점:

- ①피니언은 랙보다 소모가 빠르기 때문에 피니언의 강도가 높은 재질을 선택하는 경우도 있습니다.
- ② KG 가 설정한 랙의 맞물림 높이를 지키십시오.
- ③모듈 크기와 CP 크기의 호환성은 없습니다.

사용 예	사용 기어 시리즈
일반적인 사용	RK와 S
1회전의 중심 이동 거리를 정수로 할 경우	RKP와 SP
의료, 식품, 음용수 포장용	SUS304, 청색/백색 POM의 랙과 피니언
백래시를 없애거나 컨트롤함	랙과 같은 모듈의 NSG, NS, NSU, ASG를 조합하십시오.

기어박

노백래시 기어

평 기 어

랙

엘리컬 스크류 기

마 이 터 기 어

베 벨 기 어

원 , 원 원

참고자료

추가공에 대해

규격 기어의 추가 가공은 한개부터 대응 가능합니다.

잇수, 치폭, 구멍 직경이 다른 상품을 각종 구비하여 광범 위한 요구에 대응할 수 있을 것으로 생각합니다만 고객의 더 많은 요구에 대응하기 위해서 규격 기어의 추가 가공(2 차 가공)에 대한 주문을 받습니다.

기어 구멍의 추가 가공에 대한 주의점

KG 기어는 하나의 시리즈에 여러 종류의 구멍 직경이 준비되어 있습니다 . KG 기어 정밀도 , 성능을 이용하기 위해서 구멍의 추가 가공은 될 수록 피하십시오 . 기어 구멍의 추가 가공이 필요한 경우는 F 타입 (- 기호가 붙은 것)을 이용하십시오 .

생죠 스크롤 척 , 3 죠 스크롤 척 등을 사용하여 센터링을 하십시오 . 추가 가공에 의한 최대 가공 직경은 허브 직경의 60-70% 를 기준으로 하십시오 .

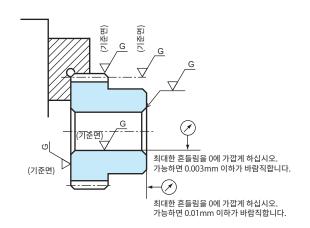
척킹 시의 주의사항

추가 가공 시의 척킹 시 각인이 있는 곳을 피해 척킹하십시오.

고주파 열처리 제품 추가 가공의 주의사항

고주파 열처리를 한 기어를 추가 가공하는 경우 치부에 가까운 부분은 열처리의 영향으로 경화되어 있으므로 주의하십시오 . 또한 외경이 작은 (적은 잇수) 기어는 구멍 면까지 열처리의 영향으로 경화되어 있어 절삭성이 나빠지므로 주의하십시오 .

치면 연마 평기어의 추가 가공 주의점

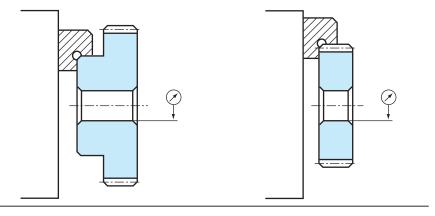

치면 연마 평기어는 될수록 구멍의 추가 가공을 피하십시오. 추가 가공함으로써 기어 정밀도가 떨어질 수 있습니다. 키 홈의 추가 가공을 실 시하면 추가 가공 전에 비해 피치 오차가 미미하지만 커지는 경향이 있습니다. 그리고 이뿌리원과 키 홈의 거리가 가까울수록 그 경향이 커 집니다. 추가 가공 후에는 기어 정밀도가 (1-2 등급) 낮아 집니다.

치면 연마 평기어의 구멍 추가 가공 예

반드시 생죠와 스크롤 척을 이용하여 척킹한 상품의 구멍 면에서 센터링을 하십시오.

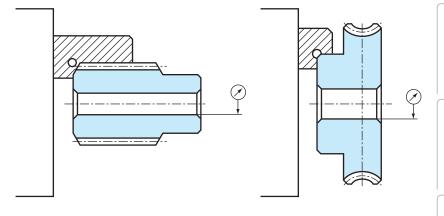
그림과 같이 척킹하면 외주와 측면이 연삭면으로 되어 있어 쉽게 센터링을 할수 있습니다.

외경이 작은 (적은 잇수) 기어는 구멍 면도 열처리의 영향으로 경화되어 있어서 절삭성이 나쁘므로 주의하십시오.

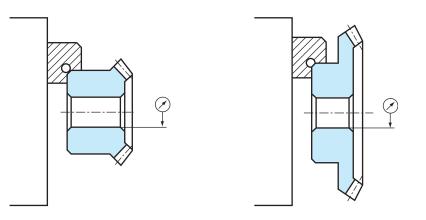


추가공에 대해

각종 기어의 구멍 직경 추가 가공 예


평기어(SG, SGR 시리즈) 헬리컬 기어

이끝 외주를 척킹하는 경우에는 이의 변형에 주의하십시 오 .


웜과 웜 휠

성형압연 가공 웜의 경우는 특히 이끝 외주를 될수록 깊게 척킹하는 것이 좋습니다. 이끝 외주를 척킹할 경우 이의 변형에 주의하십시오.

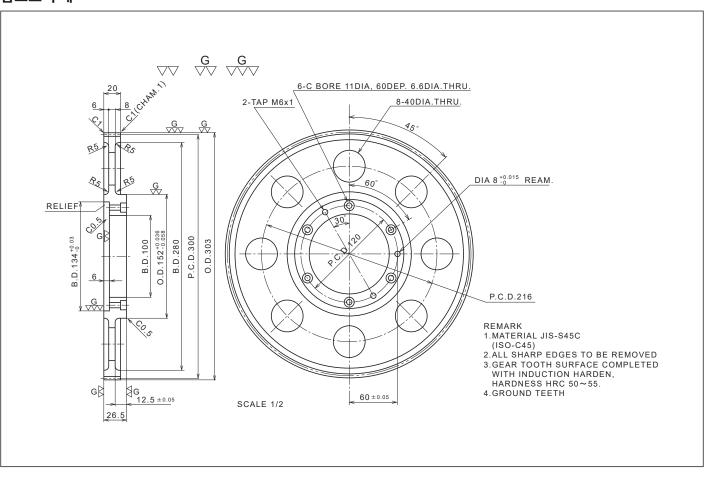
마이터, 베벨 기어

모듈 m2.0 이상의 경우는 이끝 외주를 축심과 평행하게 모 따기를 했으므로 척킹할 수 있습니다 . 이끝 외주를 척킹할 경우 이의 변형에 주의하십시오 .

특주품 제작에 대한 설명

고객님의 요구에 대응한 특별 주문 기어를 한개부터 제작해 드립니다.

당사에서는 정밀 소형 규격 기어의 생산 노하우를 살려 규격품 이외의 특별 주문품 (주문 제작 기어) 도 대응 가능합니다.


KG-STOCK GEARS 는 잇수, 치폭, 구멍 직경, 허브 외경이 다른 상품을 다양하게 갖추고 있으므로 다양한 요구에 대응할 수 있을 것으로 생각합니다. 설계를 하실 때는 먼저 KG-STOCK GEARS 에 상응품이 있는지 검토해 주십시오. KG-STOCK GEARS 중에서 적절한 기어를 선정하지 못할 경우에는 고객님의 설계도면을 보내주시기 바랍니다.

가격, 납기는 상의 후 결정하겠습니다.

또한 설계상 궁금한 점이 있으시면 부담없이 연락 주십시오. 당사 기술부는 물론 각 지점에도 경험이 풍부한 기술 서비스 직원을 배 치하여 여러분의 요구에 대응하겠습니다.

주) 당사의 생산 상황이나 설비 사정상 상담 및 수주 대응을 할 수 없는 경우도 있습니다. 미리 양해 부탁드립니다.

참고도의 예

특주품 제작에 대한 설명

소모듈 소형기어・평기어・베벨기어 등 각종 기어에 대응하고 있고 검사체제도 갖추고 있습니다.

모듈 0.3 의 평기어 , 베벨 기어에도 대응하고 있습 니다 .

최신예의 창성 기어 연삭기 라이 스하우어 RZ260 4.0 (스위스제)을 도입해 특별 주 문품 대응.

고정밀도, 고효율, 고강도, 저소음을 실현하는 '치면 폴리싱 마무리 가공'도 해드릴수 있습니다.

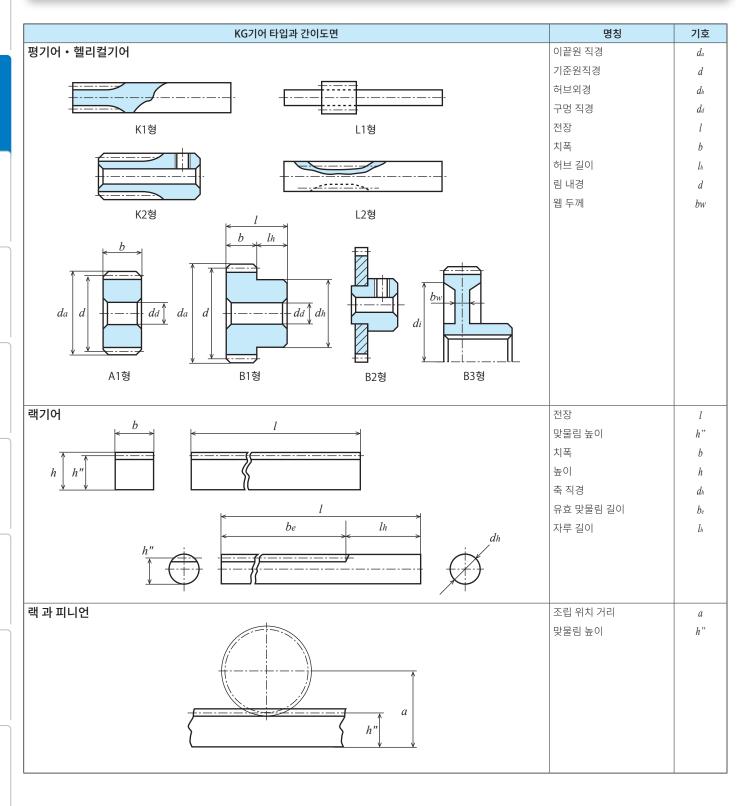
특주품 기어 제원 확인 목록

	크기	재질	잇수	형상	외경	나선각 및 방향	나사산 수	상대 기어 잇수	조립거리	열처리	표면처리
평기어	0	0	0	0						0	0
랙	0	0		0						0	0
헬리컬 기어	0	0	0	0		0		0		0	0
웜기어	0	0	0	0	0	0	0	0	0	0	0
베벨 기어	0	0	0	0		0		0	0	0	0

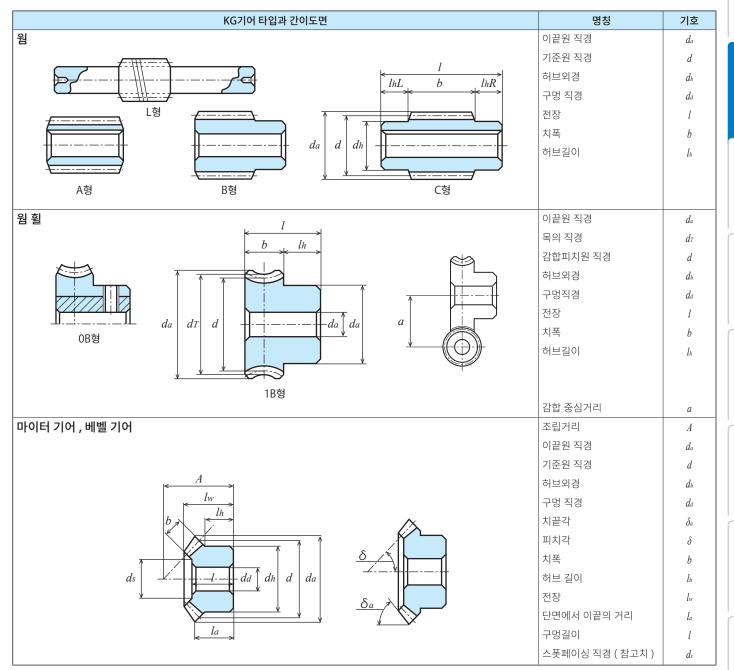
고객님의 도면, 사양서를 바탕으로 의뢰, 주문해 주십시오. 당사의 설비 사정상 대응이 불가능한 경우가 있습니다.

치면 연마 기어의 특별 주문 생산

기어 종류: 평기어, 헬리컬 기어, 스파이럴 베벨 기어 모듈 크기 m(최소 0.3~ 최대 3.0): 상담해 주십시오.


DP(인치)크기:상담해 주십시오.

잇수 10 매 ~500 매까지 , 외경 φ 8mm~ φ 350mm 까지 , 치폭 최대 200mm 까지 , 최대 나선각 좌우 45° . 보증 정밀도 등급은 상담 부탁드립니다 .


특별 주문 기어 제작의 흐름

- 1. 고객님의 도면을 받습니다.
- 2. 기술부나 영업부에서 도면 및 사양 조건을 확인한 후 대응 가능한지 검토합니다.
- 3. 고객과 도면 내용을 협의합니다 (치수, 공차 등).
- 4. 도면 내용과 제작 수량을 확정합니다.
- 5. 정식 견적을 제출합니다 (가격,제작납기).
- 6. 고객님의 견적 사양 승인과 주문서를 받습니다.
- 7. 도면 최종 확인 . 사양도에 사인을 받습니다 . ※당사 사양도에 따라 제작합니다 .
- 8. 제작이 시작됩니다.

KG 기어 치수 기호 일람표

KG 기어 치수 기호 일람표

저희 회사 제품은 기능상 지장이 없는 범위내에서 예고없이 치수를 변경하는 경우가 있습니다. 양해 부탁드립니다.

목 차

인포메

기어박

노백래시 기어

평 기 어

랙

헬리컬 스크류 기어

환경문제에 대한 대처

KYOUIKU GEAR MFG. CO., LTD. 에서는 지구 규모의 환경보전이 전 인류의 가장 중요한 과제 중 하나임을 인식하고 환경 부하의 지속적 저감에 노력하여 지속적으로 발전할 수 있는 경제사회 실현에 기여하고 있습니다 .

RoHS2 지침이란: 10 대 물질(납, 수은, 카드뮴, 6 가크롬, 특정 브롬 난연제 2 종 (PBB, PBDE),

프탈산 (DEHP, BBP, DBP, DIBP)) 을 사용 하면 안 된다는 것입니다.

유럽 RoHS2 지침: 전자·전자기기에 대해 특정 유해물질 사용을 제한하는 유럽연합 (EU) 에 의한 지침입니다.

대상이 되는 특정 유해물질 6 대 물질에 4 대 물질이 추가되어 현재는 위의 10 대 물질의 사용이 규제되고 있습니다.

당사 규격품 상품의 대응 상황: RoHS 지령에 대응하는 상품으로 점차 대체되고 있습니다.

2006 년 11 월부터 생산한 황동재료 상품 중 C3604, C3771 황동소재를 카드뮴 함량이 낮은 소재로 교체 하였습니다 . 2023 년 11 월 21 일 부터 생산한 S45C 강철재료 상품에 대해서도 (0.1 wt% 이하) 납 함량이 낮은 S45C 강철 재료로 대체하고 있습니다 . 상세한내용은 당사 공식 홈페이지를 확인 하기 바랍니다 .

https://www.kggear.co.jp/en/rohs2

「RoHS 지령 대응 제품」이 필요하실 경우:

RoHS 지령 제품이 필요하실 경우에는 우선 최신 RoHS 지령 내용을 확인 하신 후 귀사의 요구사항을 당사에 명확하게 알려주시기 바랍니다. 귀사에서 필요하시는 제품이 RoHS 지령으로 완전히 전환 되여 있지 않을 경우,특별주문제품의 형태로 귀사에 견적을 제공해 드릴수가 있습니다.

중국 RoHS 지령: 아직 대응하고 있지 않습니다.

주의 : 본 카탈로그에 기재된 모든 내용은 사전통지 없이 편집 수정할 권리를 보유합니다 . 내용에 대해서 완벽하고 틀림이 없도록 노력해 편 집하고 있습니다마는 정정이 있을수 있사오니 홈페이지의 최신 정보를 확인 부탁드립니다 . 일부내용을 제외한 기재내용의 저작권은 저희 회사에 귀속 되어 있기 때문에 허가 없이 기재내용을 복사 전재하는 행위를 금지합니다 .

기어내경 검사에 대한 설명

당사 규격품 기어의 내경 치수 및 품질합격 여부의 검사는 저희 회사 내부 품질검사 규정에 따라 합격된 게이지 (플러그 게이지 - Plug gauge, 핀 게이지 - Pin Gauge 등) 로 검사 판정을 하고 있습니다 .

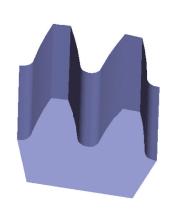
로트 번호(Lot No.) 에 대한 설명

고객여러분이 사용하시는 당사의 기어 상품 라벨에는 상품기호와 더불어 로트 번호 (Lot No.) 도 함께 프린트되여 있습니다 . 이후 상품의 추적조사가 필요하실때 로트번호를 준비하시고 연락주신다면 각종 문의사항에대해 당사가 신속하고 정확히 대응할수 있게 됩니다 . 로트번호는 아주 중요한 정보이기때문에 소중히 기록 보관하시길 바랍니다 .

상품 로트 번호 (Lot No.)

2010 년 10 월 이후로 발표된 새상품은 왼쪽 노란색라벨로 되여 었습니다.

2022 년 1 월이후 생산된 상품라벨


(상품 라벨 샘플)

기어 가공중의 버(burr)의 제거 형태

당사 기어상품의 치부 가공중에 생긴 버 (burr) 의 제거 방식 및 가공형태는 같은 상품에서도 서로 다를수가 있습니다마는 안심하고 사용하셔도 문제 없습니다.

예:평기어의 경우

인포메 이션

기 어 박 스

노백래시 기어

평 기 어

랙

헬리컬 스크류 기어

마 이 터 기 어

> 베 벨 기 어

에 , 에 세

침고지료

식품접촉물질 청색 POM 의 소개

개정 일본식품위생법 (2020년 6월 시행) 및 미국, EU 시장 식품 접촉 용도, 규제 적합 청색 POM 기어를 시리즈로 만들었습니다. 식품 소재 색상에 없는 청색 POM은 이물질 혼입 대책으로 식품 및 포장기에 최적입니다.

상품명	평기어	헬리컬 기어	랙	웜기어	마이터 기어
상품 사진	00				
모듈	0.5~3.0	1.0~3.0	0.5~1.0	0.5~1.5	0.8~3.0
잇수	12~120	10~26	전장: 200mm~500mm	20~100	20~30

재료

청색 POM 기어 시리즈의 재료는 아래 규정에 적합하거나 재료 제조사가 자체 선언했습니다.

용도	각국 규제
식품용 기구, 용기 포장	개정 일본식품위생법(2020년 6월 시행: 일본)
식품 접촉 용도	N0.10/2011(EU), FDA(미국), NSF 51(미국), 3A-DAIRY(미국; 유제품), Health Canada(캐나다), 폴리올레핀등위생협의회 PL, 후생성 고시 제370호(일본)
음료수 용도	NSF 61(미국), KTW W270(독일), WRAS(영국), ACS(프랑스)

청색 POM(청색 폴리아세탈 수지) 과 MC 나일론의 성능 비교

	미그 대기자	개정	기수 변화 개정		추가 가공성			
비교 항목	미국, EU 시장 식품 접촉 용도 규제	일본식품위생법 2020년 6월 시행	흡수율% (온도에 따름)	팽창계수×10 ⁻⁵ /°C (온도 변화에 따름) ^{※2}	청색 POM의 기어 강도	치수의 안정	경년 변화	버의 발생
청색 POM	적합	적합	0.2(작음)		MC 나일론의 30%	좋음	작음	적음
MC 나일론	부적합	부적합	0.8(書)	9	정도* ¹ 백색 POM과 동등 (상세 내용은 허용전달동력표 참조)	안정하지 않음	큽	많음

^{※1} MC 나일론에서 교체할 경우 주의하십시오. ※2 시험 사양: 23°C 수중 24시간 침지

자체 윤활성이 있으며 저속, 저부하의 경우 무윤활에서도 사용을 검토할 수 있습니다.

윤활		무윤활	오일 윤활
평기어 및 베벨 기어의 원주 속도	m/s	6	12
웜기어의 미끄러짐 속도	m/s	1	2.5

최저 사용 한계 온도 -38°C

정밀도 공차

폴리아세탈 절삭 가공품의 구멍 직경치수공차는 가공 관리 공차 H9 입니다.

폴리아세탈 상품은 소재 특성상 경년 변화, 온도 변화 등에 따라치수변화가 발생합니다. 가공 관리 공차는 H9 로 되어 있으나 KG 규격 기어는 생산 후 일시적으로 재고가 되는 관계상 고객님 한테 배송할 때는 이미 치수 변화가 일어났을 수 있습니다. 자세한 내용은 저희 기술자료 (일본 어 영어) 56 페이지를 참조하십시오.

사용상의 주의사항

- 1) 15% 가 넘는 알코올 농도의 식품에 접촉하는 용도로 사용할 수 없으므로 주의하십시오.
- 2) 본 제품 사용은 본 제품을 이용한 최종 제품에 의한 실제 사양 조건하에서 안전을 확인한 후 사용하십시오.
- 3) 청색 POM 기어 시리즈는 절삭유 등이 사용되는 환경에서 제작하고 있습니다.
- 기어 치면닿는 부분 형태를 확인하기 위해 표시용 도료가 부착되어 있는 경우가 있으나 사용상 문제가 없습니다.

소형정밀 기어의 제작

대응 모듈 $m0.2^{-}$

로보트 ·의료기계· 정밀기기ㆍ등 에 최적합니다.

소형정밀기어 대응 스펙

		기어종류	정밀도 등급	대응 모듈	대응 치수	대응 사이즈
	1	평기어	JISB N 8급 ~	0.2 ~	13 ~	Ф 1.0 ~
d		6/14	JISB N 5급 ~	0.3 ~	30 ~	Ф 3.0 ~
	2	헤리컬기어	JISB N 8급 ~	0.2 ∼	10 ~	Ф 1.0 ~
		에니크기에	JISB N 5급 ~	0.3 ~	28 ~	Ф 3.0 ~
	3	랙 기어	치면 절삭가공	0.2 ~	_	_
C	4	스트레이트 마이터기어 베벨기어	JISB 3급 ~	0.3 ~	20 ~	Ф 1.0 ~
۱	-	스파이럴 마이터기어	JISB 3급~	0.8 ~	20 ~	Ф 1.0 ~
	5	베벨기어	치면 연삭 JISB 1급 ~	0.8 ~	20 ~	Ф 1.0 ~
	6	웜	치면 절삭가공	0.5 ∼	_	상담 필수
	0	김	치면 연삭가공	0.5 ∼	_	상담 필수
	7	웜 휠	치면 절삭가공	0.5 ∼	18 ~	Ф 1.0 ~

※ 기어의 정밀도 등급은 합당한 재질을 사용하는 경우에 실현가능합니다.

※ 대응가능한 재질 및 열처리는 문의하십시오 .

協育歯車工業株式会社

KG 기어 상담실 00 0120-7-8960-7

Email: export@kggear.co.jp https://www.kggear.co.jp/en/

표면거칠기의 한단계 높은 향상에 의해

치면 폴리싱 연삭 가공 고정밀도 기어

정밀도 등급 JIS B 1702-1: N4급~ N5급

기어 맞물림 마찰의 감소

내 피칭성능의 향상 (치면 손상 관련)

기어 소음의 감소 (기어 맞물림시에 생기는 진동소음 관련)

최신 기어 생성 연삭기 REISHAUER RZ260 Ver. 4.0 도입

기대되는 주요한 용도

·EV용 기어

-클린룸 설비용 기어

로보트용기어

·의료설비 기기용 기어

·공작기계 관련 기어 등

특주품으로서 대응합니다.

REISHAUER

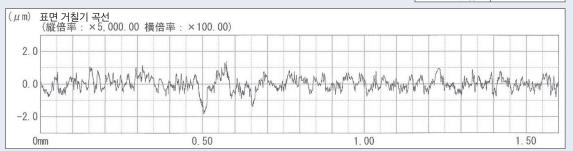
KG 기어 상담실

Email: export@kggear.co.jp https://www.kggear.co.jp/en/

協育歯車工業株式会社

가공 사양의 개요

	치면연마 가공품	치면 폴리싱 가공품	
대응기어의 종류	평기어 ·헤리컬기어		
모듈치수	m=0.5~3	m=1.5~3	
기어 정밀도 등급	JIS B 1702-1 N 4급∼N 5급		
외 경	ø20~ø260	ø40∼ø260	
표면거칠기(치형방향)	Ra0.32~Ra0.5	Ra0.10∼Ra0.2	


가공데이터의 소개

치면연마 가공품

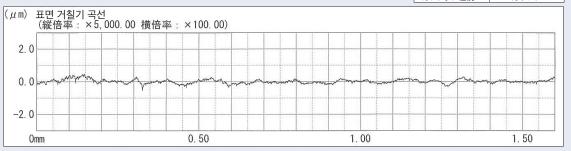
部品名	No1
測定種別	粗さ測定
測定長さ	2.0mm
カットオフ波長	0.25mm
測定倍率	× 5K
測定速度	0.06mm/s
カットオフ種別	ガウシアン


오른쪽 치면

Ra	0.3187 μm
Ramax	0.4545 μm
Rz	2.0740 μm
*Rz. J94	1.4480 μm

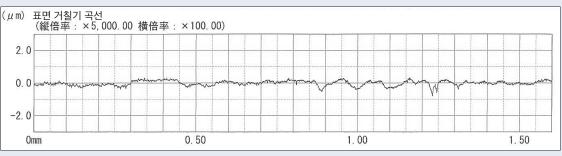
왼쪽 치면

Ra	0.2232 μm
Ramax	0.2609 μm
Rz	1.5420 μm
Rz. J94	1.0910 μm



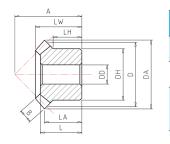
치면 폴리싱 가공품

部品名	NO2
測定種別	粗さ測定
測定長さ	2.0mm
カットオフ波長	0.25mm
測定倍率	× 5K
測定速度	0.06mm/s
カットオフ種別	ガウシアン


오른쪽 치면

Ra	0.0977 μm
Ramax	0.1385 μm
Rz	0.6230 μm
*Rz. J94	0.3678 μm

왼쪽 치면


Ra	0.1197 μm
Ramax	0.1642 μm
Rz	0.6630 μm
*Rz. J94	0.4570 μm

기어도면 2D 3D CAD 데이터

다운로드

기능	(일본어 혹은 영어 페이지를 사용하십시오)
상품검색	필요한 규격품기어를 간단히 찾을 수 있고 상관 상품도 표시
추가공 도면 생성	수요하시는 형태로 간단히 변경
CAD 데이터 다운로드	2D 3D

KG WEB 페이지 에서 악세스

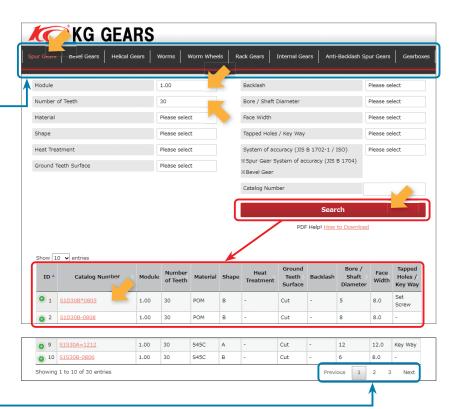
웹 페이지에 들어가신후 오른쪽 그림을 클릭 하세요.

① 기어 종류의 선택

우선 기어종류를 선택 평기어 , 베벨기어…. 등

CAD 데이터의 다운로드 페이지가 표시됩니다 .

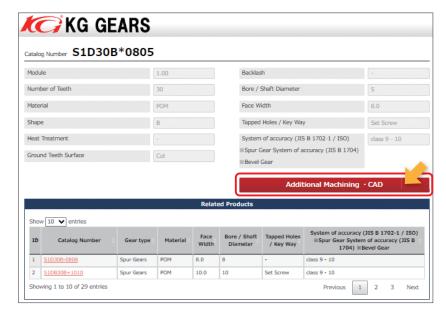
예를 들면 여기에서 검색하려는 기어의 모듈과 잇수를 풀 다운에서 선택하세요.


② Search(검색 실시) 를 클릭

③ 상품기호를 선택

밑에 상품리스트가 보입니다.

필요하신 상품기호가 없는 경우에는 좀 더 상세한 조건으로 재검색을 하시거나 다음 페이지로 가보세요.



④ 기본 스펙 확인

선택하신 상품의 기본 스펙이 나옵니다 .

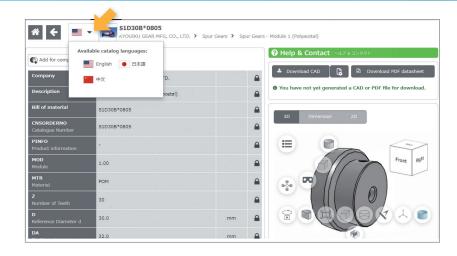
상품이 틀림 없을 경우 계속해서 Additional Machining • CAD 를 클릭하세요.

이 페이지의 밑에는 관련상품 (유사한 기어 나 상대기어등)이 표현됩니다. 참고로 하세요.

당사 웹페이지 혹은 아래의 QR 코드 에서 보실 수 있습니다 .

Enghlish

EN 2D 3D CAD

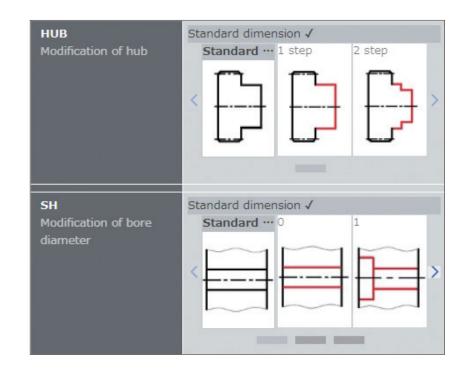

日本語ページ

中文页面

⑤ 선택하신 기어의 상품사양 확인

상품사양확인 페이지가 표시됩니다.

이 페이지에서 추가공할 사양 결정 데이터의 생성 언어의 선택을 할수 있습니다. (생성도면의 언어는 일본어 뿐입니다)


⑥ 추가공하실 경우의 설정

상품 사양확인 페이지에서는

구멍의 변경, 탭 추가, 허브가공 등 추가공하는 곳의 선택 설정이 가능 합니다.

주의:


● 마크가 있는 항목은 수정불가 합니다. 기어의 종류에 따라서 추가공 불가일 경우가 있습니다.

⑦ 데이터 생성 시작

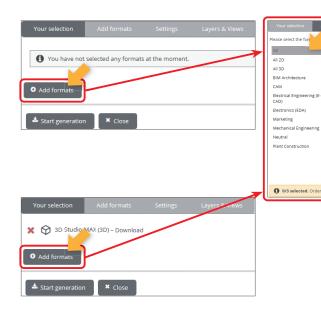
추가공 내용 • 사양확인후 Download CAD 아이콘을 클릭

한번 데이터를 생성 다운로드 하신후 다음번 데이터 형식을 변형하시려면 여기를 클릭 하세요.

기어 도면 2D 3D CAD 데이터 다운로드

⑧ 데이터 형식선택

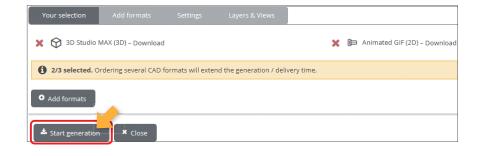
데이터 형식페이지가 표시됩니다 .


2D, 3D 등 데이터의 종류를 선택, 데이터의 확장명 선택

⑨ 데이터 형식의 추가

데이터 형식의 확인 화면이 표시됩니다.

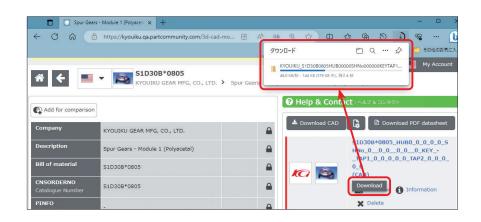
이번에 예로 3D studio 를 선택 위의 절차로 2D 데이터도 추가 가능합니다 .


이렇게 Add formats 로 한번에 여러 종류의 데이터를 생성 시킬수 있습니다 .

+ 😭 3D Studio MAX (3D)

⑩ 내용확인

필요한 데이터가 준비되여 있는지 확인 하시고 데이터 생성 Start generation 을 클릭



⑪ 다운로드

데이터 생성이 완료하시면 다운로드 화면이 표시됩니다 .

Download 를 클릭 다운로드 시작합니다 .

(절차⑩에서 데이터 생성을 클릭하실때 자동적으로 다운로드가 시작되는 경우도 있습니다.)

HY-BOX
B-BOX®
W-BOX
B-SET

상표등록

※외관은 이미지 입니다.

상품 기호 읽는 방법

BSB 105 L - 001 A

내장 기어 종류	기준면에서 축단면까지의 거리	축위치 및 전체 형태	잇수비 (피니언 : 기어)	축과 구멍의 형태
HY : 하이포이드 기어박스 BS : 베벨 기어 박스 BSB: 베벨 기어 박스 (중공축형) BSH: 베벨 기어 박스 (강화형) BE : 베벨 기어 간이 세트 WS : 웜 기어 박스	단위: mm	R : 상자형 (출력축은 오론쪽) L : L 형 T : T 형	$002 \rightarrow 1:2$ $005 \rightarrow 1:5$ $010 \rightarrow 1:10$	BSB 시리즈: A: 소구경 타입 B: 대구경 타입 BE 시리즈 A: 가는 축 타입 B: 굵은 축 타입

상품기호	HY-BOX	BS-BOX	BSB-BOX	BSH-BOX	B-SET	WS-BOX
형상			0			
페이지	P. 38	P. 40	P. 42	P. 44	P. 46	P. 48
재질	보디: 알루미늄 축:SCM435,440 • S45C	보디 : 알루미늄 축 : SUS303	보디 : 알루미늄 축 : SUS303	보디 : 알루미늄 or FC250 축 : SUS303 • S45C	보디 : 알루미늄 축 : SUS303	보디 : 알루미늄 축 : S45C
축•형상	엇갈림 축	L형, T형	L형	L형,T형	L형	엇갈림 축
백래시	20'	15' ~25'	15'	10'~15'	관능검사	30'~45'
사용기어	하이포이드 기어	스트레이트 베벨기어	스트레이트 베벨기어	스파이럴 베벨 기어	스트레이트 베벨기어	웜 기어

기어박스 인포메이션

기어 박스 상품에 대하여

	시리즈 기호	기어 종류	상세 설명정보 페이지
HY-BOX	HY	하이포이드 기어	P. 31 P. 38
	BS	스트레이트 베벨 기어	P. 31, 32 P. 40
B-BOX	BSB	스트레이트 베벨 기어	P. 31, 32 P. 42
	BSH	스파이럴 베벨 기어	P. 31, 32 P. 44
B-SET	BE	스트레이트 베벨 기어	P. 32, 33 P. 46
WS-BOX	WS	원 웜 휠	P. 34, 35 P. 48

1. 특징

- 1) 소형의 심플한 디자인을 채용하고 있습니다.
- 2) 기어가 밀봉되어 있어 방진성이 높아집니다(B-SET 제외).
- 3) 고정밀도 기어를 사용하여 작동 시 진동 및 소음을 억제할 수 있습니다.
- 4) 설치용 나사 구멍이 가공되어 있어서 간단히 설치 가능합니다.
- 5) 본 시리즈의 제품은 절대로 분해하지 마십시오.

2. 장착 시 주의점

- 1) 기어박스를 상대 설치면에 고정할 경우 기어축과 상대축이 평행하고 축심이 일치하도록 장착하여 사용하십시오. 상대축과의 동축도 오차는 Φ 0.05mm 이하를 권장합니다.
- 2) 기어축과 상대축의 연결에는 플렉시블 커플링을 권장합니다.
- 3) 진동에 견딜수 있는 베이스에 장착하십시오.
- 4) 통기성이 좋은 곳에 설치할 것을 권장합니다.
- 5) 출력축(기어측)의 오버행 하중, 스러스트 하중에 대해서는 카탈로그에 기재된 값 내에서 설정하십시오.

3. 작동상의 주의점 ※뒤페지의 B-BOX와 B-SET의 사용상 주의 사항도 확인 하십시오.

- 1) 운전 중에는 본체를 만지지 마십시오. 축부에 가공되어 있는 키 홈이나 축용 멈춤링에 이물질이 말려드는 것 등에도 주의하십시오.
- 2) 작동 중에 소리나 온도에 이상이 있을 경우 즉시 운전을 중지하고 원인이 해결될 때까지 작동하지 마십시오.
- 3) 길들이기 운전을 권장합니다(허용 부하의 1/3~1/2 정도를 기준으로 10분 이상).
- 4) 당사에서는 감속용으로 BOX를 설계하였으므로 증속으로 사용하실 경우 소음 및 온도 상승이 높아지는 경향이 있습니다.
- 5) 작동 시작 후 초기 마모로 인해 백래시가 증가하는 경향이 있습니다.
- 6) 사용조건 및 사용환경의 영향으로 박스내부의 윤활유 그리스에서 분리된 기름성분이 스며나오는 경우가 있습니다.

4. 추가 가공상의 주의점 ※뒤페지의 B-SET의 사용상 주의사항도 확인 하십시오.

- 1) 베어링부에 절삭가루 등이 들어가지 않도록 대책을 세운 후 가공하십시오.
- 2) 오일씰은 흠집이 나지 않도록 마스킹을 실시하십시오.
- 3) 축에 추가 가공을 할 경우 축이나 다른 부분이 변형되지 않도록 주의하십시오.
- 4) 보디에 추가 가공을 하는 경우는 내부 부품과의 간섭을 피하기 위해 가공 전에 당사와 상담하십시오.

5. 허용 전달 동력, 오버행 하중, 스러스트 하중에 대하여

- 1) BOX가 성능을 발휘하기 위해서는 허용전달토크표에 기재된 회전수와 토크값 이하로 사용하십시오.
- 2) BOX 사용 중에는 입력축(피니언 측)에 오버행 하중이나 스러스트 하중이 걸리는 것을 가능한 한 피하십시오. 입출력축에 오버행 하중이 걸리는 경우는 본 기기와는 별도로 하중을 받는 기구를 설치하십시오.

차

BOX 상품의 상세 (B-SET 의 상세는 상품 페이지를 확인하십시오.)

	백래시※	사용 환경	윤활	타입	장착 기준면	베어링
HY-BOX	20' 이하	− 10° C~40° C				
B-BOX	15' ~25'이하		7714 701			
BSB-BOX	15' 이하	그리스 주입 - 20° C~50° C		밀폐형	모든 면	볼 베어링
BSH-BOX	10' ~15'이하					
WS-BOX	30' ~45' 이하	− 10° C~40° C	오일 윤활			

[※] 백래시는 당사 출하 시의 수치입니다.

HY-BOX 의 사용상 주의사항

- 1) 각 축이 정상적으로 회전하는지 확인하신 후 사용하십시오.
- 2) 기어축과 상대축의 연결에는 플렉시블 커플링을 사용하십시오.
- 3) 출력축(기어 측)으로의 오버행 하중은 카탈로그에 기재된 값 내에서 사용하십시오.
- 4) 운전 시작 후 초기 마모로 인해 백래시가 증가하는 경향이 있습니다.
- 5) 이상한 소리가 나는 경우 즉시 운전을 중지하고 원인이 해결될 때까지 운전하지 마십시오.
- 6) 특수 환경에서의 사용을 고려하지 않았습니다. 진공 환경 등에서 사용하실 때는 당사에 상담해 주십시오.
- 7) 카탈로그에 기재된 허용 전달 동력표는 감속 시의 성능입니다. 증속으로 사용하실 경우 적용되지 않습니다.

B-BOX 의 사용상 주의사항

B-BOX 의 입력과 기어비 및 기어 레이아웃

기어비(피니언축 P:기어축 G)	L형	T형
P 축이 입력인 경우		
1:2 회전 방향은 한정되지 않습니다. 정 / 역회전 가능합니다.	P축(피니언)	P축(피니언) G축(기어)
1:1 회전 방향은 한정되지 않습니다. 정 / 역회전 가능합니다.	P축(IILI인) G축(ZIN)	P축(피니언) G축(기어)

본 제품은 기능상 지장이 없는 범위에서 예고없이 치수를 변경하는 경우가 있습니다. 미리 양해 부탁드립니다.

인 포 메 이 션

> 기 어 박 스

노백래시 기어

평 기 어

랙

릴리컬 스크류 기어

참고자료

기어비가 1:2 이상인 경우에는 출력축의 백래시입니다.

BS/BSB 시리즈는 오일씰을 적용하지 않았습니다. 표에는 없지만 BE 시리즈도 오일씰을 적용하지 않았습니다.

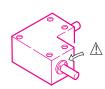
목차

기어박스 인포메이션

B-BOX 의 사용상 주의사항

본 상품은 절대 분해하지 마십시오.

허용전달토크표의 값 이하의 조건에서 사용하십시오.


각 축에 오버행 하중이 가해지는 사용 방법은 피하십시오. 단, 설계상 부득이하게 각 축에 오버행 하중, 스러스트 하중이 걸리는 경우는 본 기기와는 별도로 하중을 받는 기구를 설치하십시오(그림9 참조).

각 축 및 보디에 충격을 주지 않도록 주의하십시오.

장착 시 (기능을 효율적으로 사용하기 위해)

- ◇ 운전 전에 반드시 각 축이 정 상적으로 회전하는지 손으로 돌려서 확인하십시오.
- 기어축과 상대축은 평행하고 축심이 일치하도록 장착하십 시오 . 축이 파손될 수 있습니 다 (동축도 φ 0.05mm 이하 권장)
- 노출된 축에 말려들지 않도록 주의하십시오. 이물질이 말려 드는 것에도 주의하십시오.

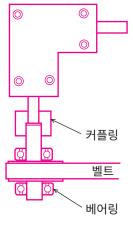
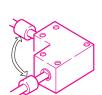
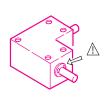
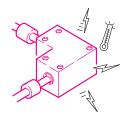



그림9 오버행 하중 대책 예

길들이기 운전을 권장합니다(허용 부하의 1/3~1/2를 기준으로 10분 이상).


기어축과 상대축의 연결에는 플렉시블 커플링을 권장합니다.


본 상품은 완전 씰 타입이 아닙니다. 물, 오일, 약품 등이 보디에 닿는 환경에서의 사용을 피하십시오. 증속으로 사용하시는 경우는 등속 또는 감속에 비해 소음 및 온도 상승이 높아지는 경향이 있습니다.

사용 중 (안전을 위해 특히 주의가 필요함)

- ◇ 운전 중에는 위험하므로 손을 대지 마십시오
- ◇ 노출되어 있는 축에 이물질 말 려듬 등에 주의하십시오 .
- ◇ 운전 중에 소리나 온도에 이상 이 있을 경우 즉시 운전을 중 지하고 원인이 해결될 때까지 운전을 하지 마십시오.

B-SET의 사용상 주의사항

B-SET 의 특징

- 운전 가능한 상태로 되어 있을 때는 반드시 부속된 커버를 보디에 확실하게 장착하십시오. 운전 중의 진동이나 기타 요인으로 커버가 분리될 경우에는 나사 등을 추가 가공하여 확실하게 고정하십시오. 커버가 파손되거나 열화된 경우에는 새 것으로 교체하십시오(단품으로 판매함).
- P.35 'B-SET 사용상의 주의'를 참조하십시오.

백래시	윤활	사용 환경	타입	장착 기준면	베어링
관능검사 ※ 1	※ 2	※ 3	개방형	양측면	슬라이딩 베어링

- ※1 회전 상태 확인.
- ※2 사용 전에 기어 치면에 그리스를 도포하고 플라스틱 커버를 세팅하십시오.
- ※3 고객이 사용하는 그리스의 성능에 따라 달라집니다. 고온 시 그리스가 커버에서 새지 않도록 주의하십시오.

허용 전달 능력 이하의 조건에서 사용하십시오.

각 축에 오버행 하중이 가해지는 사용 방법은 피하십시오. 단, 설계상 부득이하게 각 축에 오버행 하중, 스러스트 하중이 걸리는 경우는 본기기와는 별도로 하중을 받는 기구를 설치하십시오(그림10 참조).

장착 시 (기능을 효율적으로 사용하기 위해)

길들이기 운전을 권장합니다(허용 부하의 1/3~1/2를 기준으로 10분 이상).

◇ 운전 전에 반드시 각 축이 정상적으로 회 전하는지 손으로 돌려서 확인하십시오. 기어축과 상대축은 평행하고 축심이 일치 하도록 장착하십시오 (동축도 φ 0.05mm 이하 권장). 기어에는 그리스를 정기적으로 도포하십시오. 베어링에는 윤활유 급유를 권장합니다. 또한 오일 공급이 중단되지 않도록하십시오.

◇ 기어나 축용 멈춤링 등에 손가락이 끼지 않도록 주의하십시오. 이물질 말려듬에도 주의하십시오.

- ◇ 운전 가능한 상태일 때는 반드시 부속된 커버를 보디에 확실하게 세팅하십시오.
- ◇ 커버 장착 ①, ②의 순서로 커버가 파손되지 않도록 실시하십시오.

② 커버의 래치가 보디 의 홈에 확실히 들어 갈 때까지 밀어 넣으 십시오 .

① 커버가 옆으로 어긋하는 것을 방지하는 스토퍼의 볼록부를 보디의 오목부에 맞추십시오.

운전 중에 커버가 빠실 가능성이 있는 경 우에는 나사 등을 사용하여 확실하게 고정 하십시오.

보디에 나사 가공 시에 는 베어링에 흠집이 나 지 않도록 하십시오 .

기어축과 상대축의 연결에는 플렉시블 커플링을 권장합니다.

베어링이나 기어에 먼지나 이물질 등이 들어가지 않도록 하십시오.

증속으로 사용하시는 경우는 등속 또는 감속에 비해 소음 및 온도 상승이 높아지는 경향이 있습니다.

사용 중 (안전을 위해 특히 주의가 필요함)

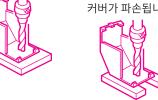
- ◇ 운전 중에는 위험하므로 손을 대지 마십시 오.
- ◇ 노출되어 있는 축에 이물질 말려듬 등에 주의하십시오 .

◇ 운전 중에 소리나 온도에 이상이 있을 경 우 즉시 운전을 중지하고 원인이 해결될 때까지 운전을 하지 마십시오.

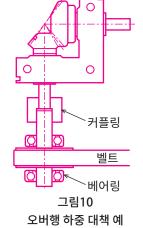
◇ 부속된 커버가 파손되거나 경년 열화된 경 우는 새로운 커버로 교체하십시오 (단품으로 판매함).

추가 가공을 할 경우

추가 가공으로 인해 기능을 손상시킬 수 있으니 주의하십시오.


추가 가공에 대해 궁금하신 점은 당사와 상담해 주십시오.

- ◇ 베어링 및 기어에 절삭 찌꺼기가 들어가지 않도 록 대책을 세운 후 실시하십시오 .
- ◇ 부착용 볼트 구멍을 추가 가공하는 경우는 추가 가공 허용 구멍 직경 이하로 실시하십시오 (상품 페이지 표 1 참조).



◇ 커버의 드릴구멍 추가 가공은 반드시 널판을 대고 가공하십시오.

○널판을 받칩니다.

×그렇지 않을 경우 커버가 파손됩니다 .

참고자료

기어박스 인포메이션

WS-BOX의 사용상 주의사항

1. 확실한 자동 조임(셀프 록)은 되지 않습니다.

완전히 멈추고 싶은 경우는 그 밖에 브레이크 기구를 설치하십시오.

2. 길들이기 운전

W-BOX는 사용하기 전에 길들이기 운전으로 통상 부하의 1/2~1/3을 기준으로 약 6시간 이상 실시할 것을 권장합니다.

3. 이음 발생시

통상 작동 시와 다른 소리가 발생하는 경우나 진동이 커진 경우 즉시 작동을 중지하고 원인이 해결될 때까지 작동을 하지 마십시오. 또한 필요에 따라 윤활유를 교체하십시오.

4. 고온 상태

실온+박스의 표면 온도가 80° C 이상일 경우 작동을 중지하십시오. 윤활유 교체 또는 박스의 작동 조건을 재확인하십시오.

5. 윤활유 교체 방법

- ※윤활유 교체는 작동 시작 후 누적 시간이 50시간을 기준으로 최초 윤활유 교체를 실시하십시오.
 - 이후에는 6개월에 한 번 간격으로 유량, 오염을 점검하여 필요에 따라 교체하십시오.
- ※윤활유 교체는 보디 온도, 윤활유 온도가 충분히 낮아진 후 작업하십시오. 화상의 위험이 있으므로 주의하십시오.
- ※윤활유 교체 작업은 드레인 입구에서 오래된 오일이 빠져나가도록 드레인 입구가 상하로 오는 상태에서 실시하십시오.
- ※저희회사의 지정된 윤활유 교체 키드를 사용하는 외에는 윤활유 교환을 절대로 실시하지 마십시오.
 - 사용중 기어 치면의 손상 등 문제가 생길수 있습니다.

장치에서 분리한 후 윤활유 교체를 권장합니다.

- ①본체에 있는 드레인 플러그(상하면에 각 1곳)를 분리하여 오래된 오일을 빼 주십시오.
- ② '윤활유 교체 키트'의 세정유를 사용하여 기어의 마모가루와 이물질을 제거하십시오.
- ③남아있는 세정유를 가능한 한 빼 주십시오.
 - 세정유 제거가 불충분한 경우 충전유를 넣었을 때 잔유분이 유량 초과되어 기름때의 원인이 됩니다.
- ④아랫면 쪽 드레인 입구를 막으십시오. 드레인 플러그에 씰 테이프를 적당량 감고 드레인 플러그를 끼우십시오. 드레인 입구의 오일 누출에 주의하십시오.
- ⑤윗면의 드레인 입구를 통해 충전유를 넣으십시오. 용기 내의 오일은 모두 급유하십시오.
- ⑥윗면 쪽 드레인 입구를 막으십시오. 드레인 플러그에 씰 테이프를 적당량 감아 드레인 입구에 끼우십시오. 드레인 입구의 오일 누출에 주의하십시오.
- ⑦장치를 원래 위치에 설치하기 전에 입출력축이 정상적으로 회전하는지 확인하십시오. 다시 각 부분에서 오일 누출이 없는지 확인하십시오.
- ※이상이 있는 경우는 작동하지 말고 당사에 문의하십시오.

6. 윤활유 교체 키트

상품 기호	충전유량 [ml]	세정유량 [ml]	합계 유량
LO-WS55R-020	3.0	20.0	23.0
LO-WS55R-030	2.3	20.0	22.3
LO-WS60R-040	4.5	20.0	24.5
LO-WS60R-050	2.5	20.0	22.5
LO-WS65R-020	4.2	20.0	24.2
LO-WS65R-030	4.5	20.0	24.5
LO-WS75R-040	6.5	20.0	26.5
LO-WS75R-050	7.0	20.0	27.0
LO-WS80R-010	9.0	30.0	39.0
LO-WS80R-020	7.0	30.0	37.0
LO-WS80R-030	8.5	30.0	38.5
LO-WS90R-040	15.0	50.0	65.0
LO-WS90R-050	19.0	50.0	69.0

※사용 오일: SUMI 기어 오일 S0460(반합성유)

충전유, 세정유는 동일한 오일을 사용.

※장기간 보존할 경우 용기에서 오일이 새는 경우가 있습니다.

특주품 기어 박스 제작에 대하여

1. 주문 제작을 위한 규격품 사양 설명(참고용 그림)

		보디	
용도	표준	강도 증가	클린룸 진공
재질	A5052P A5056 A6063 A6061 FC200	S45C SCM435	SUS304 A5052 등
표면처리	흑색 알루마이트 흑색 염색	흑색 염색 무전해 니켈도금 레이던트	없음 무전해 니켈도금 백색 알루마이트
기타	-		l상 변경 탭 추가

		샤프트				
용도	표준	강도 증가	클린룸 진공			
재질	SUS303 S45C	S45C SCM435	SUS304			
열처리	-	고주파	-			
기타	키 홈 D 커트	단축 축 길이 변경 D 커트 드릴구멍 무전해 니켈도금 레	흑색 염색			

※열처리의 영향으로 가공이 어려워지는 경우도 있습니다. 자세한 것은 문의해 주십시오.

	슬리브	
용도	표준	클린룸 진공
재질	S45C	SUS304

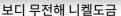
	베어링												
용도	표준	클린룸 진공											
재질	강철	스테인리스코팅 사양											
기타	제조사 지정 그리스	그리스 사양 변경 (그리스는 지정하십시오)											

			3
		그리스	
ΩE.	π.χ.	클린룸	ಕುಚ ೦

		기어	
용도	표준	강도 증가	클린룸 진공
재질	S45C SCM435 SCM415	S45C SCM435 SCM415	SUS304
열처리	없음 또는 염욕연질화 고주파 삼탄	염욕연질화 고주파 삼탄 코팅	-
기타	체	결:스프링핀 중실핀	

	그리스												
용도	표준	클린룸 진공	환경 온도 대응										
종류	일반적인 기어용 그리스(0번, 1번)	지정 -	그리스										

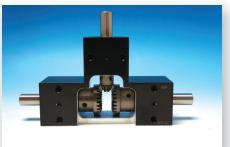
※W-BOX는 오일 윤활입니다.


※특수한 사용이나 추가 가공에 관해서는 당사로 상담 부탁드립니다.

2. 특주품 대응 예

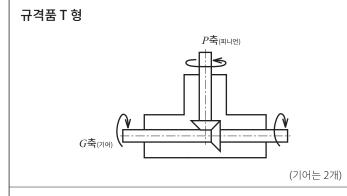
비용 절감

= 개발 시간 단축 + 설계, 제작, 조립의 번거로움 및 리스크 삭감

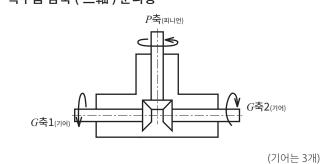


보디 레이던트

올 스테인리스 + 보디 드릴구멍 추가 가공


삼축 (三軸) 분리형

보디 추가 가공


3. 삼축(三軸) 분리형에 대하여

삼축(三軸) 분리란?

축 단면 방향에서 볼 때 G축의 회전 방향이 반대 방향입니다.

특주품 삼축 (三軸)분리형

축 단면 방향에서 볼 때 G축1과 G축2의 회전 방향이 같아집니다.

- ※삼축(三軸) 분리형으로 했을 경우 백래시는 규격품보다 커집니다. 자세한 사항은 문의해 주십시오.
- ※특수사양 및 추가 가공(사용환경, 오일 리크 대책, 축 직경 추가 가공 등 장착 방법)에 대해서는 상담해 주십시오.

목 차

State State

HY-BOX

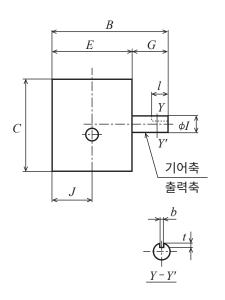
사용 하이포이드 기어 설명

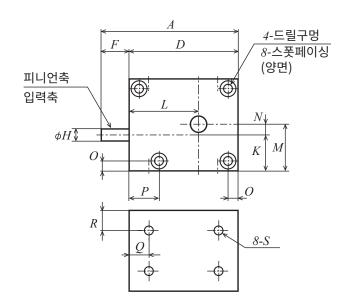
상품 기호	피니언	기어
HY70R-005	m 0.75 × 8T	m $0.75 \times 40T$
HY90R-010	m 0.71 × 7T	$m 0.71 \times 70T$
HY95R-005	m 1.1 × 8T	m 1.1 × 40T
HY120R-010	m 1.0 × 7T	m 1.0 × 70T
HY125R-005	m 1.5 × 8T	m 1.5 × 40T
HY150R-010	m 1.45 × 6T	m 1.45 × 60T

사용 기어 종류: 하이포이드 기어

표기 보는 방법: m1.0 \times 20T의 경우 모듈이 1이고 기어잇수가 20매라는 의미 입니다.

단위:mm


보디 재질	보디 표면처리	입력축 재질	출력축 재질	윤활 방식	백래시
알루미늄(A5052P, A5056)	흑색 알루마이트	SCM435 • 440	S45C	그리스 주입	20' 이하


- ★KG 기어 BOX는 피니언축이 입력축, 기어축이 출력축입니다.
- ★축의 회전 방향: HY-BOX는 축 단면을 정면으로 하여 입력축을 시계방향으로 돌리면 출력축이 시계반대방향으로 회전합니다. 역회전이 가능합니다.
- ★백래시는 입력축을 고정한 경우의 출력축 측 백래시입니다.

	기어비								축 ?	띡경				
상품 기호									입력축	출력축				
	и	A	В	C	D	E	F	G	φΗ(h7)	$\phi I(\mathbf{h7})$	J	K	L	M
HY 70R — 005	1: 5	70	58	45	55	40	15	18	φ 6	ø 8	20	17.5	36	22.5
HY 90R — 010	1:10	90	68	60	75	50	15	18	φ 6	ø 8	25	20	47	30
HY 95R — 005	1: 5	95	75	60	75	50	20	25	ø 8	ø 12	25	20	49	30
HY 120R — 010	1:10	120	80	80	100	55	20	25	φ 8	ø 12	27.5	25	62	40
HY 125R — 005	1: 5	125	85	80	100	55	25	30	φ12	ø 15	27.5	30	65	40
HY 150R — 010	1:10	150	90	95	125	60	25	30	<i>φ</i> 12	φ 15	30	32.5	77	47.5

₩# 기호	입력회전속도별 허용 입력 토크(단위: N・cm)											
상품 기호 -	100rpm	250rpm	500rpm	800rpm	1,000rpm	1,500rpm	2,000rpm	2,500rpm				
HY 70R — 005	76.0	71.8	66.0	59.0	53.9	44.2	36.6	28.4				
HY 90R — 010	75.8	70.8	63.8	56.0	50.7	41.3	34.3	27.3				
HY 95R — 005	247.4	232.1	211.8	187.7	170.3	137.7	112.6	86.0				
HY 120R — 010	186.3	172.7	155.7	136.6	123.5	100.0	82.7	65.0				
HY 125R — 005	414.8	400.6	377.6	345.4	319.8	266.9	223.0	173.9				
HY 150R — 010	357.2	336.1	307.3	272.1	246.5	197.5	159.2	118.1				

D 3D CAD

오프셋					장착	나사	드릴구멍과 스폿페이싱				키홈		백래시	오버행 하중 허용 출력축	스러스트 허용 하중 출력축	중량	상품 기호
N	0	P	Q	R	8-S	깊이	드릴구멍	스폿페이싱 직경	스폿페이싱 깊이	b	t	l	(')	(N)	(N)	W(kg)	
5	5	14	10	10	8-M3	5	φ3.2	φ6.5	3.2	-	-	-		19	13	0.3	HY 70R - 005
10	7	26	12	12	8-M4	6	φ4.2	φ8.0	4.3	-	-	-		19	20	0.6	HY 90R - 010
10	7	28	12	12	8-M4	6	φ4.2	φ8.0	4.3	-	-	-	20	39	35	0.7	HY 95R - 005
15	10	27	15	12	8-M5	8	φ5.2	φ9.5	5.3	-	-	-	20	39	35	1.3	HY 120R - 010
10	10	27	18	12	8-M5	8	φ5.2	\$ 9.5	5.3	5	3	20		54	42	1.4	HY 125R — 005
15	10	27	20	12	8-M5	8	φ5.2	φ9.5	5.3	5	3	20		54	42	2.2	HY 150R — 010

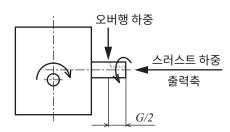


그림 : 오버행 하중 위치 , 스러스트 하중 및 축의 회전방향

D3-

사용 스트레이트 베벨 기어 설명

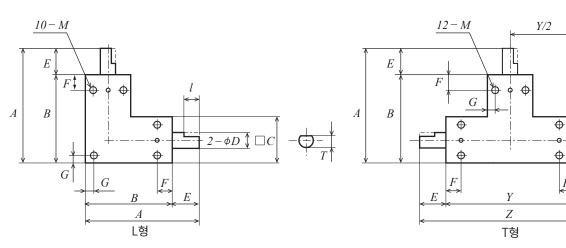
상품 기호	피니언	기어
BS35L-001	m 0.4 × 20T	m 0.4 × 20T
BS45L-001/BS45T-001	m 0.5 \times 20T	m 0.5 \times 20T
BS65L-001/BS65T-001	m 0.8 \times 20T	m 0.8 \times 20T
BS80L-001/BS80T-001	m 1.0 × 20T	m 1.0 × 20T
BS90L-001/BS90T-001	m 1.25 × 20T	m 1.25 × 20T
BS105L-001/BS105T-001	m 1.5 × 20T	m 1.5 × 20T
BS65L-002/BS65T-002	m 0.6 × 14T	m 0.6 × 28T
BS80L-002/BS80T-002	m 0.8 \times 13T	m 0.8 \times 26T
BS90L-002/BS90T-002	m 1.0 × 13T	m 1.0 × 26T
BS105L-002/BS105T-002	m 1.25 × 13T	m 1.25 × 26T

사용 기어 종류: 스트레이트 베벨 기어

표기 보는 방법: m1.0 \times 20T의 경우 모듈이 1이고 기어잇수가 20매라는 의미입니다.

단위 : mm

보디 재질	보디 표면처리	입력축 재질	출력축 재질	윤활 방식	백래시
알루미늄(A5056, A6061, A6063)	흑색 알루마이트	SUS303	SUS303	그리스 주입	15' ~25'이하

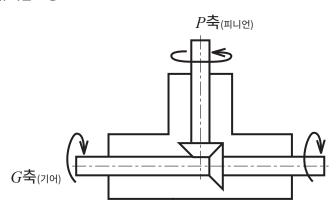

- ★KG 기어 BOX는 피니언축이 입력축, 기어축이 출력축입니다.
- ★백래시는 입력축을 고정한 경우의 출력축 측의 백래시입니다. 백래시 양은 상품 기호 항목에서 확인 부탁드립니다.
- ★D형 축의 위상은 일치하지 않습니다.
- ★각 축에 오버행 하중이 가해지는 사용 방법은 피하십시오. 각 축에 오버행 하중, 스러스트 하중이 걸리는 경우는 본 장치와는 별도로 하중을 받는 기구를 설치하십시오.
- ★특수사양 및 추가 가공(사용환경, 오일 리크 대책, 축 직경 추가 가공 등 장착 방법)에 대해서는 상담해 주십시오.

	형상	기어비						입력/출력 축 직경	
상품 기호								7 70	
		и	Z	Y	C	A	В	φD(h7)	E
BS 35 L — 001			-	-	14	35	27	φ 3	8
BS 45 L — 001			-	-	18	45	33	φ 4	12
BS 65 L — 001		1 · 1	-	-	25	65	50	φ 6	15
BS 80 L — 001		1:1	-	-	30	80	60	ø 8	20
BS 90 L — 001			-	-	35	90	70	φ 10	20
BS 105 L — 001			-	-	40	105	80	φ12	25
BS 65 L — 002			-	-	25	65	50	φ 6	15
BS 80 L — 002	L	1:2	-	-	30	80	60	ø 8	20
BS 90 L — 002	L	1 . 2	-	-	35	90	70	φ10	20
BS 105 L — 002			-	-	40	105	80	φ12	25
BS 45 T — 001			72	48	18	45	33	φ 4	12
BS 65 T — 001			105	75	25	65	50	φ 6	15
BS 80 T — 001	Т	1:1	130	90	30	80	60	ø 8	20
BS 90 T — 001			145	105	35	90	70	φ 10	20
BS 105 T — 001			170	120	40	105	80	φ12	25
BS 65 T — 002			105	75	25	65	50	ø 6	15
BS 80 T — 002	Т	1 . 2	130	90	30	80	60	ø 8	20
BS 90 T — 002		1:2	145	105	35	90	70	φ 10	20
BS 105 T — 002			170	120	40	105	80	φ 12	25

상품	71 ☆		입	력 회전 속도	별 허용 (입력 토크	(단위: N • c	m)	
() 古	기오	50rpm	100rpm	250rpm	500rpm	800rpm	1,000rpm	1,500rpm	2,000rpm
BS 35 L — 001	-	7.1	7.0	6.8	6.5	6.2	6.0	5.5	5.3
BS 45 L — 001	BS 45 T — 001	18.7	18.6	18.1	17.3	16.5	16.0	15.0	14.0
BS 65 L — 001	BS 65 T — 001	73.7	72.6	69.8	65.6	61.0	58.4	52.6	47.9
BS 80 L — 001	BS 80 T — 001	137.9	135.6	129.1	119.5	109.7	104.0	92.0	82.6
BS 90 L — 001	BS 90 T — 001	271.8	266.1	250.4	228.0	205.8	193.3	167.8	148.2
BS 105L — 001	BS 105T — 001	442.6	431.6	401.6	360.0	320.1	298.1	254.3	221.9
BS 65 L — 002	BS 65 T — 002	20.2	20.1	19.7	19.0	18.3	17.8	16.7	15.7
BS 80 L — 002	BS 80 T — 002	39.8	39.5	38.4	36.8	35.1	34.0	31.5	29.5
BS 90 L — 002	BS 90 T — 002	77.6	76.7	74.3	70.5	66.4	64.0	58.6	54.0
BS 105 L — 002	BS 105T — 002	141.5	139.6	134.0	125.7	116.9	111.7	100.7	91.5

 $3 - \phi D \updownarrow \Box C$

목 차



F

			축단 형상		장착	· 나사	백래시	중량			
									상품 기호		
F	G	ϕD	T	l	М	깊이	(')	W(g)			
4	2	D	2.7	5	10-M2	4	25	27	BS 35 L — 001		
5	3	D	3.3	8	10-M3	4	20	55	BS 45 L — 001		
12	3.5	φ	-	-	10-M4	6		175	BS 65 L — 001		
15	5	φ	-	-	10-M5	6	15	290	BS 80 L — 001		
15	5	ϕ	-	-	10-M5	7	1,5	15	15	496	BS 90 L — 001
20	5	φ	-	-	10-M6	7		725	BS 105 L — 001		
12	3.5	ϕ	-	-	10-M4	6		175	BS 65 L — 002		
15	5	ϕ	-	-	10-M5	6	20	290	BS 80 L — 002		
15	5	ϕ	-	-	10-M5	7	20	496	BS 90 L — 002		
20	5	ϕ	-	-	10-M6	7			725	BS 105 L — 002	
5	3	D	3.3	8	12-M3	4	20	75	BS 45 T — 001		
12	3.5	ϕ	-	-	12-M4	6		246	BS 65 T — 001		
15	5	ϕ	-	-	12-M5	6	15	410	BS 80 T — 001		
15	5	φ	-	-	12-M5	7	13	679	BS 90 T — 001		
20	5	φ	-	-	12-M6	7		991	BS 105 T — 001		
12	3.5	φ	-	-	12-M4	6		246	BS 65 T — 002		
15	5	ϕ	-	-	12-M5	6	20	410	BS 80 T — 002		
15	5	φ	-	-	12-M5	7	20	679	BS 90 T — 002		
20	5	φ	-	-	12-M6	7		991	BS 105 T — 002		

규격품 T 형

참고자

BSB-BOX®

사용 스트레이트 베벨 기어 설명

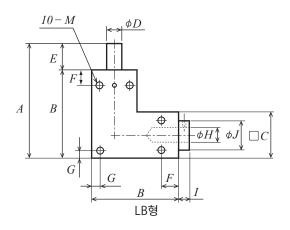
상품 기호	피니언	기어
BSB65L-001A/B	m 0.8 × 20T	m 0.8 × 20T
BSB80L-001A/B	m 1.0 × 20T	m 1.0 × 20T
BSB90L-001A/B	m 1.25 × 20T	m 1.25 × 20T
BSB105L-001A/B	m 1.5 × 20T	m 1.5 × 20T

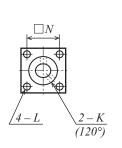
사용 기어 종류: 스트레이트 베벨 기어

표기 보는 방법: m1.0 \times 20T의 경우 모듈이 1이고 기어잇수가 20매라는 의미 입니다

단위 : mm

보디 재질	보디 표면처리	입력축 재질	출력축 재질	윤활 방식	백래시
알루미늄(A5056, A6061, A6063)	흑색 알루마이트	SUS303	SUS303	그리스 주입	15' 이하


- ★KG 기어 BOX는 피니언축이 입력축, 기어축이 출력축입니다.
- ★상품 기호 끝의 [B]는 [A]에 비해 구멍 직경이 조금 큽니다(1mm~2mm).
- ★BSB(LB형)의 중공축과 연결 시 주의점:
 - ①연결하는 축이 원형축인 경우는 평좌면을 2곳(120° 배치) 마련하십시오.
 - 이유: 평좌면을 만들어서 원형축의 표면과 탭과의 접촉 면적을 늘립니다.
 - ②축에 단이 있는 경우는 응력 집중을 피하기 위해 큰 R을 마련하십시오.
- ★백래시는 입력축을 고정한 경우의 출력축 측의 백래시입니다.
- ★특수사양 및 추가 가공(사용환경, 오일 리크 대책, 축 직경 추가 가공 등 장착 방법)에 대해서는 상담해 주십시오.


	형상	기어비				축 직경	구멍	직경		
상품 기호		и	□ C	A	В	φD(ħ7)	φΗ(H7)	유효 깊이	E	I
BSB 65L — 001A			25	65	50	φ 6	φ 5	15	15	5
BSB 65L — 001B			25	65	50	ø 6	ø 6	15	15	5
BSB 80L — 001A			30	80	60	φ 8	φ 6	19	20	5
BSB 80L — 001B	LB	1:1	30	80	60	ø 8	ø 8	19	20	5
BSB 90L — 001A	LD	1.1	35	90	70	φ 10	ø 8	19	20	6
BSB 90L — 001B			35	90	70	φ 10	φ 10	19	20	6
BSB 105L — 001A			40	105	80	φ 12	ø 10	23	25	6
BSB 105L — 001B			40	105	80	φ 12	φ12	23	25	6

상품 기호	입력회전 속도별 허용 입력 토크(단위: N·cm)									
영품 기오	50rpm	100rpm	250rpm	500rpm	800rpm	1,000rpm	1,500rpm	2,000rpm		
BSB 65L — 001A/B	73.7	72.6	69.8	65.6	61.0	58.4	52.6	47.9		
BSB 80L — 001A/B	137.9	135.6	129.1	119.5	109.7	104.0	92.0	82.6		
BSB 90L — 001A/B	271.8	266.1	250.4	228.0	205.8	193.3	167.8	148.2		
BSB 105L — 001A/B	442.6	431.6	401.6	360.0	320.1	298.1	254.3	221.9		

기어박스

		ſ			1						
	중량	백래시	장착나사		나사	장칙					
상품 기호	W(g)	(')	깊이	N N	4-L	깊이	10-M	G	F	2-K(120°)	ϕJ
BSB 65L — 001A	169		6	19	4-M3	6	10-M4	3.5	12	2-M3	16
BSB 65L — 001B	167		6	19	4-M3	6	10-M4	3.5	12	2-M3	16
BSB 80L — 001A	293		8	23	4-M3	6	10-M5	5	15	2-M3	19
BSB 80L — 001B	289	15	8	23	4-M3	6	10-M5	5	15	2-M3	19
BSB 90L — 001A	465	15	8	25	4-M4	7	10-M5	5	15	2-M4	21
BSB 90L — 001B	460		8	25	4-M4	7	10-M5	5	15	2-M4	21
BSB 105L — 001A	722		10	30	4-M4	7	10-M6	5	20	2-M4	26
BSB 105L — 001B	713		10	30	4-M4	7	10-M6	5	20	2-M4	26

B-BOX 과 모터 장착 예 BSB 시리즈는 모터 장착에 플랜지가 필요합니다 .

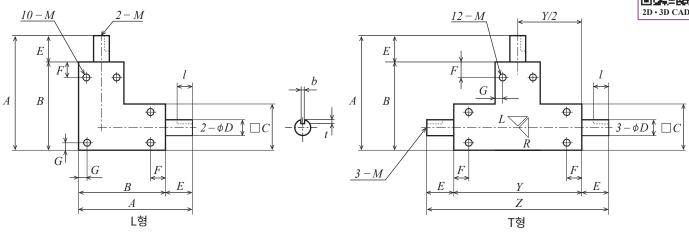
BSH-BOX®

사용 스파이럴 베벨 기어 설명

상품 기호	피니언	기어		
BSH70L-001/BSH70T-001	m 0.8 × 19T	m 0.8 × 19T		
BSH85L-001/BSH85T-001	m 1.0 × 19T	m 1.0 × 19T		
BSH95L-001/BSH95T-001	$m 1.25 \times 18T$	$m 1.25 \times 18T$		
BSH115L-001/BSH115T-001	m 1.5 × 19T	m 1.5 × 19T		
BSH120L-001/BSH120T-001	m 1.5 \times 19T	m 1.5 × 19T		
BSH140L-001/BSH140T-001	m $2.0 \times 19T$	m 2.0 × 19T		
BSH145L-001/BSH145T-001	m 2.0 \times 19T	m 2.0 × 19T		
BSH165L-001	m 2.5 \times 19T	m 2.5 × 19T		
BSH170L-001	m $2.5 \times 19T$	m 2.5 × 19T		

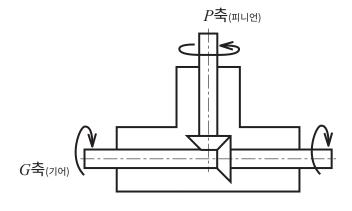
사용 기어 종류: 스파이럴 베벨 기어

표기 보는 방법: m1.0 \times 20T의 경우 모듈이 1이고 기어잇수가 20매라는 의미입니다


단위:mm

보디 재질	보디 표면처리	입력축 재질	출력축 재질	윤활 방식	백래시
알루미늄(A6061, A6063) 보통주철 EC FC250	흑색 알루마이트, 사삼산화철피막	SUS303 • S45C	SUS303 • S45C	그리스 주입	10'~15' 이하

- ★KG 기어 BOX는 피니언축이 입력축, 기어축이 출력축입니다.
- ★백래시는 입력축을 고정한 경우의 출력축 측의 백래시입니다. 백래시 양은 상품 기호 항목에서 확인 부탁드립니다.
- ★키 홈의 위상은 일치하지 않습니다.
- ★특수사양 및 추가 가공(사용환경, 오일 리크 대책, 축 직경 추가 가공 등 장착 방법)에 대해서는 상담해 주십시오.


		소재		형상	기어비						입력/출력 축 직경	
상품 기호	보디	보디의 표면처리	샤프트		и	Z	Y	C	A	В	φD(h7)	E
BSH 70L — 001						-	-	27	70	54	φ 6	16
BSH 85L — 001	AL	알루마이트	SUS303	L	1:1	-	-	32	85	64	ø 8	21
BSH 95L — 001						-	-	36	95	72	ø 10	23
BSH 115L — 001						-	-	45	115	90	φ 12	25
BSH 120L — 001						-	-	45	120	90	φ 15	30
BSH 140L — 001	FC.	사삼산화철피막	S45C	L	1:1	-	-	55	140	110	φ 15	30
BSH 145L — 001	10	사심신화설피릭				-	-	55	145	110	φ 20	35
BSH 165L — 001						-	-	65	165	130	φ 20	35
BSH 170L — 001						-	-	65	170	130	φ 25	40
BSH 70T — 001						113	81	27	70	54	ø 6	16
BSH 85T — 001	AL	알루마이트	SUS303	Т	1:1	138	96	32	85	64	ø 8	21
BSH 95T — 001						154	108	36	95	72	φ10	23
BSH 115T — 001						143	93	45	115	90	φ 12	25
BSH 120T — 001	FC.	사삼산화철피막	S45C	Т	1:1	153	93	45	120	90	φ15	30
BSH 140T — 001		11004247	343C		1.1	175	115	55	140	110	φ 15	30
BSH 145T — 001						185	115	55	145	110	ø 20	35

11.11	기숙		입	l력 회전 속S	별 허용	입력 토크	(단위: N • r	n)	
성품	기호	250rpm	500rpm	800rpm	1000rpm	1500rpm	2000rpm	2500rpm	3000rpm
BSH 70L — 001	BSH 70T — 001	0.89	0.89	0.89	0.89	0.86	0.81	0.77	0.73
BSH 85L — 001	BSH 85T — 001	1.95	1.95	1.95	1.95	1.81	1.69	1.59	1.50
BSH 95L — 001	BSH 95T — 001	3.68	3.68	3.68	3.58	3.30	3.04	2.85	2.77
BSH 115L — 001	BSH 115T — 001	5.23	5.23	5.15	5.01	4.69	4.40	4.25	4.13
BSH 120L — 001	BSH 120T — 001	5.23	5.23	5.15	5.01	4.69	4.40	4.25	4.13
BSH 140L — 001	BSH 140T — 001	13.30	13.30	12.62	12.17	11.18	10.70	10.30	-
BSH 145L — 001	BSH 145T — 001	13.30	13.30	12.62	12.17	11.18	10.70	10.30	-
BSH 165L — 001	-	26.15	25.63	23.93	22.86	21.25	20.26	-	-
BSH 170L — 001	-	26.15	25.63	23.93	22.86	21.25	20.26	-	-

			키홈		장착	나사	축단	나사	백래시	오버행 하중 허용	스러스트 허용 하중	중량	
F	G	b	t	l	М	깊이	M	깊이	(')	(N)	(N)	W(kg)	상품 기호
9	4	-	-	-	10-M4	6	-	-		25	22	0.2	BSH 70L — 001
10	5	3	1.8	14	10-M5	7	-	-	15	36	39	0.4	BSH 85L — 001
13	5	3	1.8	15	10-M5	8	-	-		58	63	0.5	BSH 95L — 001
20	5	4	2.5	20	10-M5	12	2-M4	8		83	70	1.8	BSH 115L — 001
20	5	5	3.0	25	10-M5	12	2-M4	8		83	70	1.8	BSH 120L — 001
25	6	5	3.0	25	10-M6	13	2-M5	10	10	166	135	3.1	BSH 140L — 001
25	6	6	3.5	30	10-M6	13	2-M5	10	10	166	135	3.2	BSH 145L — 001
25	7	6	3.5	30	10-M6	14	2-M5	12		245	212	5.4	BSH 165L — 001
25	7	8	4.0	35	10-M6	14	2-M5	12		245	212	5.5	BSH 170L — 001
9	4	-	-	-	12-M4	6	-	-		25	22	0.3	BSH 70T — 001
10	5	3	1.8	14	12-M5	7	-	-	15	36	39	0.5	BSH 85T — 001
13	5	3	1.8	15	12-M5	8	-	-		58	63	0.7	BSH 95T — 001
20	5	4	2.5	20	12-M5	12	3-M4	8		83	70	2.0	BSH 115T — 001
20	5	5	3.0	25	12-M5	12	3-M4	8	10	83	70	2.0	BSH 120T — 001
25	6	5	3.0	25	12-M6	13	3-M5	10	10	166	135	3.4	BSH 140T — 001
25	6	6	3.5	30	12-M6	13	3-M5	10		166	135	3.5	BSH 145T — 001

규격품 T 형

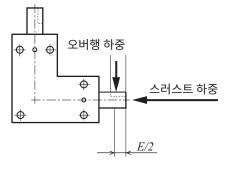


그림 : 오버행 하중 위치 , 스러스트 하중

사용 스트레이트 베벨 기어 설명

상품 기호	피니언	기어
BE40L-001	m $0.5 \times 20T$	m 0.5 × 20T
BE55L-001	m 0.8 \times 20T	m 0.8 × 20T
BE70L-001A/BE70L-001B	m 1.0 \times 20T	m 1.0 × 20T
BE88L-001A/BE88L-001B	m 1.5 \times 20T	m 1.5 × 20T
BE55L-002	m 0.6 \times 14T	m 0.6 × 28T
BE70L-002A/BE70L-002B	m 0.8 \times 13T	m 0.8 × 26T
BE88L-002A/BE88L-002B	$m 1.25 \times 13T$	m 1.25 × 26T

사용 기어 종류: 스트레이트 베벨 기어

표기 보는 방법: m1.0 imes 20T의 경우 모듈이 1이고 기어잇수가 20매라는 의미 입니다.

단위:mm

보디 재질	보디 표면처리 입력축 재질		출력축 재질	윤활 방식	백래시
알루미늄(A5056, A6063)	흑색 알루마이트	SUS303	SUS303	정기적 기어 치면 그리스 도포	관능검사①

- ★KG 기어 BOX는 피니언축이 입력축, 기어축이 출력축입니다.
- ★기어 재질은 S45C를 사용하고 있습니다. 플라스틱 커버가 포함되어 있습니다.
- ★상품 기호의 끝의 A 타입과 B 타입의 차이: B 타입이 A 타입에 비해 축 직경이 2mm 큽니다.
- ★장착용 볼트 구멍 3-K는 탭 드릴구멍으로도 이용할 수 있습니다(아래 치수표, 치수기호 설명용 간이도면의 청색 문자 참조).
- ①본 상품은 이코노미 타입으로 백래시는 상세 측정이 아닌 관능검사에 의한 것입니다.

상품 기호	기어비				입력/출력 축 직경					
영품 기오	и	A	В	С	φD(h8)	E	F	G	Н	I
BE40 L - 001		40	30	10	φ 4	10	5	4.5	20.5	15
BE55 L — 001		55	40	13	\$ 5	15	6.5	5	28.5	21.5
BE70 L — 001A	1:1	70	50	16	ø 6	20	8	6	36	27
BE70 L — 001B	1 • 1	70	50	16	φ 8	20	8	6	36	27
BE88 L — 001A		88	63	20	ø 10	25	10	7	46	33
BE88 L — 001B		88	63	20	φ 12	25	10	7	46	33
BE55 L — 002		55	40	13	\$ 5	15	6.5	5	28.5	21.5
BE70 L — 002A		70	50	16	φ 6	20	8	6	36	27
BE70 L — 002B	1:2	70	50	16	ø 8	20	8	6	36	27
BE88 L — 002A		88	63	20	φ 10	25	10	7	46	33
BE88 L — 002B		88	63	20	φ 12	25	10	7	46	33

상품 기호	입력 회전 4	_{녹도별} 허용 '	입력 토크(단	위: N • cm)	
영품 기오	50rpm	100rpm	250rpm	500rpm	
BE40 L — 001	9.8	9.7	9.4	9.0	
BE55 L — 001	38.6	38.0	36.5	34.3	
BE70 L — 001A	72.3	71.0	67.6	62.6	
BE70 L — 001B	72.3	71.0	67.6	62.6	
BE88 L — 001A	232.3	226.5	210.8	188.9	
BE88 L — 001B	232.3	226.5	210.8	188.9	
BE55 L — 002	10.5	10.4	10.2	9.9	
BE70 L — 002A	20.7	20.6	20.1	19.3	
BE70 L — 002B	20.7	20.6	20.1	19.3	
BE88 L — 002A	74.2	73.2	70.3	65.9	
BE88 L — 002B	74.2	73.2	70.3	65.9	

丑 1

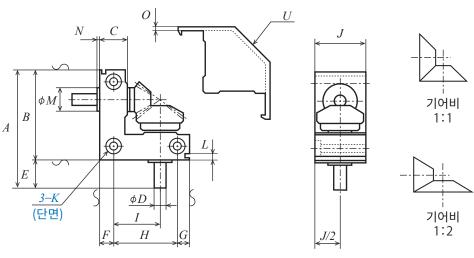
상품 기호	드릴구멍	적합 육각구멍붙이 볼트	탭 추가 가공의 경우	추가 가공 허용 구멍 직경
BE 40 L	φ3.4	M3	M4	추가 가공 불가
BE 55 L	φ3.4	M3	M4	φ 5 以下
BE 70 L	\$ 4.3	M4	M5	φ 6 以下
BE 88 L	φ5.2	M5	M6	∅8以下

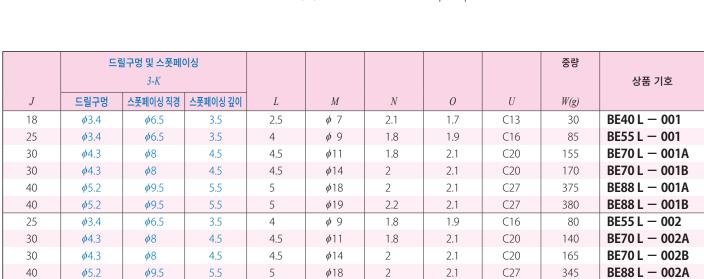
φ5.2

40

φ9.5

5.5

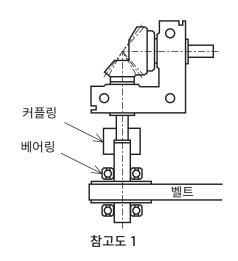

5


2D • 3D CAD

목 차

노백래시 기어

BE88 L - 002B



ø19

2.2

2.1

C27

375

WS-BOX 월기어 박스

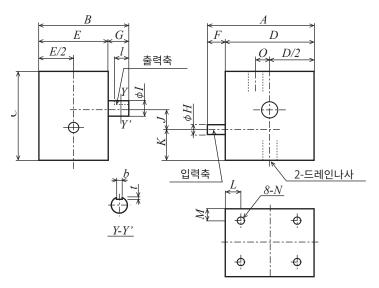
사용 웜 과 웜휠 설명

상품 기호	웜	웜휠
WS55R-020	m 0.5 × 1T	m 0.5 × 20T
WS55R-030	m 0.5 × 1T	m 0.5 × 30T
WS60R-040	$m 0.5 \times 1T$	$m 0.5 \times 40T$
WS60R-050	m 0.5 × 1T	$m 0.5 \times 50T$
WS65R-020	m 0.8 × 1T	m 0.8 × 20T
WS65R-030	$m 0.8 \times 1T$	$m 0.8 \times 30T$
WS75R-040	$m 0.8 \times 1T$	$m 0.8 \times 40T$
WS75R-050	m 0.8 × 1T	$m 0.8 \times 50T$
WS80R-010	m 1.0 × 2T	m 1.0 × 20T
WS80R-020	m 1.0 × 1T	m 1.0 × 20T
WS80R-030	m 1.0 × 1T	m 1.0 × 30T
WS90R-040	m 1.0 × 1T	m 1.0 × 40T
WS90R-050	m 1.0 × 1T	m 1.0 × 50T

사용 기어 종류: 웜 및 휠 표기 보는 방법: m1.0 × 20T의 경우 모듈이 1이고 기어잇수가 20매라는 의미 입니다.

단위:mm

보디 재질	보디 표면처리	입력축 재질	출력축 재질	윤활 방식	백래시
알루미늄(A5052P, A5056)	흑색 알루마이트	S45C	S45C	오일 윤활	30'~45' 이하


- ★당사의 WS-BOX는 웜축이 입력축(ØH), 휠축(ØI)이 출력축입니다.
- ★입력축이 아래, 출력축이 위인 사용 방법을 상정하여 설계하였습니다.
 - 다른 사용 방법의 경우에는 '허용전달입력토크표' 및 '허용전달출력토크표' 의 75% 이하에서 사용하십시오.
- ★백래시는 입력축을 고정한 경우의 출력축 측의 백래시입니다. 백래시 양은 상품 기호 항목에서 확인 부탁드립니다.
- ★축의 회전 방향: W-BOX는 축 단면을 정면으로 하여 입력축을 시계방향으로 돌리면 출력축이 시계반대방향으로 회전합니다. 역회전이 가능합니다.

	기어비				보디 치수		축구	길이	축	직경	중심거리
상품 기호	и	A	В	С	D	E	F	G	입력축 <i>ØH(h7)</i>	출력축 <i>φI(h7)</i>	J
WS 55R — 020	1:20	55	45	45	45	35	10	10	φ 5	φ 8	9.5
WS 55R - 030	1:30	55	45	45	45	35	10	10	φ 5	φ 8	12
WS 60R — 040	1:40	60	50	55	50	40	10	10	φ 5	φ 8	14.5
WS 60R — 050	1:50	60	50	55	50	40	10	10	φ 5	ø 8	17
WS 65R — 020	1:20	65	55	55	50	40	15	15	φ 6	φ 8	13.2
WS 65R — 030	1:30	65	55	55	50	40	15	15	φ 6	φ 8	17.2
WS 75R — 040	1:40	75	60	70	60	45	15	15	ø 6	φ 10	21.2
WS 75R — 050	1:50	75	60	70	60	45	15	15	ø 6	φ 10	25.2
WS 80R — 010	1:10	80	65	70	60	45	20	20	ø 8	φ 10	18
WS 80R — 020	1:20	80	65	70	60	45	20	20	ø 8	φ10	18
WS 80R - 030	1:30	80	65	70	60	45	20	20	ø 8	φ12	23
WS 90R — 040	1:40	90	75	85	70	50	20	25	ø 8	ø 15	28
WS 90R — 050	1:50	90	75	85	70	50	20	25	ø 8	φ 15	33

NT 기호		입	력 회전 속도	별 허용 (입력 토크	(단위: N • c	m)	
상품 기호	50rpm	100rpm	500rpm	1,000rpm	1,500rpm	2,000rpm	2,500rpm	3,000rpm
WS 55R — 020	4.0	3.5	2.0	1.5	1.2	1.0	0.9	0.9
WS 55R — 030	5.7	4.9	3.0	2.2	1.8	1.6	1.4	1.3
WS 60R — 040	7.3	6.3	4.0	3.0	2.5	2.1	1.9	1.8
WS 60R — 050	8.9	7.7	4.9	3.7	3.0	2.7	2.2	2.2
WS 65R — 020	9.9	8.5	5.1	3.9	3.1	2.7	2.5	2.3
WS 65R — 030	14.1	12.3	7.6	5.7	4.8	4.2	3.7	3.5
WS 75R — 040	18.0	15.8	9.9	7.5	6.3	5.5	5.0	4.6
WS 75R — 050	21.9	18.9	12.3	9.3	7.9	6.9	6.3	5.8
WS 80R — 010	34.5	29.7	16.9	12.7	10.4	9.1	8.1	7.3
WS 80R — 020	24.9	21.4	12.0	8.9	7.2	6.3	5.6	5.1
WS 80R — 030	35.2	30.6	17.8	13.1	10.8	9.5	8.5	7.8
WS 90R — 040	45.1	39.0	23.3	17.2	14.3	12.6	11.3	10.4
WS 90R — 050	54.7	47.4	28.6	21.4	17.7	15.6	14.1	12.9

목 차

권장 윤활유량 (ml)	상품 기호
3.0	WS55R-020
2.3	WS55R-030
4.5	WS60R-040
2.5	WS60R-050
4.2	WS65R-020
4.5	WS65R-030
6.5	WS75R-040
7.0	WS75R-050
9.0	WS80R-010
7.0	WS80R-020
8.5	WS80R-030
15.0	WS90R-040
19.0	WS90R-050

			장착	나사		키홈		드레인나사	백래시	오버행 하중 허용 추려초	스러스트 하중 허용	중량	상품 기호
K	L	M	8-N	깊이	b	t	l	0	(')	출력축 <i>(N)</i>	출력축 <i>(N)</i>	W(kg)	
16.5	8	7	8-M3	6	3	1.8	8	0	45	24	4.4	0.23	WS 55R — 020
16.5	8	7	8-M3	6	3	1.8	8	0	43	24	6.3	0.23	WS 55R — 030
20	8	8	8-M3	6	3	1.8	8	0	30	24	8.1	0.34	WS 60R — 040
19	8	8	8-M3	6	3	1.8	8	8	30	24	9.9	0.36	WS 60R — 050
20.9	10	8	8-M4	6	3	1.8	12	0	45	20	9.5	0.36	WS 65R — 020
18.9	10	8	8-M4	6	3	1.8	12	8	43	20	13.6	0.38	WS 65R — 030
24	10	8	8-M4	8	3	1.8	12	0	30	33	17.3	0.60	WS 75R — 040
20	10	8	8-M4	8	3	1.8	12	15	30	33	21.1	0.64	WS 75R — 050
26	10	5	8-M5	10	3	1.8	15	0		24	21.6	0.61	WS 80R — 010
26	10	5	8-M5	10	3	1.8	15	0	45	24	15.6	0.61	WS 80R — 020
23.5	10	5	8-M5	10	4	2.5	15	8		44	22.0	0.65	WS 80R — 030
28.5	10	5	8-M5	10	5	3	20	10	30	58	28.2	0.98	WS 90R — 040
21	10	5	8-M5	10	5	3	20	17	30	58	34.2	1.02	WS 90R — 050

상품 기호		입	력 회전 속도	별 허용	출력 토크	(단위: N • cı	m)	
영품 기오	50rpm	100rpm	500rpm	1,000rpm	1,500rpm	2,000rpm	2,500rpm	3,000rpm
WS 55R — 020	27.8	25.2	18.0	14.7	13.0	11.7	10.8	10.0
WS 55R — 030	59.3	54.2	39.6	32.7	29.7	26.6	24.4	23.0
WS 60R — 040	101.7	92.8	69.4	57.7	51.3	46.9	43.5	41.1
WS 60R — 050	153.0	140.2	106.9	89.3	79.2	72.9	67.7	63.9
WS 65R — 020	84.5	75.9	53.4	44.5	37.8	35.0	32.4	30.6
WS 65R — 030	179.3	164.2	119.5	98.2	86.8	79.3	73.6	69.2
WS 75R — 040	306.0	281.4	207.0	172.6	153.6	139.0	129.9	122.4
WS 75R — 050	465.2	424.5	319.5	266.4	238.4	217.8	202.2	192.5
WS 80R — 010	191.7	171.1	112.8	90.5	77.5	69.3	63.0	58.4
WS 80R — 020	192.4	174.6	120.5	98.2	85.7	78.2	72.0	67.1
WS 80R — 030	409.1	374.0	265.7	218.2	191.7	175.2	162.8	152.8
WS 90R — 040	697.4	638.0	463.9	382.7	337.5	309.6	288.2	271.1
WS 90R — 050	1,056.7	968.1	713.2	591.9	522.9	479.7	447.4	421.7

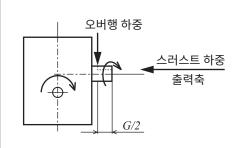


그림 : 오버행 하중 위치 , 스러스트 하중 및 축의 회전방향

노백래시 기어 컨트롤 백래시 기어 NS시리즈 NSG시리즈 ASG시리즈

※외관은 이미지입니다.

상품 기호 읽는 방법

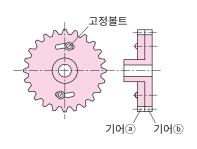
NSG 80 S 80 B + 08 10

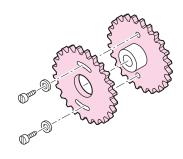
기어 및 치면가공 종류	모듈	재질	잇수	형상	치면가공	치폭	구멍직경
컨트롤 백래시 기어 NSG : 치면 연마 노 백래시 기어 NS : 치면 절삭	모듈 1 보다 아래인 경우 표기 숫자는		예: 잇수 80 은 "80" 으로 표기 .		[一]: 나사구멍 없음, 키홈 없음 ASG 시리즈 연삭가공 [+]: 나사구멍 1 개 있음 NSG 시리즈 연삭가공 NS 시리즈 절삭가공	단위: mm	단위: mm

기전공학(機電工學 Mechatronics) 산업의 발전과 더불어 생기는 백래시를 「0」으로 하려는 수요에 대응 합니다.

기전공학산업, 정밀기기등의 위치오차(백러시)가「0」을 필요로 하는 분야에 불가피한 부품입니다.

당사규격의 노 백래시 기어 콘트롤 백래시기어의 주 된 특징


- 1) 작은 모듈치수가 중심입니다.
- 2) 재질은 알루미늄, S45C, SCM435 · 440, SUS304 등 입니다.


(콘트롤 백래시기어는 SCM435 · 440 입니다.)

상품 기호	ASG	NSG	NS	NSU	NS
형상		(96)	(a)		
페이지	P. 56	P. 56	P. 58	P. 58	P. 58
재질	SCM435, 440	SCM435, 440	S45C	SUS304	A5056
모듈	m 1 ~ 2	m 0.5 ∼ 1	m 0.8 ∼ 1	m 0.5	m 0.5 ∼ 1
구조	볼트	원호 / 코일 스프링	코일 스프링	코일 스프링	원호 스프링
치부처리	치부고주파・연마	연마	절삭 • 연질화	절삭 • 테프론	절삭 • 아루마이트

노백래시 기어 인포메이션

1. 컨트롤 백래시 기어(ASG 시리즈) 사용 방법

1) 원리와 조립 방법

기어@ 및 기어⑥와 고정볼트로 구성되어 상대 기어와의 맞물림에 있어서 최소 또는 필요로 하는 백래시 양의 조정을 가능하게 한 기어 기구입니다. 고정볼트를 풀고 기어⑧와 기어⑥를 상대 기어와 맞물리게 합니다. 전주에서 상대 기어와의 백래시가 원하는 값이 되도록 기어⑧와 기어⑥의 위상을 어긋나게 하여 백래시 양을 조정한 후 고정볼트를 조입니다.

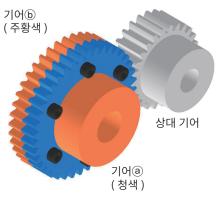
2) 이상적인 상대 기어

SG 시리즈의 치면 연마 평기어(상대 기어의 정밀도가 높을수록 ASG 시리즈는 효과를 발휘함).

3) 최상의 백래시 설정 방법(그림1)

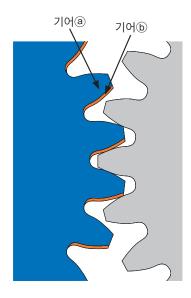
- ① 고정볼트를 풀고 기어@ 및 기어⑥와 상대 기어를 맞물립니다.
- ② 기어@와 기어ⓑ를 어긋나게 하여 백래시 양을 조정합니다.
- ③ 적절한 토크로 고정볼트를 조입니다(조임 토크에 관해서는 JIS 규격도 참조).

상대 기어와 컨트롤 백래시 기어를 1회전시켰을 때 백래시 양의 부족으로 회전이 무거운 부분이 있는 경우는 다시 조정하십시오.


맞물림 백래시 양을 더 줄이고 싶은 경우

컨트롤 백래시 기어와 상대 기어가 맞물리는 이를 바꿈으로써 백래시 양을 줄일 수 있는 경우가 있습니다.

① 고정볼트를 풀고 상대 기어와 맞물리 게 함


② 기어@와 기어ⓑ의 위상을 어긋 나게 하여 백래시 양 조정

③ 고정볼트를 조임

실제 맞물린 모습

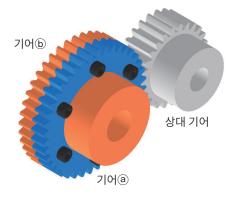


그림1 최상의 백래시 설정 방법

4) 고정볼트의 풀림 방지 및 유지보수

고정 후 맞춤 표시를 하면 느슨함을 시각적으로 발견하기 쉬워집니다. 정기적으로 조임 토크를 확인하는 등의 유지보수를 실시하십시오.

주의사항

1) 사고 방지

고정볼트 조임에 있어서 풀림 방지 스프링 와셔를 생략하거나 조임 토크의 부족은 작동 중에 고정볼트가 분리되는 원인이 되어 매우 위험하므로 작동 전에 반드시 확인하십시오.

2) 허용 전달 토크 준수의 중요성

여러 개의 볼트에 의한 고정이므로 허용 전달 토크를 초과하는 작동은 컨트롤 백래시 기어의 기능을 발휘 못하거나, 사고, 고장을 유발하는 원인이 됩니다. 반드시 허용 전달 토크를 준수하십시오. 더 큰 토크 전달이 필요하신 경우에는 당사에 문의하십시오.

3) 노백래시 기어의 백래시에 대하여

급격한 가감속 시 발생하는 관성으로 인하여 오차가 발생할 수 있습니다.

2. 노백래시 기어(NSG, NS시리즈) 사용 방법

형	사용 스프링	형상	
BS형	원호 스프링형	원호 스프링 기어③ 기어⑤	Or word of the state of the sta
BW형	코일 스프링형	코일스프링	The state of the s

1) 원리와 조립 방법

기어@ 및 기어(0와 스프링으로 구성되어 기어(0와 기어(0를 상대 기어와 맞물려 스프링 힘에 의해 백래시 (0(0(0(0(0(1) 으로 회전력을 전달하는 기구입니다. 전달력의 크기는 스프링 힘으로 제한되지만 경부하에서 고정밀도의 위치결정이나 정역회전에서의 백래시를 꺼리는 장치에 사용됩니다.

2) 이상적인 상대 기어

NSG 시리즈: SG 시리즈, SGR 시리즈의 치면 연마 평기어.

NS 시리즈 : S 시리즈의 평기어, RK 시리즈의 랙(재질: S45C, SUS304).

노백래시 기어 인포메이션

3) 전달 토크 설정 방법

①초기 상태

노백래시 기어에 장착되어 있는 스프링이 무응력 상태일 때 기어@와 기어⑥의 기어 위상은 일치하지 않습니다.

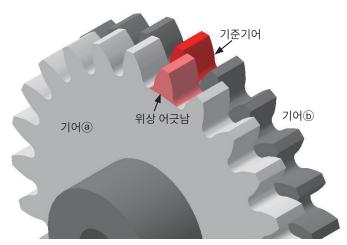


그림 1 초기 상태

②기어 치맞춤 원점 (n0)

기어(b)를 고정하고 기어(a)를 돌려 스프링이 늘어나고, 또한 기어(a)와 기어(b)의 기준 치가 일치한 곳을 기어 치맞춤 원점 (n0)으로 하여 전달 토크 설정의 기준 위치로 합니다.(그림2)

기어@ 회전 방향(스프링의 장력 방향)

- BS형: 측면에 각인되어 있는 화살표의 방향
- BW형: 스프링이 늘어나는 방향

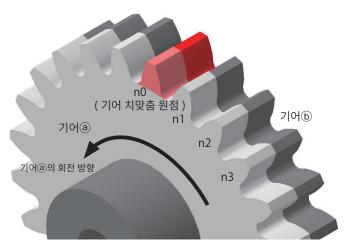
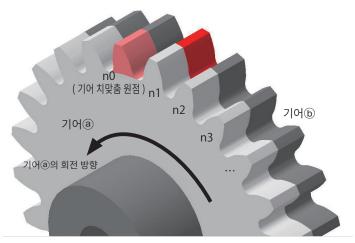
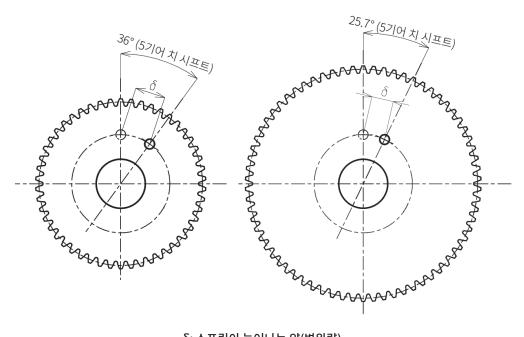


그림2 기어 치맞춤 원점(n0)

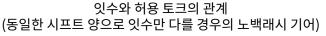
③피치 시프트 양 선택 (n1, n2, n3…)

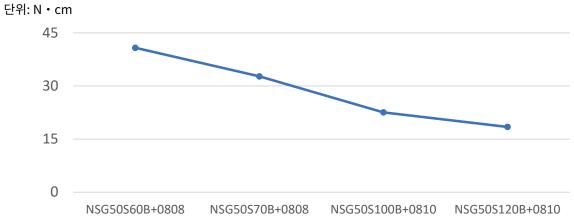
n0점에서 더 돌려 기어@의 다음 기어 치가 기어⑥의 기준기어 치와 일치한 곳을 피치 시프트 양 n1(그림3)로 하고, 이후 n2, n3…로 합니다. 피치 시프트 양과 허용 전달 토크의 관계는 상품마다 다르므로 각 페이지에 기재된 허용전달토크표를 확인한 후 사용하십시오.




그림3 피치 시프트

4) 허용 전달 토크를 지키는 중요성


허용전달토크표의 수치를 엄수해야 합니다. 부하 토크가 허용 전달 토크를 초과할 경우 백래시가 발생합니다.


노백래시 기어 인포메이션

3. 노백래시 기어의 일부 상품의 허용 전달 토크에 관한 주의점

δ: 스프링이 늘어나는 양(변위량) (위 그림은 실제로 있는 당사의 제품도가 아니라 일부 제품에 대한 설명용 약도입니다.)

일반적으로 동일 제원의 기어의 허용 전달 토크는 잇수의 증가에 비례하여 커지지만, 당사 상품중의 일부 노백래시 기어는 구조 설계상 허용 전달 토크가 잇수의 증가에 반비례로 작아지는 현상이 있습니다.

노백래시 기어의 허용 전달 토크는 **스프링의 사양(스프링 정수, 장착 위치, 개수)**과 2매의 기어 사이에서 어긋나는 기어 치수에 따른 **스프링 변위량(δ)**으로부터 결정됩니다.

잇수가 다르지만 같은 사양의 스프링(스프링 정수, 설치 위치, 개수) 으로 설계된 노백래시 기어에서 동일한 시프트양을 당길 경우 잇수가 적은 기어 쪽이 잇수가 많은 기어보다 허용 전달 토크가 상회합니다. 이는 잇수가 적은 쪽이 이(齒) 하나하나 의 이홈 분할 각도가 크기 때문에 시프트 양 (기어 이 의 어긋나는 잇수)이 같아도 스프링의 변위량(δ)이 커지기 때문입니다. 따라서 상품 선정에 있어서는 허용전달토 크표를 반드시 확인하십시오.

★대표적인 예: NSG시리즈, NS시리즈중의 알루미늄 재질(A5056) 기어

사

인 포 메 이 션

기어박人

노백래시 기어

평 기 어

랙

헬리컬 스크류 기어

마 이 터 기 어

> 베 벨 기 어

웜, 웜 휠

참고자료

컨트롤 백래시 기어 (SCM435, 440) ASG치면연마

(보통이)

단위:mm

조립 전 @ 히 기어 정밀도재질	재질	압력각	열처리	치면 경도	치면 가공
JIS B 1702-1 N5급	SCM435, 440	20도	기어 고주파	HRC49 ∼ 55	치면 연마

- ★표면처리는 하지 않았습니다.
- ★본 허용전달동력표의 토크는 컨트롤 백래시 기능을 유지하기 위해 지켜야 할 토크 값입니다.
- ★ASG 시리즈의 기어는 볼트로 기어@와 기어⑥의 위치를 조정 후 고정함으로써 백래시를 컨트롤합니다. ※조임토크에 관해서는 JIS 규격을 참조바랍니다.

상품기호	모듈	잇수	기준원 직경	이끝원 직경	치폭	구멍 직경	허브 외경	허브 길이	전장	고정볼트	중량
	m	z	d	da	b	dd(H7)	dh	lh	l		W(kg)
ASG1S 70B — 1012	1	70	φ 70	φ 72	10	φ12	<i>φ</i> 40	10	20	6-M4-φ 54	0.39
ASG1.5S 40B — 1515		40	φ 60	φ 63		φ 15	φ35			6-M4-ø 46	0.41
ASG1.5S 50B — 1520	1.5	50	φ 75	φ 78	15	φ20	φ45	15	30	6-M5- ø 58	0.64
ASG1.5S 60B — 1520		60	φ 90	φ 93		φ20	φ60			6-M5-φ 74	1.02
ASG2S 30B — 2015		30	φ 60	φ 64		φ 15	φ35			6-M4-φ 45	0.54
ASG2S 40B — 2020	2	40	φ 80	φ 84	20	φ 20	φ50	20	40	6-M5- ø 62	1.01
ASG2S 50B — 2020		50	φ100	φ104		φ 20	φ60			6-M6- ø 78	1.59

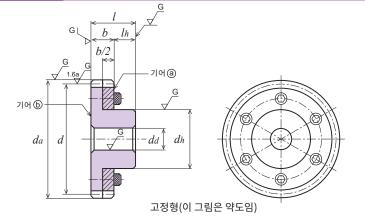
NSG치면 연마 노백래시기어 (SCM435, 440) 모듈 0.5/0.8/1

(보통이)

단위 : mm

조립 전 ⓐ 이 기어 정밀도재질	재질	압력각	열처리	치면 경도	치면 가공
JIS B 1702-1 N5급	SCM435, 440	20도	_	_	치면 연마

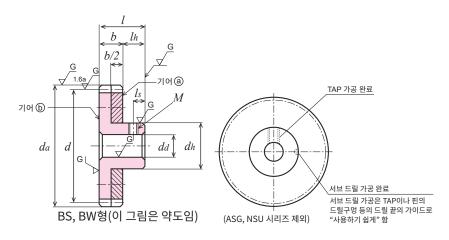
- ★표면처리는 하지 않았습니다. [+]에는 나사구멍, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 토크는 노백래시 기능을 유지하기 위해 지켜야 할 토크 값입니다. 단체 기어 요소뿐만 아니라 스프링의 탄성력에 관한 변위량의 영향을 반영한 수치입니다.
- ★NSG 시리즈의 기어는 스프링으로 기어⑧와 기어⑩를 상대 기어와 맞물려 스프링의 힘에 의해 백래시를 제거합 니다.
- ★BS형은 원호 스프링을 사용하고 BW형은 코일 스프링을 사용합니다.
- ★허용전달토크표의 n은 피치 시프트 양입니다. 자세한 내용은 '노백러시 기어 사용 방법'을 확인하십시오.


상품 기호	모듈	잇수	기준원 직경	이끝원 직경	형	스프링 수	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
31/1-	m	Z	d	da			b	dd(H7)	dh	lh	l	М	ls	W(g)
NSG50S 60B + 0808		60	φ 30	φ 31				φ 8	ø 16					45
NSG50S 70B + 0808	0.5	70	φ 35	φ 36			8	φ 8	ø 16	8	16	M4	4	61
NSG50S 100B + 0810	0.5	100	φ 50	φ 51	BS	1	0	φ 10	ø 20	0	10	1014	4	128
NSG50S 120B + 0810		120	φ 60	φ 61				φ10	ø 20					182
NSG80S 50B + 0810	0.8	50	φ 40	φ 41.6			8	φ10	ø 20	10	18	M5	_	87
NSG80S 80B + 0810	0.6	80	φ 64	φ 65.6	BW	2	0	φ10	φ 20	10	10	IVIO	3	200
NSG1S 50B + 1010	1	50	φ 50	φ 52	BS	1	10	φ10	ø 20	10	20	M6	_	144
NSG1S 60B + 1010	'	60	φ 60	φ 62	DO	'	10	 \$10	φ 20	10	20	IVIO)	212

컨트**롤 백래시 기어** (SCM435, 440) 모듈 1/1.5/2 ASG치면 연마

(보통이)

2D · 3D CAD



회전속도별 허용전달동력표 휨강도 (단위: kW												
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm						
1.38	2.77	4.01	4.90	5.79	7.66	8.84						
2.36	4.72	6.95	8.49	10.02	13.45	15.60						
3.12	6.22	8.98	10.99	12.95	17.03	19.60						
3.89	7.64	11.01	13.47	15.76	20.38	23.64						
3.84	7.67	11.29	13.80	16.27	21.85	23.34						
5.60	11.10	15.99	19.59	23.06	30.11	34.71						
7.40	14.37	20.72	25.28	29.32	37.96	43.98						

회	전속도별	허용전달	나무 기수				
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	상품 기호
0.86	1.77	2.62	3.25	3.87	5.23	6.10	ASG1S 70B — 1012
0.95	1.93	2.90	3.58	4.26	5.84	6.84	ASG1.5S 40B — 1515
1.50	3.07	4.52	5.60	6.67	8.95	10.41	ASG1.5S 50B - 1520
2.19	4.43	6.52	8.08	9.55	12.60	14.77	ASG1.5S 60B - 1520
1.26	2.58	3.86	4.77	5.69	7.78	9.12	ASG2S 30B — 2015
2.29	4.66	6.85	8.51	10.12	13.48	15.70	ASG2S 40B — 2020
3.64	7.29	10.74	13.28	15.57	20.56	24.07	ASG2S 50B — 2020

NSG치면 연마 노백래시기어 (SCM435, 440) 모듈 0.5/0.8/1

(보통이)

시프트 영	^{양별} 허용전달	날토크표(단위:	N · cm)	- 상품 기호				
n2	n3	n4	n5	유모기도				
13.33	21.18	31.08	40.79	NSG50S 60B + 0808				
10.86	16.35	24.83	32.72	NSG50S 70B + 0808				
8.16	12.91	17.81	22.55	NSG50S 100B + 0810				
7.25	10.39	15.29	18.43	NSG50S 120B + 0810				
14.12	25.36	32.68	42.09	NSG80S 50B + 0810				
46.44	56.48	66.73	76.98	NSG80S 80B + 0810				
18.14	27.29	35.13	47.85	NSG1S 50B + 1010				
16.86	23.92	31.77	40.99	NSG1S 60B + 1010				

목 차

인포메이션

노백래시 기어

모듈 0.8/1

노백래시 기어 (S45C)

(보통이)

단위 : mm

조립 전 @ b 기어 정밀도	재질	압력각	표면처리	치면 경도
JIS B 1702-1 N8급	S45C	20도	연질화	MH v 450 이상

- ★본 허용전달동력표의 토크는 노백래시 기능을 유지하기 위해 지켜야 할 토크 값입니다. 단체 기어 요소뿐만 아니라 스프링의 탄성력에 관한 변위량의 영향을 반영한 수치입니다.
- ★NS 시리즈의 기어는 스프링으로 기어ⓐ와 기어ⓑ를 상대 기어와 맞물려 스프링의 힘에 의해 백래시를 제거합니다.
- ★BW형은 코일 스프링을 사용하였습니다. [+]에는 나사구멍, 세트 스크류가 포함되어 있습니다(재질은 강재).
- ★허용전달토크표의 n은 피치 시프트 양입니다. 자세한 내용은 '노백러시 기어 사용 방법'을 확인하십시오.

상품 기호	모듈	잇수	기준원 직경	이끝원 직경	형	스프링 수	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	m	z	d	da			b	dd(H7)	dh	lh	l	М	ls	W(g)
NS80S 80B + 0810	0.8	80	φ 64	φ 65.6		2	0	410	ø 20	10	10	M5		200
NS80S 100B + 0810	0.0	100	φ 80	φ 81.6		2	0	<i>φ</i> 10	<i>φ</i> 24	10	18	IVID		324
NS1S 70B + 1012		70	φ 70	φ 72	BW	2			φ 24				5	298
NS1S 100B + 1012	1	100	φ100	φ102		3	10	φ12	ø 30	10	20	M6		632
NS1S 120B + 1012		120	φ120	φ122		3			ø 30					903

NSU

노백래시 기어 (SUS304)

모듈 0.5 (보통이)

단위:mm

조립 전 @⑥ 기어 정밀도	재질	압력각	표면처리	치면 경도
JIS B 1702-1 N9급	SUS304	20도	테프론	_

- ★본 허용전달동력표의 토크는 노백래시 기능을 유지하기 위해 지켜야 할 토크 값입니다. 단체 기어 요소뿐만 아니라 스프링의 탄성력에 관한 변위량의 영향을 반영한 수치입니다.
- ★NSU 시리즈의 기어는 스프링으로 기어@와 기어⑩를 상대 기어와 맞물려 스프링의 힘에 의해 백래시를 제거합니다.
- ★BW형은 코일 스프링을 사용하였습니다. [+]에는 나사구멍, 세트 스크류가 포함되어 있습니다(재질은 강재).
- ★허용전달토크표의 n은 피치 시프트 양입니다. 자세한 내용은 '노백러시 기어 사용 방법'을 확인하십시오.
- ★긁힘 방지 및 원활한 회전을 위해 테프론계 표면처리를 실시했습니다.

상품 기호	모듈	잇수	기준원 직경	이끝원 직경	형	스프링 수	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	m	Z	d	da			b	dd(H8)	dh	lh	l	М	ls	W(g)
NS50SU 60B + 0505		60	ø 30	ø 31		2		φ 5	φ12			M3		32.3
NS50SU 70B + 0508		70	ø 35	ø 36	BW	2	_	φ 8	ø 16		13	M3		45.7
NS50SU 80B + 0508	0.5	80	 \$\phi 40	 4 1		3		ø 8	ø 16	8		M3	4	57.4
NS50SU 90B + 0510	0.5	90	\$ 45	ø 46	DVV	3)	φ10	ø 20	0	13	M4	4	74.9
NS50SU 100B + 0510		100	ø 50	φ 51		3		φ 10	ø 20			M4		89.7
NS50SU 120B + 0510		120	φ60	φ 61		4		φ10	ø 20			M4		123.9

NS

노백래시 기어 (A5056)

모듈 0.5/0.8/1

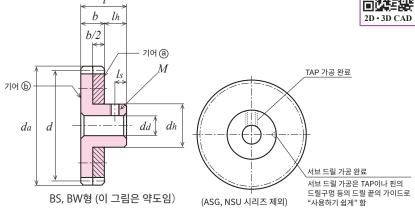
(보통이)

<u>단위 : mm</u>

조립 전 @⑥ 기어 정밀도	재질	압력각	표면처리	치면 경도
JIS B 1702-1 N9급	A5056	20도	백색 알루마이트	_

- ★본 허용전달동력표의 토크는 노백래시 기능을 유지하기 위해 지켜야 할 토크 값입니다. 단체 기어 요소뿐만 아니라 스프링의 탄성력에 관한 변위량의 영향을 반영한 수치입니다.
- ★NS 시리즈의 기어는 스프링으로 기어@와 기어ⓑ를 상대 기어와 맞물려 스프링의 힘에 의해 백래시를 제거합니다.
- ★BS형은 원호 스프링을 사용하였습니다. [+]에는 나사구멍, 세트 스크류가 포함되어 있습니다(재질은 강재).
- ★허용전달토크표의 n은 피치 시프트 양입니다. 자세한 내용은 '노백러시 기어 사용 방법'을 확인하십시오.

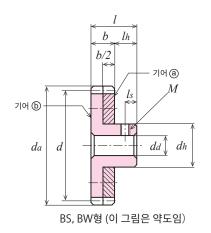
상품 기호	모듈	잇수	기준원 직경	이끝원 직경	형	스프링 수	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	m	z	d	da			b	dd(H8)	dh	lh	l	М	ls	W(g)
NS50AL 60B+ 0808		60	φ 30	φ 31				ø 8	ø 16					16
NS50AL 70B + 0808		70	φ 35	φ 36				ø 8	ø 16					21
NS50AL 80B + 0808	0.5	80	φ 40	φ 41			8	ø 8	φ 20	8	16	M4	4	30
NS50AL 90B+ 0810		90	φ 45	φ 46	BS	1	1	φ10	φ 20					36
NS50AL 100B + 0810		100	φ 50	φ 51	D3	'		φ10	ø 20					44
NS80AL 50B + 0810	0.8	50	φ 40	φ 41.6			8	φ10	φ 20	10	18	M5	5	30
NS1AL 50B + 1010	1	50	φ 50	φ 52			10	φ10	φ 20	10	20	M6	5	49
NS1AL 60B + 1010	'	60	φ 60	φ 62			10	φ10	φ 20	10	20	1010)	72


목 차

인포메이션

노백래시 기어

상품 기호	위: N • cm)	날토크표(단	허용전달	시프트 양별				
영품기오	n5	n4	n3	n2				
NS80S 80B + 0810	76.98	66.73	56.48	46.44				
NS80S 100B + 0810	87.33	74.53	61.19	47.59				
NS1S 70B + 1012	-	-	41.41	31.35				
NS1S 100B + 1012	145.78	122.90	103.29	74.19				
NS1S 120B + 1012	160.81	139.63	109.04	81.19				



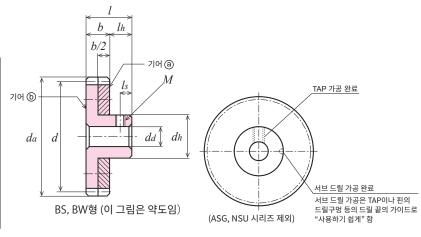
NSU

노백래시 기어 (SUS304)

모듈 0.5 (보통이)

시프트양별 허용전달토크표(단위: N·cm)	상품 기호
n2	응물 시호
9.71	NS50SU 60B + 0505
11.17	NS50SU 70B + 0508
16.18	NS50SU 80B + 0508
19.49	NS50SU 90B + 0510
30.69	NS50SU 100B + 0510
39.85	NS50SU 120B + 0510

NS


노백래시 기어 (A5056)

모듈 0.5/0.8/1

(보통이)

마이터기어

시프트 양별	허용전달	날토크표(단	위: N • cm)	상품 기호
n2	п3	n4	n5	성품 기호
13.33	21.18	31.08	40.79	NS50AL 60B + 0808
10.86	16.35	24.83	32.72	NS50AL 70B + 0808
11.50	16.47	20.79	26.93	NS50AL 80B + 0808
10.00	14.41	19.12	23.68	NS50AL 90B + 0810
8.16	12.91	17.81	22.55	NS50AL 100B + 0810
14.12	25.36	32.68	42.09	NS80AL 50B + 0810
18.14	27.29	35.13	47.85	NS1AL 50B + 1010
16.86	23.92	31.77	40.99	NS1AL 60B + 1010

60

연마 평기어 • 평기어

S G시리즈 S G R시리즈 S시리즈

※외관은 이미지입니다.

상품 기호 읽는 방법

SG 50 S 50 B - 0506 N

기어 종류	모듈	재질	잇수	형상	구멍 가공	치폭	구멍 직경	타입
SG: 치면 연마 평기어	모듈 크기를 표현 .	SG 시리즈	예 :	L: 양측 연삭가공축	SG 시리즈	단위 : mm	단위 : mm	N:
(정밀도 등급 : JIS N5 급)	모듈 1 보다 아래인 경우 표	S: SCM435, 440	잇수 50 은 "50"	B: 한쪽 허브	【一】:나사구멍 없음,키홈			SG 시리즈의 경
	기 숫자는 실제 모듈의 100		으로 표기 .		없음			우
SGR: 치면 연마 평기어	배.	SGR 시리즈			연삭가공			SGR 시리즈와 같
(정밀도 등급 : JIS N6	예 :	S: S45C			【*】: 나사구멍 2 곳 있음			은 형상 , 같은 크
급)	모듈 0.5 는 "50"				연삭가공			기.
	모듈 0.8 은 "80"				SGR 시리즈			
					【一】: 나사구멍 , 키 홈 없			
					음			
					선삭가공			

S 1 S 25 A - 0806 F

기어 종류	모듈	재질	잇수	형상	구멍 가공	치폭	구멍 직경	타입
S: 치면 절삭 평기어	모듈 크기를 표현 . 모듈 1 보다 아래인 경우 표기 숫자는 실제 모듈의 100 배 . 예 : 모듈 0.5 는 "50" 모듈 0.8 은 "80"	S : S45C B : 황동 C3604B, C3713P SU : 스테인리스 SUS304 BP : 아세탈 청색 POM D : 아세탈 백색 POM DB: 아세탈 백색 POM 황동 C3604 부시	예: 잇수 25 는 "25"로표기.	A : 허브 없음 B : 한쪽 허브 BF : 한쪽 허브 (추가 가공용 상품) L : 양쪽 축 K : 기어 편향	선삭 마무리 【一】: 나사구멍 없음 , 키홈 없음 (K1, L1 형은 제외) 【十】: 나사구멍 1 곳 있음 【*】: 나사구멍 2 곳 있음 【=】: 키홈 있음 【#】: 키홈 , 나사구멍 1 곳 있음	단위 : mm	단위 : mm	F, N: 추가 가공용 상 품

반도체 제조장치 등 메카트로닉스 분야 및 정밀기기, 공작기계의 정밀한 움직임을 필요로 하는 곳에 사용하기 쉬운 정밀 기 어 입니다.

나마 기속	CC	CCD	C		
상품 기호	SG	SGR	5	5	5
형상					ALLED STATES
페이지	P. 66	P. 82	P. 94	P. 136	P. 146
재질	SCM435, 440	S45C	S45C	SUS304	황동
모듈	m 0.5 ~ 3	m 0.5 ~ 3	m 0.5 ~ 3	m 0.5 ~ 2	m 0.3 ~ 0.8
정밀도 등급	JIS N5급	JIS N6급	JIS N8급	JIS N9급	JIS N9급~관리범위 외
치부 처리	치부 고주파 열처리, 연마	치부 고주파 열처리, 연마	절삭	절삭	절삭

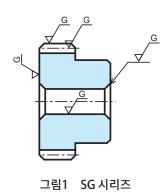
상품 기호	S	S	S	S
형상		0		3
페이지	P. 158	P. 160	P. 170	P. 176
재질	백색 POM(황동 부시 있음)	청색 POM	백색 POM	백색 POM(나사구멍 있음)
모듈	m1	m 0.5 ~ 3	m 0.5 ~ 1	m 0.5 ~ 1
정밀도 등급	JIS N9~10급 *	JIS N9~10급 *	JIS N9~10급 *	JIS N9~10급 *
치부 처리	절삭	절삭	절삭	절삭

※제작 시의 정밀도 입니다 .

연마 평기어 • 평기어 인포메이션

1. SG, SGR 시리즈 치면 연마 평기어의 특징

	정밀도 등급 JIS B 1702-1	연마 부위	모듈	재질	열처리	경도	표면처리
SG 시리즈	N5급	그림 1 참조	0.5 ~ 3.0	SCM435, 440	치부 고주파	HRC 49~55	_
SGR 시리즈	N6급	그림 2 참조	0.5 ~ 5.0	S45C ** 1	열처리	HRC 50~56	흑색 염색*2


※1 S45C 쾌삭재 포함 ※2 치면(연삭면)은 흑색 염색 없음

SG 시리즈는 고정밀 치면 연마 평기어이고 SGR 시리즈는 치면만을 연마한 이코노미 타입입니다.

SG 시리즈 중 상품 기호 끝에 N가 붙는 상품은 기존 상품 SGR 시리즈 대비 보다 고정밀, 고강도이며 기어 성능 향상을 도모한 시리즈이며, 기어의 각 부분 치수, 형상은 기존 상품 SGR 시리즈와 동일하므로 교체가 가능합니다.

각 시리즈 모두 고주파 열처리 제품으로 구멍과 허브를 추가 가공할 수 있습니다.

각 시리즈의 연마 부문: ▽

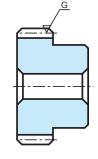
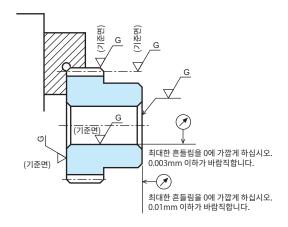


그림2 SGR 시리즈 (이코노미 타입)


2. SG, SGR 치면 연마 평기어의 추가 가공 시 주의점

당사는 고정밀도 고품질의 치면 연마 평기어를 제공하기 위해 노력하고 있습니다. 추가 가공을 실시한 경우 기어의 정밀도가 떨어지는 경우가 있습니다. 추가 가공이 필요한 경우 아래 사항에 주의하십시오.

또한 KG 종합 카탈로그 '추가 가공의 주의점'도 참고하십시오.

1) SG·SGR 치면 연마 평기어의 구멍 직경 추가 가공

- ①반드시 생죠와 스크롤 척을 이용하여 치끝 외주를 척킹하고, 상품의 구멍면에서 센터링을 하십시오. 외주와 측면이 연마 마무리이므로 그림과 같이 척을 하면 센터링을 하기 쉽습니다.
- ②열처리 부위는 치부 부분뿐이지만 소형 모듈일경우 잇수가 적은 소형 기어는 경화층이 구멍면까지 도달하여 절삭성이 나빠지는 경우도 있으므로 주의하십시오.
- ③추가 가공에 의한 최대 구멍 가공 직경은 허브 직경의 60~70%를 기준으로 하십시오

2) SG·SGR 치면 연마 평기어의 기타 부분의 추가 가공

- ①척킹 방법은 구멍의 추가 가공과 동일하지만 허브를 척킹하는 경우에도 반드시 구멍면에서 센터링을 하십시오.
- ②양축이 달린 기어(L형)의 치부에 가까운 부분(축 포함)은 열처리에 의한 영향으로 경화되어 있으므로 주의하십시오.

3. 전위 평기어란

기어의 치부 절삭가공때 절삭 공구를 기준원의 직경 방향에서 기어 중심에 가깝게 혹은 멀게 이동하여 가공한 기어를 말합니다. 이하 설명내용은 기준랙과의 맞물림을 조건으로 하고 있습니다.

1) 전위계수가 0 일 경우

공구와 기어의 절삭 위치 관계 그림 1 참조

- ①절삭 공구 (기준 랙 치형)의 피치선과 기어 기준원이 일치하는 경우가 전위계수 x = 0 의 기어
- ②전위기어의 기준원 = 절삭 피치원 = 랙과의 맞물림 피치원 ③조립중심거리 = 피니언 기준원 직경+ 기어 기준원 직경

2) 전위계수가 정전위 (+) 일 경우

공구와 기어의 절삭 위치 관계 그림 2 참조

①절삭 공구 (기준 랙 치형)의 피치선이 기어 기준원의 바깥쪽 으로 이동하는 경우가 전위계수 x =정전위 (+) 의 기어입니다.

규격품 평기어 (S45C재질)의 모듈(m) 1, 1.5, 2 의 잇수 8에서 12까지가 전위계수 x =+0.5 의 정전위 가공을 하고 있습니다.

- ②전위기어의 기준원<절삭 피치원 = 랙과의 맞물림 피치원
- ③조립중심거리: 평기어 인포메이션「4.전위 평기어의 중심간 거리」를 참조 하십시오.

3) 전위계수가 부전위 (-) 일 경우

공구와 기어의 절삭 위치 관계 그림 3 참조

- ①절삭 공구 (기준 랙 치형)의 피치선이 기어 기준원의 안쪽 으로 이동하는 경우가 전위계수 x =부전위 (-) 의 기어입니다.
- ②전위기어의 기준원> 절삭 피치원 = 랙과의 맞물림 피치원

전위기어의 사용목적:

(1) 언더컷의 발생을 방지 혹은 작게 하는 목적이 있습니다.

이뿌리원이 기초원보다 작아지면 언더컷이 발생하여 기어의 이뿌리 강도가 약해지는 경향이 있습니다 (그림 3 참조).

- 이 현상은 잇수가 적어질수록 현저합니다.
- (3) 이물림률의 조절에 의해 기어의 강도 및 물림시의 소음저감을 실현할수도 있습니다.

(2) 조립중심거리를 조절할수 있습니다.

기준랙 기준 피치선 =랙과의 맞물림 피치원 직경

그림 1

전위계수(x)=0으로 생성된 치형

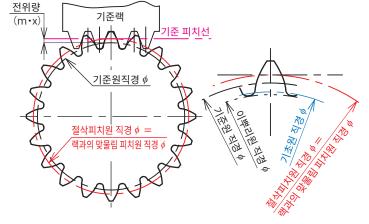


그림 2

전위계수(x)=정전위 (+)로 생성된 치형

전위량 기준 피치선 언더컷:기초원과 이뿌리원 사이에 발생 그림 3

전위계수(x)=부전위 (-)로 생성된 치형

전위기어사용시의 주의점:

전위기어의 조립중심거리는 조금 복잡한 계산을 필요합니다. 저희 회사의 규격품 전위기어의 사용시에는 평기어 인포메이션「4.전위 평기어의 중심간 거리」를 참조 하십시오. 더 상세한 정보가 필요하실 경우에는 저희 회사의 별도 기술자료(영어)를 확인 하십시오. 홈페이지 에서 다운로드 하실수 있습니다.

연마 평기어 • 평기어 인포메이션

DIN규격 05치형에 대하여

당사의 규격 평기어(잇수 $8\sim11$)는 DIN 규격의 05 치형을 채용하고 있습니다. 05 치형이란 전위계수를 +0.5로 고정한 것입니다. 치끝 틈새가 적어지는 경향이 있기 때문에 치끝의 길이 단축계수 \times 모듈($k \cdot m$)만큼 외경을 작게 만들었습니다. 아래에 당사의 규격 평기어(잇수 $8\sim11$)의 전위 계산 방법에 대해 설명합니다.

맞물림 압력각 α_w 는

$$\operatorname{inv} \alpha_{w} = 2 \tan \alpha \left(\frac{x_{1} + x_{2}}{z_{1} + z_{2}} \right) + \operatorname{inv} \alpha$$

설명:

z=작은 기어의 잇수

 z_2 =큰 기어의 잇수

x=작은 기어의 전위계수

 x_2 =큰 기어의 전위계수

 α =압력각(공구 압력각)

inv=인볼루트 함수 $inv\alpha$ = $tan \alpha$ - α

(인볼루트 함수표는 기술자료 164~167페이지 참조)

중심거리 수정계수 *v*는

$$y = \frac{z_1 + z_2}{2} \left(\frac{\cos \alpha}{\cos \alpha_w} - 1 \right)$$

입니다.

중심거리 ax는

$$a_x = \left(\frac{z_1 + z_2}{2} + y\right) m$$

설명:

m=모듈

맞물림 피치원 직경은 d'_1 , d'_2 는

$$d'_1 = 2 a_x \left(\frac{z_1}{z_1 + z_2} \right)$$

$$d'_2 = 2 a_x \left(\frac{z_2}{z_1 + z_2} \right)$$

입니다.

다음으로 기준원 직경 d_1 , d_2 는

 $d_1 = z_1 m$

 $d_1 = z_2 m$

이끝원 직경dax는

$$d_{ax} = 2m\left(\frac{z+3}{2} - \kappa\right)$$

설명:

k=이끝의 길이 단축계수

$$\kappa m = \left[x_1 + x_2 - \frac{z_1 + z_2}{2} \left(\frac{\cos \alpha}{\cos \alpha_w} - 1 \right) \right] m$$

공구의 이끝의 길이가 1.25m일 때 이끝 틈새(최소값)는 0.21m입니다.

잇수 8과 8이 맞물리는 경우의 중심거리는 (전위계수 x=0.5)

 $a_x/m = 8.7788$ mm

잇수 10과 10이 맞물리는 경우의 중심거리는 (전위계수 x=0.5)

 $a_x / m = 10.8043$ mm

입니다.

위의 계산 예는 모듈 1mm의 경우입니다. 예를 들어 모듈 2mm의 잇수 8과 8이 맞물리는 경우에는 상기의 a_x/m =8.7788mm보다 중심거리 a_x 는

$$a_x = 8.7788 \times 2$$

=17.5576mm

입니다.

기타 표준 기어와 조합하여 사용할 수 있습니다. 기어공업 제54호 '독일 기어 규격'에서 인용 (DIN 3994, 3995)

4. 전위 평기어의 중심간 거리

전위 평기어와 맞물리는 평기어의 중심거리 (당사 규격품)

당사 전위기어와의 맞물림 시 권장 중심간 거리(단위 mm)

아래 표에 대하여: 아래 표에서 나타내고 있는 것은 모듈1일 때의 각 기어의 맞물림 중심거리 ax.

기어 모듈이 변경될 경우 아래 수치에 모듈을 곱하십시오.

예: 모듈2에서 두 개의 기어의 잇수가 8매인 경우 중심에서는 8.779×2(모듈)입니다.

(현재 당사 모듈1 이상의 전위 평기어의 전위계수는 x=0.5입니다.)

잇수 잇수	8 (전위)	9 (전위)	10 (전위)	11 (전위)
8 (전위)	8.779	9.286	9.792	10.298
9 (전위)	9.286	9.792	10.299	10.804
10 (전위)	9.792	10.299	10.804	11.310
11 (전위)	10.299	10.804	11.310	11.815
12	10.437	10.939	11.441	11.943
13	10.939	11.441	11.943	12.445
14	11.441	11.942	12.445	12.946
15	11.943	12.445	12.946	13.448
16	12.445	12.946	13.448	13.949
17	12.946	13.448	13.949	14.451
18	13.448	13.949	14.451	14.952
19	13.949	14.451	14.952	15.453
20	14.451	14.952	15.453	15.954
21	14.952	15.453	15.954	16.455
22	15.453	15.954	16.455	16.956
23	15.954	16.455	16.956	17.457
24	16.455	16.956	17.457	17.958
25	16.956	17.457	17.958	18.459
26	17.457	17.958	18.459	18.960
27	17.958	18.459	18.960	19.461
28	18.459	18.960	19.461	19.962
29	18.960	19.461	19.962	20.463
30	19.461	19.962	20.463	20.963
32	20.463	20.963	21.464	21.965
34	21.464	21.965	22.465	22.966
35	21.965	22.465	22.966	23.467
36	22.465	22.966	23.467	23.967
38	23.467	23.967	24.468	24.968
40	24.468	24.968	25.469	25.969
42	25.469	25.969	26.470	26.970
44	26.470	26.970	27.471	27.971

2 7 5	
πm h	<i>a</i>

잇수 잇수	8 (전위)	9 (전위)	10 (전위)	11 (전위)
45	26.970	27.471	27.971	28.472
46	27.471	27.971	28.472	28.972
48	28.472	28.972	29.473	29.973
50	29.473	29.973	30.473	30.974
52	30.473	30.974	31.474	31.974
54	31.474	31.974	32.475	32.975
55	31.974	32.475	32.975	33.475
56	32.475	32.975	33.475	33.976
58	33.475	33.976	34.476	34.976
60	34.476	34.976	35.477	35.977
62	35.477	35.977	36.477	36.977
64	36.477	36.977	37.478	37.978
65	36.977	37.478	37.978	38.478
66	37.478	37.978	38.478	38.979
68	38.478	38.979	39.479	39.979
70	39.479	39.979	40.479	40.979
72	40.479	40.979	41.480	41.980
75	41.980	42.480	42.980	43.480
80	44.481	44.981	45.481	45.981
84	46.482	46.982	47.482	47.982
85	46.982	47.482	47.982	48.482
90	49.483	49.983	50.483	50.983
95	51.983	52.483	52.984	53.484
96	52.483	52.984	53.484	53.984
100	54.484	54.984	55.484	55.985
105	56.985	57.485	57.985	58.485
108	58.485	58.985	59.485	59.985
110	59.485	59.985	60.485	60.986
112	60.485	60.986	61.486	61.986
115	61.986	62.486	62.986	63.486
120	64.486	64.987	65.487	65.987

당사의 전위 평기어와 맞물리는 랙의 조립 거리

$$a = h'' + \frac{m \times z}{2} + xm$$

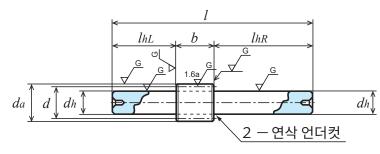
기호 설명:

a : 조립 위치 거리(랙 밑면에서 평기어 중심까지의 거리)

모듈 1 이상

잇수 8~11은 *x*=0.5

h'': 랙의 맞물림 높이(랙의 상품 페이지 참조)


m : 모듈

x : 전위 계수 z : 잇수

12 이상은 *x*=0

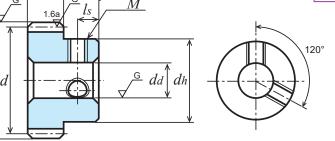
※당사 규격품인 경우

L 1형

단위:mm

L 11 - 111111					
정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

- ★표면 처리는 하지 않았습니다. 【*】 나사구멍이 2곳, 세트 스크류가 2개 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★모듈 0.5 상품은 치폭 5mm와 8mm가 혼재합니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


() 동송품, 동새질, 안 쌍의 맞물림 상품 기호	모듈	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	m	Z	d	da		b	dd(H7)	dh	lh	l	М	ls	W(kg)
SG50S 20L — 0806		20	φ 10	φ11	L1	8	1	φ 6 (h7)	L22 R50	80	-	-	0.021
SG50S 28B — 0805		28	φ14	ø 15		8	ø 5	φ 10		16	-	-	0.012
SG50S 30B — 0505N		30	φ 15	ø 16		5	ø 5	φ 12		13	-	-	0.012
SG50S 30B * 0806		30	φ 15	ø 16		8	ø 6	φ12		16	2-M3	4	0.014
SG50S 36B — 0808		36	ø 18	ø 19		8	ø 8	ø 16		16	-	-	0.022
SG50S 40B — 0506N		40	φ 20	φ21		5	ø 6	φ 15		13	-	-	0.021
SG50S 40B — 0806		40	φ 20	φ 21		8	ø 6	ø 16		16	-	-	0.029
SG50S 40B * 0808	0.5	40	φ 20	φ 21		8	ø 8	ø 16		16	2-M4	4	0.026
SG50S 50B — 0506N	0.5	50	φ 25	φ 26	B1	5	ø 6	ø 18	8	13	-	-	0.032
SG50S 60B — 0506N		60	φ30	φ31		5	ø 6	φ 22		13	-	-	0.049
SG50S 70B — 0508N		70	φ 35	ø 36		5	ø 8	ø 25		13	-	-	0.063
SG50S 72B — 0808		72	φ36	φ 37		8	ø 8	\$ 25		16	-	-	0.088
SG50S 80B — 0508N		80	 \$40	φ41		5	ø 8	\$ 28		13	-	-	0.083
SG50S 90B — 0508N		90	ø 45	ø 46		5	ø 8	φ 32		13	-	-	0.108
SG50S 100B — 0510N		100	φ 50	φ 51		5	φ 10	\$ 35		13	-	-	0.130
SG50S 120B — 0510N		120	φ60	ø 61		5	φ 10	φ42		13	-	-	0.190
SG80S 15L — 0806		15	φ 12	φ13.6	L1		-	φ 6 (h7)	L22 R60	90	-	-	0.025
SG80S 25B — 0806		25	ø 20	φ21.6			ø 6	ø 16			-	-	0.031
SG80S 25B — 0805N		25	φ 20	φ21.6			ø 5	ø 16			-	-	0.033
SG80S 30B — 0805N		30	φ24	φ25.6			ø 5	φ 20			-	-	0.050
SG80S 40B — 0810		40	φ32	φ33.6			φ 10	\$ 25			-	-	0.077
SG80S 40B — 0808N		40	φ32	φ33.6			ø 8	ø 25			-	-	0.082
SG80S 45B — 0810		45	φ 36	φ37.6			φ 10	\$ 25			-	-	0.091
SG80S 50B — 0808N	0.8	50	 \$\phi 40	φ41.6		8	ø 8	\$ 28			-	-	0.120
SG80S 56B — 0810	0.6	56	φ44.8	φ46.4	B1	0	φ 10	\$ 25	10	18	-	-	0.126
SG80S 60B — 0808N		60	φ48	φ49.6			ø 8	<i>φ</i> 28			-	-	0.155
SG80S 70B — 0808N		70	φ 56	φ57.6			ø 8	φ28			-	-	0.196
SG80S 80B — 0812		80	φ64	φ65.6			φ 12	φ30			-	-	0.240
SG80S 80B — 0808N		80	φ64	φ65.6			ø 8	φ28			-	-	0.243
SG80S 90B — 0810N		90	φ 72	φ73.6			ø 10	φ30			-	-	0.300
SG80S 100B — 0812N		100	ø 80	φ81.6			φ 12	φ40			-	-	0.398
SG80S 120B — 0812N		120	ø 96	φ97.6			φ 12	φ40			-	-	0.534

da

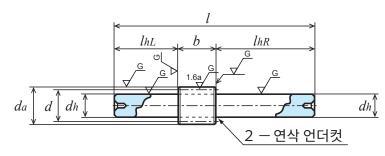
B1형【一】

B1형【*】

노
백래
시
이

목 차

인포메 이션

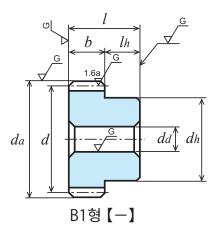

기 어 박 스

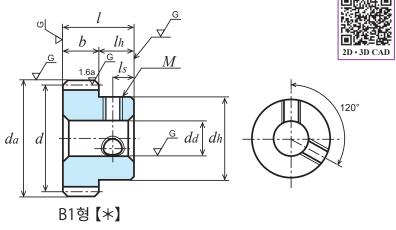
베 벨 기 어

左	ŀ	
Ī		
X	ŀ	
	Z C	

회	전속도별	허용전달	동력표	휨강도	(단위: kV	V)	회	전속도별	허용전달등	동력표 기	티면강도	- (단위: k	W)	백래시	UT -1-
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호
0.10	0.21	0.32	0.40	0.48	0.67	0.81	0.025	0.050	0.076	0.095	0.115	0.161	0.194		SG50S 20L — 0806
0.17	0.34	0.52	0.65	0.78	1.09	1.31	0.050	0.101	0.152	0.191	0.231	0.324	0.391		SG50S 28B — 0805
0.11	0.23	0.35	0.44	0.53	0.74	0.89	0.036	0.072	0.110	0.138	0.166	0.233	0.282		SG50S 30B — 0505N
0.19	0.38	0.57	0.71	0.86	1.19	1.43	0.057	0.116	0.176	0.221	0.266	0.374	0.451		SG50S 30B * 0806
0.24	0.48	0.73	0.91	1.09	1.52	1.83	0.084	0.169	0.256	0.322	0.389	0.546	0.661		SG50S 36B — 0808
0.17	0.34	0.52	0.65	0.78	1.09	1.30	0.065	0.131	0.199	0.250	0.302	0.425	0.513		SG50S 40B — 0506N
0.27	0.55	0.83	1.04	1.25	1.74	2.09	0.10	0.21	0.31	0.40	0.48	0.68	0.82		SG50S 40B — 0806
0.27	0.55	0.83	1.04	1.25	1.74	2.09	0.10	0.21	0.31	0.40	0.48	0.68	0.82		SG50S 40B * 0808
0.23	0.46	0.69	0.86	1.04	1.43	1.69	0.10	0.20	0.31	0.39	0.48	0.67	0.80		SG50S 50B — 0506N
0.28	0.57	0.86	1.08	1.29	1.76	2.07	0.15	0.30	0.46	0.58	0.70	0.97	1.15		SG50S 60B — 0506N
0.34	0.69	1.03	1.29	1.54	2.08	2.45	0.20	0.41	0.63	0.80	0.96	1.32	1.57		SG50S 70B — 0508N
0.57	1.14	1.17	2.14	2.55	3.43	4.04	0.35	0.71	1.08	1.36	1.63	2.23	2.66		SG50S 72B — 0808
0.40	0.80	1.21	1.51	1.78	2.39	2.83	0.27	0.55	0.84	1.06	1.26	1.72	2.05		SG50S 80B — 0508N
0.46	0.92	1.38	1.71	2.01	2.71	3.20	0.34	0.70	1.07	1.34	1.59	2.18	2.60		SG50S 90B — 0508N
0.52	1.04	1.55	1.91	2.25	3.02	3.56	0.43	0.88	1.33	1.65	1.97	2.70	3.21		SG50S 100B — 0510N
0.63	1.27	1.88	2.29	2.71	3.64	4.22	0.63	1.28	1.93	2.38	2.84	3.89	4.56	0.02 ~ 0.06	SG50S 120B — 0510N
0.17	0.35	0.52	0.66	0.79	1.10	1.32	0.036	0.075	0.11	0.13	0.16	0.23	0.28	0.02 ~ 0.06	SG80S 15L — 0806
0.38	0.76	1.14	1.43	1.71	2.38	2.85	0.104	0.211	0.31	0.40	0.48	0.68	0.82		SG80S 25B — 0806
0.38	0.76	1.14	1.43	1.71	2.38	2.85	0.104	0.211	0.31	0.40	0.48	0.68	0.82		SG80S 25B — 0805N
0.49	0.98	1.47	1.84	2.20	3.05	3.61	0.15	0.30	0.46	0.58	0.70	0.99	1.18		SG80S 30B — 0805N
0.71	1.43	2.14	2.68	3.21	4.34	5.10	0.27	0.55	0.84	1.06	1.29	1.76	2.10		SG80S 40B — 0810
0.71	1.43	2.14	2.68	3.21	4.34	5.10	0.27	0.55	0.84	1.06	1.29	1.76	2.10		SG80S 40B — 0808N
0.82	1.65	2.48	3.11	3.69	4.97	5.86	0.35	0.71	1.08	1.36	1.63	2.23	2.66		SG80S 45B — 0810
0.94	1.89	2.84	3.53	4.18	5.61	6.63	0.43	0.88	1.34	1.69	2.02	2.76	3.29		SG80S 50B — 0808N
1.08	2.17	3.29	4.02	4.74	6.38	7.52	0.55	1.12	1.70	2.13	2.53	3.47	4.13		SG80S 56B — 0810
1.18	2.36	3.54	4.34	5.12	6.89	8.11	0.63	1.29	1.97	2.44	2.90	3.98	4.74		SG80S 60B — 0808N
1.42	2.84	4.20	5.14	6.05	8.14	9.50	0.87	1.79	2.69	3.33	3.96	5.43	6.40		SG80S 70B — 0808N
1.66	3.32	4.85	5.92	6.99	9.34	10.80	1.15	2.36	3.52	4.34	5.18	7.06	8.25		SG80S 80B — 0812
1.66	3.32	4.85	5.92	6.99	9.34	10.80	1.15	2.36	3.52	4.34	5.18	7.06	8.25		SG80S 80B — 0808N
1.90	3.79	5.48	6.70	7.90	10.43	12.02	1.47	3.02	4.45	5.51	6.56	8.83	10.29		SG80S 90B — 0810N
2.14	4.23	6.10	7.48	8.80	11.49	13.25	1.83	3.73	5.48	6.80	8.09	10.78	12.56		SG80S 100B — 0812N
2.62	5.11	7.36	8.99	10.47	13.54	15.70	2.68	5.37	7.92	9.80	11.53	15.20	17.82		SG80S 120B — 0812N

L 1형


단위:mm


정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

- ★표면 처리는 하지 않았습니다. 【*】 나사구멍이 2곳, 세트 스크류가 2개 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나사		중량
	Z	d	da		b	dd(H7)	dh	lh	l	M	ls	W(kg)
SG1S 14B — 1005N	14	φ14	ø 16	B1		φ 5	φ11	10	20	-	-	0.016
SG1S 15L — 1010	15	φ 15	φ 17	L1		-	φ10(h7)	L25 R60	95	-	-	0.066
SG1S 15B — 1006N	15	ø 15	φ 17	B1		ø 6	φ12	10	20	-	-	0.018
SG1S 16L — 1010	16	ø 16	ø 18	L1		-	φ10(h7)	L25 R60	95	-	-	0.068
SG1S 16B — 1006N	16	ø 16	φ 18	B1		φ 6	φ13	10	20	-	-	0.022
SG1S 17B — 1006	17	φ 17	ø 19	B1		φ 6	φ12	10	20	-	-	0.022
SG1S 17B — 1006N	17	φ 17	ø 19	B1		φ 6	φ14	10	20	-	-	0.025
SG1S 18L — 1010	18	ø 18	φ 20	L1		-	φ10(h7)	L25 R60	95	-	-	0.072
SG1S 18B — 1006N	18	φ 18	φ 20			φ 6	φ 15			-	-	0.029
SG1S 18B — 1008	18	φ 18	φ 20			ø 8	φ 15			-	-	0.026
SG1S 19B — 1006N	19	ø 19	φ 21			φ 6	φ 16			-	-	0.034
SG1S 20B — 1006N	20	φ 20	φ 22			ø 6	φ 16			-	-	0.036
SG1S 20B — 1008	20	φ 20	φ 22			ø 8	φ 16			-	-	0.032
SG1S 20B * 1010	20	φ 20	φ 22			φ 10	φ16			2-M4	5	0.028
SG1S 21B — 1008N	21	φ 21	φ 23			ø 8	φ18			-	-	0.039
SG1S 22B — 1008N	22	φ 22	<i>φ</i> 24			ø 8	<i>φ</i> 18		20	-	-	0.042
SG1S 23B — 1008N	23	φ 23	φ 25			φ 8	<i>φ</i> 20	10		-	-	0.049
SG1S 24B — 1008N	24	<i>φ</i> 24	φ 26			φ 8	<i>φ</i> 20			-	-	0.052
SG1S 25B — 1008	25	φ 25	φ 27		10	φ 8	<i>φ</i> 20			-	-	0.055
SG1S 26B — 1008N	26	φ 26	<i>φ</i> 28			φ 8	<i>φ</i> 20			-	-	0.058
SG1S 27B — 1008N	27	φ 27	φ 29			φ 8	φ 20			-	-	0.062
SG1S 28B — 1008N	28	φ 28	φ30			φ 8	<i>φ</i> 20			-	-	0.065
SG1S 29B — 1008N	29	φ 29	φ31			φ 8	φ 25			-	-	0.082
SG1S 30B — 1010	30	φ30	<i>φ</i> 32	B1		φ 10	φ 26			-	-	0.084
SG1S 30B — 1010N	30	φ30	φ32			φ 10	φ 25			-	-	0.082
SG1S 32B — 1010N	32	φ32	φ34			φ10	φ25			-	-	0.089
SG1S 34B — 1010N	34	φ34	φ36			φ10	φ25			-	-	0.097
SG1S 35B — 1010	35	φ35	φ37			φ10	φ26			-	-	0.104
SG1S 35B — 1010N	35	φ35	φ37			φ10	φ25			-	-	0.102
SG1S 36B — 1010	36	φ36	φ38			φ10	φ26			-	-	0.109
SG1S 36B — 1010N	36	φ36	φ38			φ10	φ25			-	-	0.106
SG1S 38B — 1010N	38	φ38	φ40			φ10	φ30			-	-	0.132
SG1S 40B — 1010N	40	φ40	φ42			φ10	φ30			-	-	0.142
SG1S 42B — 1010N	42	φ42	φ44			φ10	φ30			-	-	0.152
SG1S 44B — 1010	44	φ44 (44	φ46			φ10	φ35			-	-	0.181
SG1S 44B — 1010N	44	φ44 445	φ46			φ10	φ30			-	-	0.163
SG1S 45B — 1010N	45	φ45	φ47			φ10	φ30			-	-	0.168
SG1S 45B — 1012	45	φ45	φ47 450			φ12	φ35			-	-	0.182
SG1S 48B — 1010N	48	φ48	φ50			φ10	φ30			-	-	0.185
SG1S 48B — 1012	48	<i>φ</i> 48	φ 50			φ12	φ 35			-	-	0.199

(보통이)

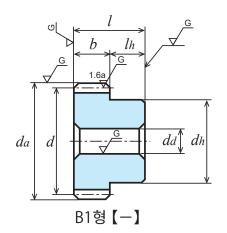
				1-1-1											
상품 기호	백래시	W)	- (단위: k	디면강도	등력표 기	허용전달등	전속도별 경	회견	V)	(단위: kW	휨강도	동력표	허용전달	전속도별	호
요목 기호	(단위: mm)	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm
SG1S 14B — 1005N		0.48	0.40	0.28	0.23	0.19	0.12	0.062	2.30	1.92	1.38	1.15	0.92	0.61	0.30
SG1S 15L - 1010		0.56	0.46	0.33	0.27	0.22	0.14	0.072	2.58	2.15	1.55	1.29	1.03	0.68	0.34
SG1S 15B — 1006N		0.56	0.46	0.33	0.27	0.22	0.14	0.072	2.58	2.15	1.55	1.29	1.03	0.68	0.34
SG1S 16L - 1010		0.64	0.53	0.38	0.31	0.25	0.16	0.082	2.87	2.39	1.72	1.43	1.14	0.76	0.38
SG1S 16B — 1006N		0.64	0.53	0.38	0.31	0.25	0.16	0.082	2.87	2.39	1.72	1.43	1.14	0.76	0.38
SG1S 17B — 1006		0.73	0.60	0.43	0.35	0.28	0.18	0.093	3.15	2.63	1.89	1.57	1.26	0.84	0.42
SG1S 17B — 1006N		0.73	0.60	0.43	0.35	0.28	0.18	0.093	3.15	2.63	1.89	1.57	1.26	0.84	0.42
SG1S 18L - 1010		0.82	0.68	0.48	0.40	0.32	0.21	0.105	3.45	2.87	2.07	1.72	1.38	0.92	0.46
SG1S 18B — 1006N		0.82	0.68	0.48	0.40	0.32	0.21	0.105	3.45	2.87	2.07	1.72	1.38	0.92	0.46
SG1S 18B — 1008		0.82	0.68	0.48	0.40	0.32	0.21	0.105	3.45	2.87	2.07	1.72	1.38	0.92	0.46
SG1S 19B — 1006N		0.90	0.76	0.54	0.45	0.35	0.23	0.116	3.69	3.10	2.26	1.88	1.51	1.00	0.50
SG1S 20B — 1006N		1.02	0.85	0.60	0.50	0.39	0.26	0.130	4.03	3.37	2.43	2.02	1.62	1.08	0.54
SG1S 20B — 1008		1.02	0.85	0.60	0.50	0.39	0.26	0.130	4.03	3.37	2.43	2.02	1.62	1.08	0.54
SG1S 20B * 1010		1.02	0.85	0.60	0.50	0.39	0.26	0.130	4.03	3.37	2.43	2.02	1.62	1.08	0.54
SG1S 21B — 1008N		1.13	0.94	0.67	0.55	0.44	0.29	0.144	4.32	3.62	2.61	2.17	1.74	1.16	0.58
SG1S 22B — 1008N		1.24	1.03	0.73	0.61	0.48	0.32	0.158	4.60	3.88	2.79	2.33	1.86	1.24	0.62
SG1S 23B — 1008N	0.04 0.09	1.35	1.14	0.81	0.67	0.53	0.35	0.174	4.89	4.14	2.98	2.48	1.98	1.32	0.66
SG1S 24B — 1008N		1.48	1.24	0.88	0.73	0.58	0.38	0.190	5.18	4.38	3.16	2.64	2.11	1.40	0.70
SG1S 25B — 1008		1.60	1.34	0.96	0.79	0.63	0.41	0.20	5.46	4.63	3.35	2.79	2.23	1.49	0.74
SG1S 26B — 1008N		1.73	1.45	1.04	0.86	0.68	0.45	0.22	5.75	4.87	3.54	2.95	2.36	1.57	0.78
SG1S 27B — 1008N	0.04 ~ 0.08	1.87	1.57	1.13	0.93	0.74	0.49	0.24	6.04	5.12	3.73	3.11	2.49	1.66	0.83
SG1S 28B — 1008N		2.01	1.69	1.22	1.01	0.80	0.52	0.26	6.33	5.37	3.93	3.27	2.62	1.74	0.87
SG1S 29B — 1008N		2.19	1.83	1.31	1.09	0.86	0.57	0.282	6.71	5.64	4.11	3.41	2.74	1.82	0.91
SG1S 30B — 1010		2.31	1.94	1.41	1.16	0.92	0.61	0.30	6.89	5.85	4.31	3.59	2.87	1.91	0.95
SG1S 30B — 1010N		2.31	1.94	1.41	1.16	0.92	0.61	0.30	6.89	5.85	4.31	3.59	2.87	1.91	0.95
SG1S 32B — 1010N		2.62	2.21	1.61	1.33	1.05	0.69	0.34	7.46	6.34	4.70	3.92	3.13	2.09	1.04
SG1S 34B — 1010N		2.96	2.49	1.82	1.51	1.20	0.79	0.38	8.05	6.83	5.07	4.25	3.40	2.26	1.13
SG1S 35B — 1010		3.14	2.64	1.93	1.60	1.27	0.83	0.41	8.34	7.07	5.25	4.41	3.53	2.35	1.17
SG1S 35B — 1010N		3.14	2.64	1.93	1.60	1.27	0.83	0.41	8.34	7.07	5.25	4.41	3.53	2.35	1.17
SG1S 36B — 1010		3.33	2.79	2.04	1.70	1.35	0.89	0.43	8.63	7.32	5.44	4.58	3.66	2.44	1.22
SG1S 36B — 1010N		3.33	2.79	2.04	1.70	1.35	0.89	0.43	8.63	7.32	5.44	4.58	3.66	2.44	1.22
SG1S 38B — 1010N		3.71	3.11	2.27	1.91	1.51	0.99	0.49	9.21	7.80	5.81	4.93	3.93	2.62	1.31
SG1S 40B — 1010N		4.12	3.45	2.53	2.12	1.69	1.11	0.54	9.80	8.30	6.18	5.23	4.20	2.88	1.40
SG1S 42B — 1010N		4.54	3.81	2.79	2.34	1.87	1.23	0.60	10.37	8.79	6.54	5.54	4.47	2.98	1.49
SG1S 44B — 1010		4.98	4.18	3.06	2.57	2.06	1.35	0.66	10.94	9.28	6.90	5.85	4.73	3.16	1.58
SG1S 44B — 1010N		4.98	4.18	3.06	2.57	2.06	1.35	0.66	10.94	9.28	6.90	5.85	4.73	3.16	1.58
SG1S 45B — 1010N		5.21	4.38	3.20	2.69	2.16	1.42	0.69	11.23	9.53	7.08	6.01	4.87	3.25	1.62
SG1S 45B — 1012		5.21	4.38	3.20	2.69	2.16	1.42	0.69	11.23	9.53	7.08	6.01	4.87	3.25	1.62
SG1S 48B — 1010N		5.93	4.98	3.64	3.06	2.47	1.62	0.70	12.08	10.26	7.62	6.47	5.27	3.52	1.76
SG1S 48B — 1012		5.93	4.98	3.64	3.06	2.47	1.62	0.70	12.08	10.26	7.62	6.47	5.27	3.52	1.76

베벨기어

SG치면 연마 평기어 (SCM435, 440) 모듈 1

물 1 (보통이)

단위:mm


정밀도	재질	압력각	열처리	치면경도	백래시①	
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조	

- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SG1S 50B — 1012	50	φ 50	φ 52			φ12	φ 35			0.21
SG1S 50B — 1015	50	φ 50	φ 52			φ 15	φ 35			0.20
SG1S 52B — 1012	52	φ 52	φ 54			φ12	φ 35			0.23
SG1S 54B — 1012	54	φ 54	φ 56			φ12	φ 35			0.24
SG1S 55B — 1012N	55	φ 55	φ 57			φ12	φ 35			0.24
SG1S 56B — 1012	56	φ 56	φ 58			φ12	φ 35			0.25
SG1S 60B — 1012	60	φ 60	φ 62			φ12	φ40			0.30
SG1S 60B — 1015	60	φ 60	φ 62			φ 15	φ40			0.29
SG1S 60B — 1018	60	φ 60	φ 62			φ18	φ40			0.28
SG1S 64B — 1012N	64	φ 64	φ 66	B1	10	φ12	φ40	10	20	0.33
SG1S 70B — 1012	70	φ 70	φ 72	וט	10	φ12	φ40	10	20	0.38
SG1S 75B — 1012N	75	φ 75	φ 77			φ12	φ40			0.43
SG1S 80B — 1012	80	φ 80	φ 82			φ12	φ 45			0.50
SG1S 80B — 1020	80	φ 80	φ 82			<i>φ</i> 20	φ 45			0.47
SG1S 80B — 1015N	80	φ 80	φ 82			φ 15	φ50			0.52
SG1S 90B — 1015	90	φ 90	φ 92			φ15	φ50			0.62
SG1S 100B — 1015N	100	φ100	φ102			φ 15	φ 50			0.74
SG1S 100B — 1020	100	φ100	φ102			φ 20	φ 50			0.72
SG1S 108B — 1015	108	φ108	φ110			φ 15	φ 50			0.84
SG1S 120B — 1015	120	φ120	φ122			φ 15	φ 50			1.01

목 차

인포메 이션

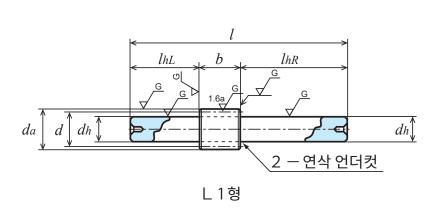
호	전속도별	전속도별 허용전달동력표 휨강도 (단위: kW) 회전속도별 허용전달동력표 치면강도 (단위: kW)								W)	백래시					
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호	
1.85	3.70	5.53	6.78	7.98	10.75	12.64	0.86	1.76	2.68	3.32	3.94	5.41	6.43		SG1S 50B — 1012	
1.85	3.70	5.53	6.78	7.98	10.75	12.64	0.86	1.76	2.68	3.32	3.94	5.41	6.43		SG1S 50B — 1015	
1.94	3.88	5.78	7.09	8.34	11.23	13.18	0.94	1.91	2.90	3.59	4.26	5.85	6.94		SG1S 52B — 1012	
2.03	4.06	6.04	7.39	8.70	11.71	13.71	1.01	2.07	3.13	3.87	4.60	6.31	7.46		SG1S 54B — 1012	
2.08	4.16	6.16	7.54	8.88	11.95	13.97	1.05	2.15	3.24	4.01	4.77	6.54	7.73		SG1S 55B — 1012N	
2.12	4.25	6.29	7.70	9.06	12.19	14.23	1.09	2.23	3.36	4.16	4.95	6.78	8.00		SG1S 56B — 1012	
2.31	4.62	6.79	8.30	9.79	13.14	15.24	1.26	2.58	3.86	4.77	5.69	7.78	9.12		ı	SG1S 60B — 1012
2.31	4.62	6.79	8.30	9.79	13.14	15.24	1.26	2.58	3.86	4.77	5.69	7.78	9.12		SG1S 60B — 1015	
2.31	4.62	6.79	8.30	9.79	13.14	15.24	1.26	2.58	3.86	4.77	5.69	7.78	9.12		SG1S 60B — 1018	
2.49	4.99	7.29	8.90	10.51	14.04	16.24	1.44	2.95	4.39	5.43	6.47	8.82	10.31		SG1S 64B — 1012N	
2.77	5.54	8.03	9.82	11.58	15.34	17.69	1.73	3.56	5.26	6.50	7.75	10.47	12.20	0.04 ~ 0.08	SG1S 70B — 1012	
3.00	5.99	8.64	10.58	12.47	16.39	18.86	2.00	4.09	6.03	7.47	8.90	11.93	13.88		SG1S 75B — 1012N	
3.24	6.42	9.25	11.33	13.34	17.42	20.08	2.29	4.66	6.85	8.51	10.12	13.48	15.70		SG1S 80B — 1012	
3.24	6.42	9.25	11.33	13.34	17.42	20.08	2.29	4.66	6.85	8.51	10.12	13.48	15.70		SG1S 80B — 1020	
3.24	6.42	9.25	11.33	13.34	17.42	20.08	2.29	4.66	6.85	8.51	10.12	13.48	15.70		SG1S 80B — 1015N	
3.70	7.26	10.47	12.80	14.98	19.37	22.47	2.92	5.90	8.69	10.77	12.74	16.80	19.69		SG1S 90B — 1015	
4.17	8.10	11.68	14.25	16.53	21.40	24.80	3.64	7.29	10.74	13.28	15.57	20.56	24.07		SG1S 100B — 1015N	
4.17	8.10	11.68	14.25	16.53	21.40	24.80	3.64	7.29	10.74	13.28	15.57	20.56	24.07		SG1S 100B — 1020	
4.55	8.76	12.64	15.34	17.73	23.01	26.60	4.27	8.50	12.53	15.42	18.01	23.84	27.84		SG1S 108B — 1015	
5.12	9.74	14.05	16.89	19.46	25.34	28.97	5.32	10.48	15.47	18.85	21.95	29.13	33.64		SG1S 120B — 1015	

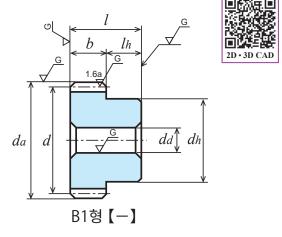
마 이 터 기 어

베 벨 기 어

베벨기어

마이터기어





정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SG1.5S 14L — 1512	14	φ 21	φ 24	L1		-	φ12(h7)	L25 R60	100	0.12
SG1.5S 14B — 1510N	14	φ 21	φ 24			φ 10	φ17	14	29	0.05
SG1.5S 15B — 1510N	15	φ 22.5	φ 25.5			φ 10	φ18	14	29	0.06
SG1.5S 16B — 1510N	16	φ 24	φ 27			φ 10	φ 20	14	29	0.07
SG1.5S 17B — 1510N	17	φ 25.5	φ 28.5			φ 10	φ 21	14	29	0.08
SG1.5S 18B — 1510N	18	φ 27	φ 30			φ 10	φ 22	14	29	0.09
SG1.5S 19B — 1510N	19	φ 28.5	φ 31.5			φ 10	φ 23	14	29	0.10
SG1.5S 20B — 1510N	20	φ 30	φ 33			φ 10	φ24	14	29	0.12
SG1.5S 21B — 1510N	21	φ 31.5	φ 34.5			φ 10	φ 25	14	29	0.13
SG1.5S 22B — 1512N	22	φ 33	φ 36			φ 12	φ 26	14	29	0.13
SG1.5S 23B — 1512N	23	φ 34.5	φ 37.5			φ12	φ 27	14	29	0.15
SG1.5S 24B — 1515	24	φ 36	φ 39			φ 15	ø 30	15	30	0.16
SG1.5S 24B — 1512N	24	φ 36	φ 39	B1	15	φ12	<i>ф</i> 28	14	29	0.16
SG1.5S 25B — 1512N	25	φ 37.5	φ 40.5	БІ		φ12	ø 30	14	29	0.18
SG1.5S 26B — 1512N	26	φ 39	φ 42			φ 12	φ32	14	29	0.20
SG1.5S 27B — 1515N	27	φ 40.5	φ 43.5			φ 15	φ34	14	29	0.21
SG1.5S 28B — 1515N	28	φ 42	φ 45			φ 15	φ36	14	29	0.23
SG1.5S 29B — 1515N	29	φ 43.5	φ 46.5			φ 15	φ37	14	29	0.25
SG1.5S 30B — 1515	30	φ 45	φ 48			φ 15	ø 35	15	30	0.26
SG1.5S 30B — 1515N	30	φ 45	φ 48			ø 15	ø 38	14	29	0.27
SG1.5S 32B — 1515N	32	φ 48	φ 51			ø 15	<i>ϕ</i> 40	14	29	0.31
SG1.5S 34B — 1515N	34	φ 51	φ 54			φ 15	φ42	14	29	0.35
SG1.5S 35B — 1515N	35	φ 52.5	φ 55.5			φ 15	φ42	14	29	0.37
SG1.5S 36B — 1515N	36	φ 54	φ 57			φ 15	φ 45	14	29	0.40
SG1.5S 38B — 1515N	38	φ 57	φ 60			φ 15	ø 45	14	29	0.44

호	전속도별	허용전딜	동력표	휨강도	(단위: k\	V)	회	전속도별	허용전달등	동력표 기	니면강 5	E (단위: k	W)	백래시	NT 214
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호
1.03	2.07	3.11	3.89	4.67	6.49	7.73	0.21	0.43	0.66	0.83	1.00	1.41	1.69		SG1.5S 14L — 1512
1.03	2.07	3.11	3.89	4.67	6.49	7.73	0.21	0.43	0.66	0.83	1.00	1.41	1.69		SG1.5S 14B — 1510N
1.16	2.32	3.49	4.36	5.23	7.27	8.61	0.24	0.50	0.76	0.96	1.16	1.63	1.95		SG1.5S 15B — 1510N
1.29	2.58	3.87	4.84	5.81	8.04	9.50	0.28	0.57	0.87	1.09	1.32	1.86	2.20		SG1.5S 16B — 1510N
1.42	2.84	4.26	5.33	6.39	8.81	10.40	0.32	0.65	0.99	1.24	1.50	2.10	2.50		SG1.5S 17B — 1510N
1.55	3.11	4.66	5.82	6.99	9.58	11.30	0.36	0.74	1.12	1.41	1.70	2.36	2.81		SG1.5S 18B — 1510N
1.68	3.38	5.06	6.33	7.59	10.36	12.21	0.40	0.83	1.25	1.58	1.90	2.63	3.13		SG1.5S 19B — 1510N
1.82	3.65	5.47	6.84	8.20	11.14	13.11	0.45	0.92	1.39	1.75	2.12	2.92	3.47		SG1.5S 20B — 1510N
1.96	3.92	5.88	7.35	8.80	11.91	14.02	0.50	1.01	1.54	1.94	2.18	3.22	3.82		SG1.5S 21B — 1510N
2.10	4.20	6.29	7.87	9.41	12.69	14.94	0.55	1.11	1.69	2.14	2.57	3.53	4.19		SG1.5S 22B — 1512N
2.24	4.47	6.71	8.39	10.00	13.47	15.87	0.60	1.22	1.86	2.35	2.62	3.85	4.59		SG1.5S 23B — 1512N
2.38	4.75	7.13	8.91	10.59	14.25	16.80	0.66	1.34	2.03	2.56	3.07	4.19	5.00		SG1.5S 24B — 1515
2.38	4.75	7.13	8.91	10.59	14.25	16.80	0.66	1.34	2.03	2.56	3.07	4.19	5.00	0.06 ~ 0.12	SG1.5S 24B — 1512N
2.52	5.04	7.55	9.44	11.18	15.02	17.74	0.72	1.45	2.21	2.79	3.33	4.55	5.42		SG1.5S 25B — 1512N
2.66	5.32	7.98	9.96	11.77	15.81	18.67	0.78	1.58	2.40	3.02	3.60	4.92	5.87		SG1.5S 26B — 1512N
2.80	5.61	8.41	10.46	12.36	16.61	19.61	0.84	1.71	2.60	3.26	3.88	5.31	6.33		SG1.5S 27B — 1515N
2.95	5.90	8.84	10.97	12.96	17.41	20.54	0.90	1.84	2.80	3.51	4.18	5.71	6.81		SG1.5S 28B — 1515N
3.09	6.18	9.27	11.47	13.54	18.20	21.46	0.97	1.98	3.01	3.77	4.49	6.13	7.31		SG1.5S 29B — 1515N
3.24	6.47	9.71	11.98	14.13	19.00	22.39	1.04	2.12	3.23	4.03	4.80	6.57	7.82		SG1.5S 30B — 1515
3.24	6.47	9.71	11.98	14.13	19.00	22.39	1.04	2.12	3.23	4.03	4.80	6.57	7.82		SG1.5S 30B — 1515N
3.53	7.06	10.59	12.99	15.30	20.59	24.24	1.19	2.43	3.70	4.59	5.45	7.47	8.89		SG1.5S 32B — 1515N
3.83	7.65	11.42	13.99	16.47	22.18	26.08	1.35	2.75	4.18	5.18	6.15	8.44	10.03		SG1.5S 34B — 1515N
3.97	7.95	11.83	14.49	17.05	22.97	26.94	1.43	2.93	4.43	5.49	6.52	8.94	10.60		SG1.5S 35B — 1515N
4.12	8.25	12.25	15.00	17.64	23.76	27.81	1.52	3.10	4.69	5.80	6.90	9.46	11.19		SG1.5S 36B — 1515N
4.42	8.85	13.08	15.99	18.84	25.33	29.51	1.70	3.47	5.23	6.46	7.69	10.54	12.41		SG1.5S 38B — 1515N

SG치면 연마 평기어 (SCM435, 440) 모듈 1.5

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

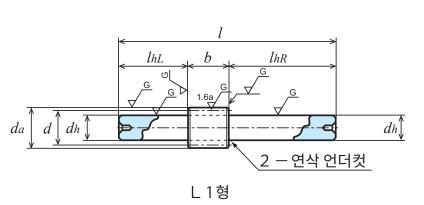
- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

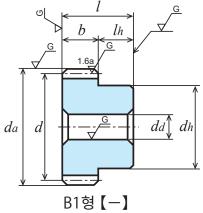
(기송 등 등 , 등 세절, 안 정의 낮 돌 상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
88712	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SG1.5S 40B — 1515	40	φ 60	φ 63			φ15	φ40	15	30	0.44
SG1.5S 40B — 1515N	40	φ 60	φ 63			φ 15	φ 50	14	29	0.51
SG1.5S 42B — 1515N	42	φ 63	φ 66			φ15	φ 50	14	29	0.54
SG1.5S 44B — 1515N	44	φ 66	φ 69			φ 15	φ 50	14	29	0.58
SG1.5S 45B — 1518N	45	φ 67.5	φ 70.5			φ18	φ 50	14	29	0.58
SG1.5S 48B — 1518N	48	φ 72	φ 75			φ18	φ 50	14	29	0.64
SG1.5S 50B — 1520	50	φ 75	φ 78			φ 20	φ 50	15	30	0.67
SG1.5S 50B — 1518N	50	φ 75	φ 78			φ18	φ 60	14	29	0.77
SG1.5S 55B — 1518N	55	φ 82.5	φ 85.5			φ 18	φ 60	14	29	0.88
SG1.5S 56B — 1518N	56	φ 84	φ 87			φ 18	φ 60	14	29	0.91
SG1.5S 60B — 1520N	60	φ 90	φ 93	B1	15	φ 20	φ 60	14	29	0.99
SG1.5S 64B — 1520N	64	φ 96	φ 99			φ 20	φ 60	14	29	1.09
SG1.5S 70B — 1520	70	φ105	φ108			φ 20	φ 60	15	30	1.27
SG1.5S 70B — 1520N	70	φ105	φ108			φ 20	φ60	14	29	1.26
SG1.5S 72B — 1520	72	φ108	φ111			φ 20	φ 60	15	30	1.33
SG1.5S 75B — 1520N	75	φ112.5	φ115.5			φ 20	φ60	14	29	1.41
SG1.5S 80B — 1520	80	φ120	φ123			φ 20	φ 60	15	30	1.58
SG1.5S 80B — 1520N	80	φ120	φ123			φ 20	φ 70	14	29	1.68
SG1.5S 90B — 1520N	90	φ135	φ138			φ 20	φ 70	14	29	2.04
SG1.5S 100B — 1520N	100	φ150	φ153			φ 20	φ 70	14	29	2.43
SG1.5S 120B — 1525	120	φ180	φ183			φ25	φ70	15	30	3.31

인포메 이션

호	전속도별	허용전달	동력표	휨강도	(단위: kV	V)	회	전속도별	허용전달등	동력표 기	치면강도	E (단위: k	W)	백래시	UT -14
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호
4.72	9.45	13.90	16.98	20.03	26.90	31.19	1.89	3.87	5.79	7.16	8.53	11.67	13.69		SG1.5S 40B — 1515
4.72	9.45	13.90	16.98	20.03	26.90	31.19	1.89	3.87	5.79	7.16	8.53	11.67	13.69		SG1.5S 40B — 1515N
5.03	10.05	14.72	17.97	21.22	28.40	32.85	2.09	4.28	6.39	7.89	9.41	12.83	15.01		SG1.5S 42B — 1515N
5.33	10.66	15.55	18.99	22.42	29.83	34.46	2.30	4.72	7.02	8.67	10.34	14.03	16.38		SG1.5S 44B — 1515N
5.48	10.96	15.94	19.47	22.98	30.55	35.27	2.41	4.94	7.33	9.06	10.81	14.65	17.10		SG1.5S 45B — 1518N
5.94	11.87	17.16	20.98	24.74	32.67	37.64	2.76	5.66	8.34	10.32	12.30	16.56	19.29		SG1.5S 48B — 1518N
6.24	12.44	17.96	21.99	25.91	34.07	39.20	3.00	6.14	9.04	11.21	13.34	17.90	20.82		SG1.5S 50B — 1520
6.24	12.44	17.96	21.99	25.91	34.07	39.20	3.00	6.14	9.04	11.21	13.34	17.90	20.82		SG1.5S 50B — 1518N
7.01	13.87	19.98	24.48	28.79	37.47	43.26	3.66	7.44	10.94	13.57	16.14	21.42	25.00		SG1.5S 55B — 1518N
7.17	14.15	20.39	24.97	29.36	38.14	44.07	3.80	7.71	11.35	14.07	16.72	22.15	25.88		SG1.5S 56B — 1518N
7.79	15.29	22.03	26.94	31.52	40.76	47.28	4.39	8.86	13.04	16.15	19.11	25.19	29.54	0.06 ~ 0.12	SG1.5S 60B — 1520N
8.41	16.41	23.65	28.88	33.62	43.48	50.43	5.02	10.08	14.85	18.37	21.61	28.51	33.41		SG1.5S 64B — 1520N
9.35	18.07	26.06	31.71	36.68	47.56	55.02	6.05	12.05	17.77	21.91	25.62	33.87	39.60		SG1.5S 70B — 1520
9.35	18.07	26.06	31.71	36.68	47.56	55.02	6.05	12.05	17.77	21.91	25.62	33.87	39.60		SG1.5S 70B — 1520N
9.67	18.62	26.86	32.60	37.68	48.90	56.52	6.41	12.75	18.80	23.12	27.02	35.75	41.76		SG1.5S 72B — 1520
10.14	19.44	28.05	33.92	39.16	50.88	58.74	6.98	13.82	20.40	25.00	29.18	38.65	45.08		SG1.5S 75B — 1520N
10.93	20.80	30.01	36.08	41.57	54.12	61.89	7.99	15.72	23.20	28.27	32.93	43.70	50.47		SG1.5S 80B — 1520
10.93	20.80	30.01	36.08	41.57	54.12	61.89	7.99	15.72	23.20	28.27	32.93	43.70	50.47		SG1.5S 80B — 1520N
12.49	23.55	33.71	40.22	46.39	60.33	67.34	10.21	19.93	29.21	35.32	41.18	54.56	61.49		SG1.5S 90B — 1520N
14.03	26.28	37.20	44.20	51.28	65.34	72.38	12.68	24.63	35.71	43.00	50.42	65.43	73.16		SG1.5S 100B — 1520N
16.94	31.61	43.79	52.40	60.57	73.96	-	18.29	35.47	50.34	61.03	71.27	88.54	-		SG1.5S 120B — 1525

베 벨 기 어




단위:mm

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SG2S 14B — 2012N	14	φ 28	φ 32	B1		φ 12	φ 22	16	36	0.11
SG2S 15B — 2012	15	φ 30	φ 34	B1		<i>φ</i> 12	φ 22	20	40	0.13
SG2S 15B — 2012N	15	φ 30	φ 34	B1		φ 12	<i>φ</i> 24	16	36	0.14
SG2S 16L — 2015	16	φ 32	φ 36	L1		-	φ15 (h7)	L25 R60	105	0.24
SG2S 16B — 2012N	16	φ 32	φ 36			<i>φ</i> 12	ø 26	16	36	0.16
SG2S 17B — 2012N	17	φ 34	φ 38			<i>φ</i> 12	\$ 28	16	36	0.19
SG2S 18B — 2012N	18	φ 36	φ 40			φ 12	\$ 30	16	36	0.22
SG2S 19B — 2012N	19	φ 38	φ 42			<i>φ</i> 12	φ 31	16	36	0.24
SG2S 20B — 2015N	20	φ 40	φ 44			φ 15	φ32	16	36	0.25
SG2S 21B — 2015N	21	φ 42	φ 46			φ 15	φ34	16	36	0.28
SG2S 22B — 2015N	22	φ 44	φ 48			φ 15	φ36	16	36	0.32
SG2S 23B — 2015N	23	φ 46	φ 50			φ 15	φ 37	16	36	0.35
SG2S 24B — 2015N	24	φ 48	φ 52			φ15	φ38	16	36	0.38
SG2S 25B — 2015N	25	φ 50	φ 54			φ15	φ40	16	36	0.42
SG2S 26B — 2015N	26	φ 52	φ 56			φ15	φ42	16	36	0.46
SG2S 27B — 2015N	27	φ 54	φ 58			φ15	φ44	16	36	0.50
SG2S 28B — 2015N	28	φ 56	φ 60			φ15	φ45	16	36	0.54
SG2S 29B — 2015N	29	φ 58	φ 62			φ15	φ48	16	36	0.59
SG2S 30B — 2018N	30	φ 60	φ 64			φ18	φ50	16	36	0.62
SG2S 32B — 2020	32	φ 64	φ 68			φ20	φ50	20	40	0.71
SG2S 32B — 2018N	32	φ 64	φ 68			φ18	φ50	16	36	0.68
SG2S 34B — 2018N SG2S 35B — 2018N	34 35	φ 68 φ 70	φ 72 φ 74			φ18	φ50	16 16	36 36	0.74 0.78
SG2S 36B — 2018N	36	ϕ 70 ϕ 72	ϕ 74 ϕ 76		20	φ18 φ18	φ50 φ50	16	36	0.78
SG2S 38B — 2018N	38	φ 72 φ 76	φ 70 φ 80			φ18 φ18	φ50 φ50	16	36	0.81
SG2S 40B — 2020	40	φ 70 φ 80	φ 84	B1		φ10 φ20	φ50 φ60	20	40	1.13
SG2S 40B — 2020N	40	φ 80 φ 80	φ 84			φ20 φ20	φ60 φ60	16	36	1.06
SG2S 42B — 2020N	42	φ 84	φ 88			φ20 φ20	φ60 φ60	16	36	1.14
SG2S 44B — 2020N	44	φ 88	φ 92			φ20 φ20	φ60	16	36	1.22
SG2S 45B — 2020N	45	φ 90	φ 94			φ20	φ60	16	36	1.27
SG2S 48B — 2020N	48	φ 96	φ100			φ20	φ60	16	36	1.40
SG2S 50B — 2020	50	φ100	φ104			φ20	φ60	20	40	1.57
SG2S 50B — 2025N	50	φ100	φ104			φ25	φ60	16	36	1.45
SG2S 55B — 2025N	55	φ110	φ114			φ25	φ60	16	36	1.71
SG2S 56B — 2025N	56	φ112	φ116			φ25	φ60	16	36	1.76
SG2S 60B — 2025	60	φ120	φ124			φ 25	φ70	20	40	2.21
SG2S 60B — 2025N	60	φ120	φ124			φ 25	φ65	16	36	2.05
SG2S 64B — 2025N	64	φ128	φ132			φ 25	φ65	16	36	2.30
SG2S 70B — 2025N	70	φ140	φ144			φ 25	φ70	16	36	2.76
SG2S 72B — 2025N	72	φ144	φ148			φ 25	<i>φ</i> 70	16	36	2.90
SG2S 75B — 2025N	75	φ150	φ154			φ 25	φ70	16	36	3.12
SG2S 80B — 2025	80	φ160	φ164			\$\phi 25	ø 80	20	40	3.77
SG2S 80B — 2025N	80	φ160	φ164			ø 25	ø 80	16	36	3.65
SG2S 90B — 2025	90	φ180	φ184			φ 25	ø 80	20	40	4.60
SG2S 90B — 2025N	90	φ180	φ184			φ 25	ø 80	16	36	4.49
SG2S 100B — 2025N	100	<i>φ</i> 200	<i>φ</i> 204			φ 25	\$ 80	16	36	5.42

호	전속도별	허용전달	동력표	휨강도	(단위: kV	V)	회	전속도별	허용전달	동력표 기	치면강도	드 (단위: k	W)	백래시	11 T -1 +
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호
2.46	4.92	7.39	9.23	11.08	15.13	17.84	0.52	1.06	1.60	2.02	2.44	3.39	4.03		SG2S 14B — 2012N
2.76	5.52	8.28	10.35	12.42	16.85	19.84	0.60	1.22	1.85	2.33	2.82	3.89	4.62		SG2S 15B — 2012
2.76	5.52	8.28	10.35	12.42	16.85	19.84	0.60	1.22	1.85	2.33	2.82	3.89	4.62		SG2S 15B — 2012N
3.06	6.12	9.19	11.48	13.77	18.58	21.86	0.69	1.39	2.12	2.67	3.23	4.42	5.25		SG2S 16L — 2015
3.06	6.12	9.19	11.48	13.77	18.58	21.86	0.69	1.39	2.12	2.67	3.23	4.42	5.25		SG2S 16B — 2012N
3.37	6.74	10.11	12.63	15.08	20.32	23.94	0.78	1.58	2.40	3.08	3.65	4.99	5.94		SG2S 17B — 2012N
3.68	7.36	11.04	13.80	16.40	22.06	26.02	0.88	1.78	2.71	3.41	4.09	5.59	6.66		SG2S 18B — 2012N
4.00	8.00	12.00	14.97	17.74	23.85	28.14	0.98	1.99	3.03	3.81	4.56	6.23	7.43		SG2S 19B — 2012N
4.32	8.64	12.96	16.15	19.08	25.63	30.25	1.09	2.22	3.37	4.24	5.05	6.90	8.23		SG2S 20B — 2015N
4.64	9.29	13.93	17.29	20.41	27.43	32.36	1.21	2.45	3.73	4.68	5.57	7.62	9.08		SG2S 21B — 2015N
4.97	9.94	14.92	18.44	21.75	29.25	34.47	1.33	2.70	4.11	5.14	6.11	8.37	9.97		SG2S 22B — 2015N
5.30	10.61	15.91	19.59	23.09	31.06	36.59	1.45	2.96	4.51	5.62	6.68	9.15	10.89		SG2S 23B — 2015N
5.63	11.27	16.90	20.73	24.42	32.87	38.68	1.59	3.24	4.93	6.12	7.27	9.97	11.86		SG2S 24B — 2015N
5.97 6.31	11.94	17.84	21.88	25.76	34.68	40.79	1.73	3.52	5.36	6.64	7.89	10.82	12.86		SG2S 25B — 2015N
6.65	12.61 13.29	18.79 19.75	23.03	27.09	36.49 38.30	42.84 44.83	1.87	3.82 4.14	5.80 6.25	7.18	8.53 9.19	11.70 12.62	13.88 14.92		SG2S 26B — 2015N SG2S 27B — 2015N
6.99	13.29	20.70	25.32	29.82	40.11	44.83	2.03	4.14	6.73	8.32	9.19	13.57	16.00		SG2S 27B — 2015N SG2S 28B — 2015N
7.33	14.66	21.64	26.45	31.18	41.89	48.74	2.16	4.00	7.22	8.92	10.62	14.55	17.11		SG2S 29B — 2015N
7.67	15.35	22.59	27.59	32.55	43.69	50.68	2.52	5.15	7.72	9.55	11.37	15.56	18.25		SG2S 30B — 2018N
8.37	16.76	24.48	29.87	35.28	47.14	54.51	2.88	5.90	8.79	10.85	12.95	17.64	20.62		SG2S 32B — 2020
8.37	16.76	24.48	29.87	35.28	47.14	54.51	2.88	5.90	8.79	10.85	12.95	17.64	20.62		SG2S 32B — 2018N
9.07	18.14	26.36	32.21	38.01	50.49	58.27	3.27	6.69	9.92	12.27	14.63	19.81	23.11		SG2S 34B — 2018N
9.42	18.84	27.30	33.38	39.37	52.14	60.13	3.47	7.11	10.51	13.00	15.50	20.93	24.40		SG2S 35B — 2018N
9.77	19.54	28.24	34.54	40.73	53.78	61.97	3.68	7.54	11.12	13.76	16.40	22.08	25.72	0.08 ~ 0.16	SG2S 36B — 2018N
0.48	20.87	30.11	36.87	43.43	57.03	65.60	4.12	8.41	12.38	15.35	18.27	24.47	28.45		SG2S 38B — 2018N
1.20	22.20	31.97	39.19	46.12	60.23	69.43	4.58	9.32	13.71	17.01	20.24	26.95	31.41		SG2S 40B — 2020
1.20	22.20	31.97	39.19	46.12	60.23	69.43	4.58	9.32	13.71	17.01	20.24	26.95	31.41		SG2S 40B — 2020N
1.91	23.52	33.89	41.49	48.80	63.37	73.24	5.07	10.28	15.13	18.76	22.30	29.54	34.50		SG2S 42B — 2020N
2.62	24.82	35.77	43.76	51.30	66.42	76.96	5.58	11.29	16.62	20.59	24.40	32.22	37.73		SG2S 44B — 2020N
2.99	25.48	36.72	44.90	52.55	67.94	78.82	5.85	11.81	17.38	21.53	25.47	33.59	39.39		SG2S 45B — 2020N
4.07	27.44	39.56	48.31	56.23	72.72	84.34	6.69	13.44	19.80	24.49	28.82	38.01	44.55		SG2S 48B — 2020N
4.80	28.74	41.44	50.56	58.64	75.93	87.96	7.28	14.58	21.49	26.56	31.15	41.12	48.14		SG2S 50B — 2020
4.80	28.74	41.44	50.56	58.64	75.93	87.96	7.28	14.58	21.49	26.56	31.15	41.12	48.14		SG2S 50B — 2025N
6.63	31.97	46.10	55.87	64.54	83.80	96.81	8.88	17.63	26.01	31.93	37.30	49.37	57.63		SG2S 55B — 2025N
6.99	32.61	47.03	56.90	65.70	85.35	98.55	9.22	18.27	26.96	33.05	38.58	51.10	59.61		SG2S 56B — 2025N
8.46	35.16			70.25		104.57			30.93	37.69		58.26	67.29		SG2S 60B — 2025
8.46	35.16	50.71	60.97	70.25		104.57	10.65	20.95	30.93	37.69	43.91	58.26	67.29		SG2S 60B — 2025N
9.94	37.77	54.34	64.96	74.72		109.96	12.18	23.87	35.16	42.59	49.53	65.82	75.02		SG2S 64B — 2025N
2.17	41.66	59.39	70.76			117.59	14.69	28.59	41.75	50.41	58.89	77.64	87.09		SG2S 70B — 2025N
2.90	42.94	61.04	72.65		108.14		15.58	30.26	44.06	53.14	62.17	81.44	91.23		SG2S 72B — 2025N
3.95	44.86	63.49	75.44		111.53	123.54	16.91	32.84	47.61	57.34	67.23	87.25	97.54		SG2S 75B — 2025N
25.68	48.04	67.49	80.31		116.96	-	19.26	37.38	53.80	64.88	76.04	97.20	-		SG2S 80B — 2025
25.68	48.04	67.49	80.31		116.96	-	19.26	37.38	53.80	64.88	76.04	97.20	-		SG2S 80B — 2025N
29.06	54.23	75.12	89.89	103.90		-	24.39	47.29	67.12	81.37		118.05	-		SG2S 90B — 2025
29.06 32.41	54.23	75.12 82.79	89.89 99.19	103.90	126.88	-	24.39 30.11	47.29 58.13	67.12 81.94	81.37 99.45	95.03 114.85	118.05	-		SG2S 90B — 2025N SG2S 100B — 2025N

SG치면 연마 평기어 (SCM435, 440) 모듈 2.5

2.5 (보통이

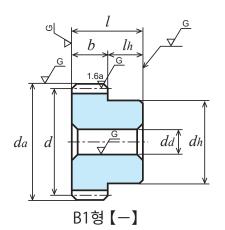
정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

() 동 등 등 , 동 세 절 , 안 정의 및 물 등 상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SG2.5S 14B — 2515N	14	φ 35	φ 40			φ 15	φ28			0.22
SG2.5S 15B — 2515N	15	φ 37.5	φ 42.5			φ 15	φ 30			0.26
SG2.5S 16B — 2515N	16	φ 40	φ 45			φ 15	φ32			0.30
SG2.5S 18B — 2515N	18	φ 45	φ 50			φ 15	φ38			0.41
SG2.5S 20B — 2518N	20	φ 50	φ 55			ø 18	φ40			0.48
SG2.5S 24B — 2518N	24	φ 60	φ 65			φ 18	φ48			0.72
SG2.5S 25B — 2520N	25	φ 62.5	φ 67.5			φ 20	φ 50			0.77
SG2.5S 28B — 2520N	28	φ 70	φ 75			φ 20	φ 60			1.05
SG2.5S 30B — 2520N	30	φ 75	φ 80			\$ 20	φ 65			1.23
SG2.5S 32B — 2520N	32	φ 80	φ 85			φ 20	φ 70			1.42
SG2.5S 35B — 2520N	35	φ 87.5	φ 92.5			φ 20	φ 70			1.62
SG2.5S 36B — 2520N	36	φ 90	φ 95	B1	25	φ 20	φ 70	18	43	1.69
SG2.5S 40B — 2525N	40	φ100	φ105	DI	23	φ 25	φ 70	10	73	1.92
SG2.5S 45B — 2525N	45	φ112.5	φ 117.5			φ 25	φ 75			2.41
SG2.5S 48B — 2525N	48	φ120	φ125			φ 25	φ 75			2.68
SG2.5S 50B — 2525N	50	φ125	φ130			ø 25	φ 80			2.95
SG2.5S 55B — 2525N	55	φ137.5	φ142.5			φ 25	φ 80			3.46
SG2.5S 56B — 2525N	56	φ140	φ145			ø 25	φ 80			3.57
SG2.5S 60B — 2525N	60	φ150	φ155			ø 25	ø 80			4.01
SG2.5S 64B — 2525N	64	φ160	φ165			ø 25	ø 80			4.49
SG2.5S 70B — 2525N	70	φ175	φ180			ø 25	ø 80			5.26
SG2.5S 72B — 2525N	72	φ180	φ185			φ 25	φ 85			5.63
SG2.5S 75B — 2525N	75	φ187.5	φ192.5			ø 25	φ 90			6.15
SG2.5S 80B — 2525N	80	φ200	φ205			φ 25	φ90			6.90

사표 기술	백래시	W)	- (단위: k	디면강도	등력표 기	허용전달등	전속도별	회	V)	(단위: kV	휨강도	동력표	허용전달	전속도별	호
상품 기호 -	(단위: mm)	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm
SG2.5S 14B — 2515N		7.87	6.61	4.83	4.02	3.19	2.10	1.03	34.08	28.91	21.48	18.03	14.42	9.62	4.81
SG2.5S 15B — 2515N		9.04	7.58	5.55	4.65	3.68	2.42	1.19	37.95	32.14	23.93	20.21	16.17	10.78	5.39
SG2.5S 16B — 2515N		10.29	8.63	6.32	5.30	4.21	2.77	1.36	41.86	35.46	26.40	22.35	17.94	11.96	5.98
SG2.5S 18B — 2515N		13.03	10.94	7.99	6.72	5.39	3.54	1.74	49.72	42.19	31.38	26.60	21.57	14.38	7.19
SG2.5S 20B — 2518N		16.07	13.52	9.86	8.30	6.69	4.41	2.16	57.68	49.04	36.42	30.94	25.23	16.88	8.44
SG2.5S 24B — 2518N		22.81	19.45	14.22	11.93	9.66	6.44	3.15	72.67	62.66	46.67	39.57	32.39	22.01	11.00
SG2.5S 25B — 2520N		24.64	21.07	15.43	12.94	10.48	7.02	3.43	76.34	65.97	49.27	41.73	34.18	23.32	11.66
SG2.5S 28B — 2520N		30.51	26.16	19.37	16.26	13.14	8.89	4.34	87.13	75.55	57.05	48.36	39.56	27.30	13.65
SG2.5S 30B — 2520N		34.70	29.83	22.24	18.68	15.07	10.23	5.00	94.10	81.77	62.19	52.78	43.11	29.87	14.99
SG2.5S 32B — 2520N		39.26	33.69	25.30	21.26	17.13	11.65	5.72	101.35	87.92	67.33	57.20	46.67	32.40	16.34
SG2.5S 35B — 2520N		46.65	39.85	30.17	25.44	20.53	13.95	6.89	112.26	96.92	74.84	63.81	52.15	36.19	18.40
SG2.5S 36B — 2520N	0.1 ~ 0.2	49.24	41.99	31.84	26.92	21.73	14.76	7.31	115.86	99.87	77.24	66.00	53.97	37.45	19.09
SG2.5S 40B — 2525N	0.1 ~ 0.2	60.18	51.40	38.93	33.20	26.86	18.22	9.10	129.97	112.19	86.65	74.71	61.23	42.47	21.87
SG2.5S 45B — 2525N		75.14	64.42	48.64	41.67	34.00	23.04	11.63	146.94	127.28	97.96	84.85	70.16	48.64	25.36
SG2.5S 48B — 2525N		84.11	72.83	54.88	47.12	38.67	26.19	13.31	155.65	136.13	104.57	90.76	75.48	52.33	27.48
SG2.5S 50B — 2525N		90.11	78.68	59.22	50.91	41.94	28.44	14.49	160.97	141.94	108.89	94.63	79.00	54.85	28.90
SG2.5S 55B — 2525N		105.66	94.11	71.11	60.92	50.42	34.47	17.69	173.61	156.12	120.17	104.08	87.29	61.12	32.47
SG2.5S 56B — 2525N		108.86	97.04	73.62	63.02	52.18	35.74	18.36	176.03	158.43	122.43	105.93	88.91	62.36	33.19
SG2.5S 60B — 2525N		121.93	109.06	84.04	71.67	59.51	41.06	21.14	185.40	167.37	131.34	113.22	95.27	67.32	35.94
SG2.5S 64B — 2525N		-	121.50	95.05	81.09	67.25	46.72	24.07	-	175.88	140.07	120.77	101.49	72.24	38.61
SG2.5S 70B — 2525N		-	140.91	112.64	96.37	79.59	55.88	28.82	-	187.90	152.83	132.11	110.56	79.53	42.59
SG2.5S 72B — 2525N		-	147.57	118.78	101.71	83.90	59.11	30.49	-	191.72	157.00	135.82	113.52	81.94	43.91
SG2.5S 75B — 2525N		-	157.71	128.25	109.96	90.53	64.11	33.09	-	197.29	163.16	141.33	117.88	85.53	45.87
SG2.5S 80B — 2525N		-	-	143.57	124.31	102.43	72.66	37.64	-	-	171.91	150.35	125.49	91.20	49.13

SG치면 연마 ^{평기어 (SCM435, 440)} _{모듈 3} (보통


정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N5급	SCM435, 440	20도	치부 고주파	HRC49~55	표 참조

- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

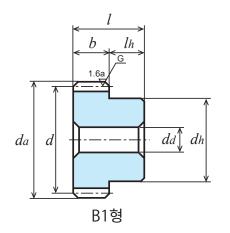
<u> </u>	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
상품 기호	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SG3S 14B — 3016N	14	φ 42	φ 48			ø 16	φ 34			0.39
SG3S 15B — 3016N	15	φ 45	φ 51			ø 16	φ 36			0.46
SG3S 16B — 3016N	16	φ 48	φ 54			ø 16	φ 38			0.53
SG3S 18B — 3016N	18	φ 54	φ 60			ø 16	φ 40			0.66
SG3S 20B — 3020N	20	φ 60	φ 66			ø 20	φ 50			0.85
SG3S 24B — 3020N	24	φ 72	φ 78			φ 20	φ 58			1.25
SG3S 25B — 3020N	25	φ 75	φ 81			φ 20	φ 60			1.36
SG3S 28B — 3020N	28	φ 84	φ 90			φ 20	φ 70			1.79
SG3S 30B — 3025N	30	φ 90	φ 96			φ 25	φ 75			2.00
SG3S 32B — 3025N	32	φ 96	φ102			φ 25	φ 75			2.21
SG3S 35B — 3025N	35	φ105	φ111			φ 25	φ 80			2.64
SG3S 36B — 3025N	36	φ108	φ114			φ 25	φ 80			2.75
SG3S 40B — 3030	40	φ120	φ126	B1	30	φ 30	φ 70	20	50	3.00
SG3S 40B — 3025N	40	φ120	φ126			φ 25	φ 80			3.26
SG3S 45B — 3025N	45	φ135	φ141			φ 25	φ 80			3.97
SG3S 48B — 3025N	48	φ144	φ150			ø 25	φ 85			4.53
SG3S 50B — 3030N	50	φ150	φ156			φ 30	φ 85			4.78
SG3S 55B — 3030N	55	φ165	φ171			ø 30	φ 90			5.76
SG3S 56B — 3030N	56	φ168	φ174			φ 30	φ 90			5.94
SG3S 60B — 3030N	60	φ180	φ186			φ30	φ 100			6.95
SG3S 64B — 3030N	64	φ192	φ198			φ30	φ 100			7.77
SG3S 70B — 3030N	70	φ210	φ216			ø 30	φ100			9.11
SG3S 72B — 3030N	72	φ216	φ222			ø 30	φ100			9.59
SG3S 75B — 3030N	75	φ225	φ231			ø 30	φ100			10.32
SG3S 80B — 3030N	80	φ240	φ246			φ 30	φ100			11.61

인포메 이 션

기 어 박 스

ń	전속도별	취요처다	·도려ㅠ	휨강도	(EFOI. IA)	W)		전속도별 경	치요저다	-ап ·	비며가다	(CF0), I	14/		
400	800	이용진글 1,200	1,500	1,800	(원취: KV	3.000	400	800	기공신달	1,500	1,800	2,500	3.000	백래시 (단위: mm)	상품 기호
rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm		
8.31	16.62	24.93	30.93	36.51	49.07	57.88	1.81	3.68	5.60	7.02	8.36	11.43	13.62		SG3S 14B — 3016N
9.31	18.62	27.93	34.46	40.64	54.65	64.40	2.08	4.25	6.47	8.06	9.59	13.13	15.64		SG3S 15B — 3016N
10.33	20.67	30.99	38.02	44.79	60.28	70.95	2.38	4.86	7.40	9.17	10.91	14.95	17.78		SG3S 16B — 3016N
12.42	24.84	36.90	45.18	53.16	71.59	83.78	3.04	6.21	9.38	11.61	13.79	18.92	22.39		SG3S 18B — 3016N
14.59	29.17	42.93	52.45	61.87	83.06	96.33	3.78	7.73	11.59	14.32	17.06	23.34	27.37		SG3S 20B — 3020N
19.01	38.01	54.95	67.21	79.24	104.65	120.57	5.52	11.31	16.68	20.65	24.60	33.13	38.59		SG3S 24B — 3020N
20.15	40.15	57.96	70.95	83.59	109.93	126.49	6.01	12.28	18.09	22.41	26.69	35.79	41.64		SG3S 25B — 3020N
23.59	46.57	67.09	82.15	96.61	125.47	145.00	7.60	15.42	22.69	28.14	33.45	44.30	51.76		SG3S 28B — 3020N
25.90	50.82	73.23	89.55	104.80	135.50	157.19	8.77	17.71	26.08	32.30	38.21	50.39	59.08		SG3S 30B — 3025N
28.24	55.08	79.39	96.95	112.84	145.94	169.26	10.03	20.15	29.69	36.74	43.23	57.01	66.83		SG3S 32B — 3025N
31.79	61.43	88.58	107.77	124.68	161.66	187.02	12.09	24.10	35.54	43.81	51.24	67.75	79.19		SG3S 35B — 3025N
32.98	63.54	91.64	111.22	128.56	166.83	192.84	12.82	25.49	37.60	46.25	54.04	71.51	83.51		SG3S 36B — 3025N
37.79	71.94	103.77	124.77	143.76	187.16	214.00	15.97	31.43	46.40	56.54	65.86	87.40	100.93	0.12 ~ 0.24	SG3S 40B — 3030
37.79	71.94	103.77	124.77	143.76	187.16	214.00	15.97	31.43	46.40	56.54	65.86	87.40	100.93		SG3S 40B — 3025N
43.83	82.62	118.23	141.06	162.71	211.59	236.20	20.43	39.86	58.41	70.63	82.36	109.12	122.99		SG3S 45B — 3025N
47.47	89.00	126.51	150.58	174.29	224.14	248.74	23.37	45.39	66.08	79.71	93.26	122.16	136.84		SG3S 48B — 3025N
49.77	93.24	131.94	156.80	181.90	231.80	256.76	25.37	49.27	71.42	86.01	100.85	130.87	146.32		SG3S 50B — 3030N
55.48	103.74	145.22	173.05	200.54	250.00	-	30.73	59.63	85.52	103.27	120.93	153.45	-		SG3S 55B — 3030N
56.62	105.82	147.83	176.30	204.19	253.49	-	31.86	61.82	88.47	106.92	125.14	158.10	-		SG3S 56B — 3030N
61.14	114.10	158.07	189.13	218.62	266.97	-	36.59	70.93	100.68	122.05	142.54	177.08	-		SG3S 60B — 3030N
65.63	122.26	168.12	201.71	232.50	-	-	41.63	80.62	113.58	138.05	160.74	-	-		SG3S 64B — 3030N
72.29	133.62	184.00	220.08	249.18	-	-	49.78	95.73	135.04	163.59	187.06	-	-		SG3S 70B — 3030N
74.50	137.34	189.20	226.08	254.51	-	-	52.66	101.01	142.56	172.51	196.11	-	-		SG3S 72B — 3030N
77.78	142.85	196.93	234.96	262.28	-	-	57.11	109.17	154.16	186.25	209.93	-	-		SG3S 75B — 3030N
83.22	151.85	209.58	247.54	274.71	-	-	64.93	123.36	174.37	208.50	233.57	-	-		SG3S 80B — 3030N

베 벨 기 어



정밀도	재질	압력각	열처리	치면경도	표면처리①	백래시②
JIS B 1702-1 N6급	S45C	20도	치부 고주파	HRC50~56	흑색 염색	표 참조

- ①표면에 흑색 염색을 했습니다. 치면에는 흑색 염색이 없습니다.
- ②동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ★허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

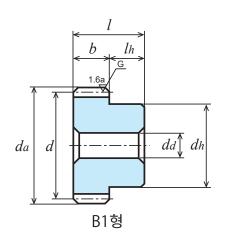
사표 기술	모듈	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
상품 기호	m	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SGR50S 30B — 0505		30	φ15	ø 16			ø 5	φ12			0.012
SGR50S 40B — 0506		40	φ20	φ21			φ 6	φ 15			0.021
SGR50S 50B — 0506		50	φ 25	φ26			φ 6	φ18			0.032
SGR50S 60B — 0506		60	φ30	φ31			φ 6	φ22			0.049
SGR50S 70B — 0508	0.5	70	φ 35	φ36		5	φ 8	φ 25	8	13	0.063
SGR50S 80B — 0508		80	φ40	φ41			φ 8	φ 28			0.083
SGR50S 90B — 0508		90	φ 45	φ46			φ 8	φ32			0.108
SGR50S 100B — 0510		100	φ 50	φ 51			φ 10	φ 35			0.129
SGR50S 120B — 0510		120	φ 60	φ 61			φ 10	φ42			0.190
SGR80S 25B — 0805		25	φ 20	φ21.6	B1		φ 5	φ 16			0.033
SGR80S 30B — 0805		30	<i>φ</i> 24	φ25.6			φ 5	φ 20			0.050
SGR80S 40B — 0808		40	φ 32	φ33.6			φ 8	φ 25			0.082
SGR80S 50B — 0808		50	φ40	φ41.6			φ 8	φ 28			0.12
SGR80S 60B — 0808	0.8	60	φ48	φ49.6		8	φ 8	φ 28	10	18	0.155
SGR80S 70B — 0808	0.8	70	φ 56	φ57.6		O	φ 8	φ28	10	10	0.196
SGR80S 80B — 0808		80	<i>φ</i> 64	φ65.6			φ 8	φ 28			0.243
SGR80S 90B — 0810		90	φ 72	φ73.6			φ 10	φ30			0.300
SGR80S 100B — 0812		100	φ 80	φ81.6			φ 12	φ40			0.398
SGR80S 120B — 0812		120	ø 96	φ97.6			φ 12	<i>φ</i> 40			0.537

인포메 이션

회	전속도별	허용전달	동력표	휨강도	. (단위: k\	N)	회전	선속도별 전	허용전달등	등력표 기	치면강 5	E (단위: l	(W)	백래시	UT -1-
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호
0.080	0.161	0.241	0.299	0.355	0.480	0.565	0.023	0.049	0.075	0.093	0.112	0.154	0.183		SGR50S 30B — 0505
0.117	0.234	0.346	0.427	0.504	0.677	0.795	0.043	0.089	0.135	0.168	0.200	0.272	0.323		SGR50S 40B — 0506
0.154	0.308	0.450	0.552	0.651	0.872	1.031	0.069	0.142	0.212	0.263	0.313	0.425	0.507		SGR50S 50B — 0506
0.192	0.380	0.553	0.676	0.793	1.071	1.263	0.101	0.207	0.307	0.379	0.448	0.614	0.730		SGR50S 60B — 0506
0.230	0.451	0.653	0.796	0.938	1.266	1.495	0.140	0.283	0.417	0.514	0.610	0.836	0.995		SGR50S 70B — 0508
0.269	0.521	0.751	0.916	1.083	1.460	1.725	0.186	0.371	0.544	0.670	0.799	1.092	1.301		SGR50S 80B — 0508
0.308	0.590	0.846	1.037	1.225	1.652	1.950	0.238	0.470	0.687	0.850	1.012	1.385	1.647		SGR50S 90B — 0508
0.346	0.658	0.943	1.158	1.366	1.844	2.173	0.296	0.580	0.847	1.051	1.249	1.711	2.032		SGR50S 100B — 0510
0.419	0.790	1.139	1.395	1.648	2.219	2.580	0.429	0.834	1.224	1.513	1.802	2.461	2.886		SGR50S 120B — 0510
0.257	0.500	0.761	0.937	1.108	1.487	1.748	0.069	0.144	0.216	0.269	0.320	0.436	0.517	0.02 ~ 0.08	SGR80S 25B — 0805
0.329	0.659	0.964	1.184	1.396	1.867	2.210	0.102	0.210	0.313	0.388	0.461	0.626	0.747		SGR80S 30B — 0805
0.479	0.943	1.369	1.672	1.961	2.653	3.127	0.186	0.378	0.559	0.689	0.815	1.118	1.328		SGR80S 40B — 0808
0.632	1.224	1.764	2.150	2.544	3.427	4.051	0.297	0.593	0.871	1.072	1.279	1.747	2.083		SGR80S 50B — 0808
0.788	1.501	2.149	2.641	3.117	4.207	4.960	0.436	0.856	1.248	1.549	1.843	2.523	2.998		SGR80S 60B — 0808
0.937	1.772	2.549	3.125	3.686	4.972	5.814	0.597	1.164	1.704	2.110	2.509	3.433	4.047		SGR80S 70B — 0808
1.085	2.037	2.943	3.599	4.257	5.706	6.618	0.783	1.516	2.229	2.753	3.283	4.464	5.219		SGR80S 80B — 0808
1.230	2.293	3.326	4.076	4.813	6.383	7.378	0.995	1.911	2.822	3.492	4.157	5.593	6.517		SGR80S 90B — 0810
1.374	2.563	3.706	4.550	5.364	7.040	8.082	1.230	2.366	3.481	4.316	5.129	6.830	7.903		SGR80S 100B — 0812
1.657	3.094	4.476	5.477	6.391	8.252	9.311	1.774	3.415	5.028	6.213	7.308	9.573	10.888		SGR80S 120B — 0812

마 이 터 기 어

베 벨 기 어



정밀도	재질	압력각	열처리	치면경도	표면처리①	백래시②
JIS B 1702-1 N6급	S45C	20도	치부 고주파	HRC50~56	흑색 염색	표 참조

①표면에 흑색 염색을 했습니다. 치면에는 흑색 염색이 없습니다.

②동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ★허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
9년 시 <u>조</u>	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SGR1S 14B — 1005	14	φ 14	φ 16			φ 5	<i>φ</i> 11			0.016
SGR1S 15B — 1006	15	φ 15	φ 17			φ 6	φ12			0.018
SGR1S 16B — 1006	16	φ 16	φ 18			φ 6	<i>φ</i> 13			0.022
SGR1S 17B — 1006	17	φ 17	ø 19			ø 6	<i>φ</i> 14			0.025
SGR1S 18B — 1006	18	φ 18	φ 20			ø 6	ø 15			0.029
SGR1S 19B — 1006	19	φ 19	φ 21			ø 6	ø 16			0.034
SGR1S 20B — 1006	20	φ 20	φ 22			φ 6	ø 16			0.036
SGR1S 21B — 1008	21	φ 21	φ 23			ø 8	ø 18			0.039
SGR1S 22B — 1008	22	φ 22	φ 24			ø 8	ø 18			0.042
SGR1S 23B — 1008	23	φ 23	φ 25			ø 8	φ 20			0.049
SGR1S 24B — 1008	24	φ 24	φ 26			ø 8	φ 20			0.052
SGR1S 25B — 1008	25	φ 25	φ 27			ø 8	<i>φ</i> 20			0.055
SGR1S 26B — 1008	26	φ 26	φ 28			ø 8	φ 20			0.058
SGR1S 27B — 1008	27	φ 27	φ 29			ø 8	<i>φ</i> 20			0.062
SGR1S 28B — 1008	28	φ 28	φ 30			ø 8	φ 20			0.065
SGR1S 29B — 1008	29	φ 29	φ 31			ø 8	φ 25			0.082
SGR1S 30B — 1010	30	φ 30	φ 32			φ 10	\$ 25			0.082
SGR1S 32B — 1010	32	φ 32	φ 34			ø 10	φ 25			0.089
SGR1S 34B — 1010	34	φ 34	φ 36	B1	10	φ 10	\$ 25	10	20	0.097
SGR1S 35B — 1010	35	φ 35	φ 37	D1	10	ø 10	\$ 25	10	20	0.102
SGR1S 36B — 1010	36	φ 36	φ 38			φ 10	φ 25			0.106
SGR1S 38B — 1010	38	φ 38	φ 40			φ 10	φ 30			0.132
SGR1S 40B — 1010	40	φ 40	φ 42			φ 10	φ30			0.142
SGR1S 42B — 1010	42	φ 42	φ 44			φ 10	φ 30			0.152
SGR1S 44B — 1010	44	φ 44	φ 46			φ 10	φ 30			0.163
SGR1S 45B — 1010	45	φ 45	φ 47			φ 10	φ 30			0.168
SGR1S 48B — 1010	48	φ 48	φ 50			φ 10	φ 30			0.185
SGR1S 50B — 1012	50	φ 50	φ 52			φ 12	φ35			0.212
SGR1S 55B — 1012	55	φ 55	φ 57			φ 12	φ35			0.244
SGR1S 56B — 1012	56	φ 56	φ 58			φ 12	φ35			0.251
SGR1S 60B — 1012	60	φ 60	φ 62			φ 12	<i>φ</i> 40			0.303
SGR1S 64B — 1012	64	φ 64	φ 66			φ 12	<i>φ</i> 40			0.333
SGR1S 70B — 1012	70	φ 70	φ 72			φ12	φ40			0.383
SGR1S 75B — 1012	75	φ 75	φ 77			φ12	φ40			0.428
SGR1S 80B — 1015	80	φ 80	φ 82			φ15	φ50			0.520
SGR1S 90B — 1015	90	φ 90	φ 92			φ15	φ50			0.626
SGR1S 100B — 1015	100	φ100	φ102			φ15	φ50			0.743
SGR1S 120B — 1015	120	φ120	φ122			φ 15	φ 50			1.014

사파기숙	백래시	W)	- (단위: k	티면강도	동력표 기	허용전달등	전속도별 :	회	V)	(단위: kV	휨강도	동력표	허용전달	전속도별	호
상품 기호	(단위: mm)	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm
SGR1S 14B — 1005		0.32	0.27	0.20	0.16	0.13	0.09	0.04	1.45	1.23	0.91	0.77	0.62	0.41	0.21
SGR1S 15B — 1006		0.37	0.31	0.22	0.19	0.15	0.10	0.05	1.64	1.39	1.03	0.87	0.70	0.47	0.23
SGR1S 16B — 1006		0.42	0.35	0.26	0.21	0.17	0.11	0.05	1.81	1.54	1.14	0.96	0.78	0.52	0.26
SGR1S 17B — 1006		0.47	0.40	0.29	0.24	0.19	0.13	0.06	1.98	1.68	1.25	1.05	0.85	0.57	0.29
SGR1S 18B — 1006		0.52	0.44	0.32	0.27	0.22	0.14	0.07	2.14	1.82	1.36	1.15	0.93	0.62	0.31
SGR1S 19B — 1006		0.58	0.49	0.36	0.30	0.24	0.16	0.08	2.31	1.97	1.46	1.24	1.01	0.68	0.34
SGR1S 20B — 1006		0.65	0.55	0.40	0.34	0.27	0.18	0.09	2.48	2.11	1.57	1.33	1.08	0.73	0.37
SGR1S 21B — 1008		0.71	0.60	0.44	0.37	0.30	0.20	0.10	2.66	2.25	1.68	1.42	1.16	0.78	0.39
SGR1S 22B — 1008		0.78	0.66	0.49	0.41	0.33	0.22	0.11	2.83	2.40	1.79	1.52	1.23	0.84	0.42
SGR1S 23B — 1008		0.86	0.72	0.53	0.45	0.36	0.24	0.12	3.00	2.54	1.90	1.61	1.31	0.89	0.45
SGR1S 24B — 1008		0.93	0.78	0.58	0.49	0.39	0.26	0.13	3.18	2.69	2.01	1.70	1.39	0.95	0.47
SGR1S 25B — 1008		1.01	0.85	0.63	0.53	0.43	0.29	0.14	3.35	2.84	2.12	1.80	1.47	1.00	0.50
SGR1S 26B — 1008		1.10	0.92	0.68	0.57	0.46	0.31	0.15	3.53	2.99	2.23	1.89	1.54	1.06	0.53
SGR1S 27B — 1008	0.00 0.16	1.18	0.99	0.73	0.61	0.50	0.33	0.16	3.71	3.14	2.33	1.98	1.62	1.11	0.56
SGR1S 28B — 1008	0.08 ~ 0.16	1.27	1.07	0.78	0.66	0.53	0.36	0.18	3.88	3.29	2.44	2.08	1.70	1.16	0.59
SGR1S 29B — 1008		1.37	1.15	0.84	0.71	0.57	0.39	0.19	4.05	3.43	2.55	2.17	1.77	1.22	0.62
SGR1S 30B — 1010		1.46	1.23	0.90	0.76	0.61	0.41	0.20	4.23	3.58	2.66	2.26	1.85	1.27	0.64
SGR1S 32B — 1010		1.66	1.40	1.02	0.86	0.70	0.47	0.23	4.58	3.88	2.87	2.45	2.00	1.38	0.70
SGR1S 34B — 1010		1.88	1.58	1.15	0.97	0.79	0.53	0.26	4.93	4.18	3.10	2.63	2.16	1.49	0.76
SGR1S 35B — 1010		1.99	1.67	1.22	1.03	0.84	0.57	0.28	5.11	4.33	3.21	2.72	2.23	1.54	0.79
SGR1S 36B — 1010		2.11	1.77	1.29	1.09	0.88	0.60	0.30	5.29	4.48	3.32	2.81	2.31	1.60	0.82
SGR1S 38B — 1010		2.35	1.97	1.44	1.21	0.98	0.67	0.33	5.64	4.77	3.54	2.99	2.46	1.70	0.88
SGR1S 40B — 1010		2.60	2.18	1.60	1.34	1.09	0.74	0.37	6.00	5.07	3.77	3.18	2.61	1.81	0.94
SGR1S 42B — 1010		2.87	2.41	1.76	1.48	1.20	0.82	0.41	6.35	5.37	3.99	3.37	2.76	1.92	1.00
SGR1S 44B — 1010		3.15	2.65	1.94	1.63	1.32	0.90	0.45	6.70	5.67	4.21	3.56	2.91	2.03	1.06
SGR1S 45B — 1010		3.30	2.77	2.02	1.70	1.37	0.94	0.48	6.87	5.82	4.32	3.66	2.98	2.08	1.09
SGR1S 48B — 1010		3.75	3.15	2.30	1.94	1.56	1.07	0.55	7.40	6.27	4.65	3.94	3.21	2.24	1.18
SGR1S 50B — 1012		4.06	3.42	2.50	2.10	1.70	1.16	0.59	7.74	6.57	4.87	4.13	3.36	2.34	1.23
SGR1S 55B — 1012		4.89	4.14	3.02	2.54	2.05	1.40	0.72	8.56	7.31	5.42	4.59	3.75	2.61	1.38
SGR1S 56B — 1012		5.06	4.29	3.14	2.64	2.13	1.46	0.75	8.72	7.45	5.53	4.69	3.82	2.66	1.41
SGR1S 60B — 1012		5.77	4.92	3.60	3.03	2.45	1.67	0.86	9.35	8.04	5.97	5.05	4.13	2.86	1.52
SGR1S 64B — 1012		6.52	5.58	4.10	3.44	2.79	1.90	0.98	9.97	8.59	6.41	5.42	4.43	3.07	1.63
SGR1S 70B — 1012	0.1~0.18	7.73	6.63	4.91	4.13	3.34	2.26	1.18	10.87	9.39	7.06	5.98	4.88	3.37	1.81
SGR1S 75B — 1012		8.79	7.56	5.64	4.74	3.83	2.60	1.35	11.60	10.05	7.60	6.44	5.25	3.63	1.95
SGR1S 80B — 1015		9.88	8.54	6.41	5.40	4.35	2.96	1.54	12.26	10.68	8.14	6.90	5.62	3.89	2.09
SGR1S 90B — 1015		12.16	10.65	8.07	6.83	5.52	3.75	1.95	13.48	11.90	9.15	7.80	6.37	4.40	2.36
SGR1S 100B — 1015		14.61	12.87	9.88	8.42	6.82	4.63	2.41	14.62	12.98	10.11	8.69	7.11	4.91	2.63
SGR1S 120B — 1015	0.12~0.20	20.32	17.69	13.94	11.96	9.82	6.67	3.46	17.01	14.93	11.93	10.32	8.56	5.91	3.16

평 기 어

랙

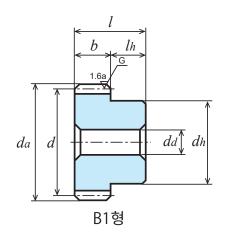
리컬 스크류 기어

바이터기어

베 벨 기 어

염, 염형

참 고 자 료

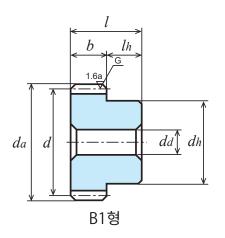

정밀도	재질	압력각	열처리	치면경도	표면처리①	백래시②
JIS B 1702-1 N6급	S45C	20도	치부 고주파	HRC50~56	흑색 염색	표 참조

- ①표면에 흑색 염색을 했습니다. 치면에는 흑색 염색이 없습니다.
- ②동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.
- ★허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
08.12	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SGR1.5S 14B — 1510	14	φ 21	φ 24			φ 10	φ 17			0.05
SGR1.5S 15B — 1510	15	φ 22.5	φ 25.5			ø 10	φ 18			0.06
SGR1.5S 16B — 1510	16	φ 24	φ 27			ø 10	ø 20			0.07
SGR1.5S 17B — 1510	17	φ 25.5	φ 28.5			ø 10	φ 21			0.08
SGR1.5S 18B — 1510	18	φ 27	φ 30			ø 10	<i>φ</i> 22			0.09
SGR1.5S 19B — 1510	19	φ 28.5	φ 31.5				φ 23			0.10
SGR1.5S 20B — 1510	20	φ 30	φ 33			 \$\phi 10\$	<i>φ</i> 24			0.12
SGR1.5S 21B — 1510	21	φ 31.5	φ 34.5			ø 10	\$ 25			0.13
SGR1.5S 22B — 1512	22	φ 33	φ 36			φ 12	φ 26			0.13
SGR1.5S 23B — 1512	23	φ 34.5	φ 37.5			φ 12	φ 27			0.15
SGR1.5S 24B — 1512	24	φ 36	φ 39			φ 12	φ 28			0.16
SGR1.5S 25B — 1512	25	φ 37.5	φ 40.5			φ12	ø 30			0.18
SGR1.5S 26B — 1512	26	φ 39	φ 42			φ12	φ32			0.20
SGR1.5S 27B — 1515	27	φ 40.5	φ 43.5			φ 15	<i>φ</i> 34			0.21
SGR1.5S 28B — 1515	28	φ 42	φ 45			φ 15	φ36			0.23
SGR1.5S 29B — 1515	29	φ 43.5	φ 46.5			φ 15	<i>φ</i> 37			0.25
SGR1.5S 30B — 1515	30	φ 45	φ 48			φ 15	φ38			0.27
SGR1.5S 32B — 1515	32	φ 48	φ 51			ø 15	<i>φ</i> 40			0.31
SGR1.5S 34B — 1515	34	φ 51	φ 54	B1	15	φ 15	<i>φ</i> 42	14	29	0.35
SGR1.5S 35B — 1515	35	φ 52.5	φ 55.5			φ 15	<i>φ</i> 42			0.37
SGR1.5S 36B — 1515	36	φ 54	φ 57			φ 15	φ 45			0.40
SGR1.5S 38B — 1515	38	φ 57	φ 60			φ 15	φ 45			0.44
SGR1.5S 40B — 1515	40	φ 60	φ 63			φ 15	φ 50			0.51
SGR1.5S 42B — 1515	42	φ 63	φ 66			φ 15	φ 50			0.54
SGR1.5S 44B — 1515	44	φ 66	φ 69			φ 15	φ 50			0.58
SGR1.5S 45B — 1518	45	φ 67.5	φ 70.5			φ 18	φ 50			0.58
SGR1.5S 48B — 1518	48	φ 72	φ 75			φ18	φ 50			0.64
SGR1.5S 50B — 1518	50	φ 75	φ 78			φ 18	φ60			0.77
SGR1.5S 55B — 1518	55	φ 82.5	φ 85.5			φ18	φ60			0.88
SGR1.5S 56B — 1518	56	φ 84	φ 87			<i>φ</i> 18	<i>φ</i> 60			0.91
SGR1.5S 60B — 1520	60	φ 90	φ 93			φ20	φ60			0.99
SGR1.5S 64B — 1520	64	φ 96	φ 99			φ20	φ60			1.09
SGR1.5S 70B — 1520	70	φ105	φ108			φ20	φ60			1.26
SGR1.5S 75B — 1520	75	φ112.5	φ115.5			φ20	φ60			1.41
SGR1.5S 80B — 1520	80	φ120	φ123			φ20	φ70			1.68
SGR1.5S 90B — 1520	90	φ135	φ138			φ20	φ70			2.04
SGR1.5S 100B — 1520	100	φ150	φ153			<i>φ</i> 20	φ 70			2.43

(보통이)

U# -1-	백래시	(W)	- E (단위: k	티면강도	등력표 기	허용전달동	전속도별 전	회전	N)	(단위: kV	휨강도	동력표	허용전달	전속도별	회
상품 기호	(단위: mm)	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm
SGR1.5S 14B — 1510		1.07	0.90	0.66	0.56	0.45	0.30	0.14	4.70	3.99	2.98	2.52	2.05	1.39	0.69
SGR1.5S 15B — 1510		1.23	1.03	0.76	0.64	0.52	0.34	0.17	5.30	4.48	3.35	2.84	2.31	1.57	0.79
SGR1.5S 16B — 1510		1.40	1.18	0.87	0.73	0.59	0.39	0.19	5.88	4.97	3.71	3.15	2.57	1.75	0.88
SGR1.5S 17B — 1510		1.58	1.33	0.98	0.82	0.66	0.45	0.22	6.42	5.43	4.05	3.44	2.81	1.92	0.96
SGR1.5S 18B — 1510		1.78	1.49	1.09	0.92	0.75	0.50	0.25	6.98	5.90	4.39	3.74	3.05	2.09	1.05
SGR1.5S 19B — 1510		1.98	1.66	1.22	1.03	0.83	0.56	0.27	7.53	6.38	4.74	4.03	3.30	2.26	1.14
SGR1.5S 20B — 1510		2.19	1.84	1.35	1.14	0.92	0.62	0.31	8.09	6.86	5.08	4.33	3.54	2.43	1.23
SGR1.5S 21B — 1510		2.41	2.03	1.48	1.25	1.02	0.69	0.34	8.64	7.33	5.42	4.62	3.78	2.60	1.32
SGR1.5S 22B — 1512	0.00 0.16	2.65	2.23	1.63	1.37	1.12	0.75	0.37	9.21	7.81	5.78	4.92	4.03	2.78	1.42
SGR1.5S 23B — 1512	0.08 ~ 0.16	2.90	2.44	1.78	1.50	1.22	0.83	0.41	9.77	8.28	6.13	5.21	4.27	2.95	1.51
SGR1.5S 24B — 1512		3.16	2.65	1.94	1.63	1.33	0.90	0.45	10.35	8.76	6.49	5.50	4.52	3.12	1.60
SGR1.5S 25B — 1512		3.43	2.88	2.11	1.77	1.44	0.98	0.49	10.92	9.23	6.85	5.79	4.76	3.30	1.70
SGR1.5S 26B — 1512		3.71	3.11	2.28	1.91	1.55	1.06	0.53	11.49	9.72	7.21	6.09	5.01	3.47	1.79
SGR1.5S 27B — 1515		4.00	3.36	2.46	2.06	1.67	1.14	0.57	12.06	10.20	7.57	6.40	5.25	3.64	1.89
SGR1.5S 28B — 1515		4.31	3.62	2.65	2.22	1.80	1.23	0.62	12.63	10.69	7.93	6.71	5.50	3.82	1.98
SGR1.5S 29B — 1515		4.62	3.88	2.84	2.38	1.93	1.32	0.67	13.20	11.18	8.29	7.02	5.73	3.99	2.08
SGR1.5S 30B — 1515		4.94	4.16	3.04	2.55	2.06	1.41	0.71	13.77	11.67	8.65	7.32	5.98	4.16	2.17
SGR1.5S 32B — 1515		5.62	4.73	3.46	2.90	2.34	1.61	0.82	14.90	12.64	9.37	7.94	6.46	4.51	2.37
SGR1.5S 34B — 1515		6.34	5.34	3.90	3.28	2.65	1.81	0.93	16.03	13.61	10.08	8.55	6.96	4.85	2.56
SGR1.5S 35B — 1515		6.71	5.66	4.14	3.48	2.81	1.92	0.98	16.57	14.10	10.44	8.86	7.22	5.03	2.65
SGR1.5S 36B — 1515		7.08	5.99	4.37	3.68	2.97	2.03	1.04	17.10	14.58	10.80	9.16	7.47	5.20	2.75
SGR1.5S 38B — 1515		7.85	6.67	4.88	4.10	3.31	2.26	1.16	18.15	15.54	11.53	9.77	7.97	5.54	2.93
SGR1.5S 40B — 1515		8.66	7.39	5.41	4.54	3.67	2.50	1.29	19.19	16.50	12.26	10.38	8.48	5.88	3.12
SGR1.5S 42B — 1515		9.50	8.12	5.96	5.00	4.05	2.76	1.42	20.21	17.42	12.98	10.97	8.97	6.21	3.31
SGR1.5S 44B — 1515		10.37	8.88	6.55	5.49	4.45	3.02	1.56	21.22	18.31	13.70	11.59	9.47	6.55	3.50
SGR1.5S 45B — 1518	0.10~0.18	10.82	9.27	6.85	5.75	4.65	3.16	1.64	21.72	18.75	14.06	11.89	9.72	6.71	3.59
SGR1.5S 48B — 1518		12.22	10.49	7.80	6.55	5.29	3.58	1.87	23.20	20.07	15.13	12.82	10.46	7.21	3.87
SGR1.5S 50B — 1518		13.19	11.33	8.46	7.11	5.74	3.89	2.03	24.17	20.93	15.85	13.43	10.95	7.56	4.06
SGR1.5S 55B — 1518		15.65	13.57	10.23	8.61	6.95	4.72	2.46	26.37	23.05	17.62	14.95	12.18	8.43	4.52
SGR1.5S 56B — 1518		16.16	14.04	10.60	8.92	7.21	4.90	2.55	26.79	23.46	17.97	15.25	12.43	8.60	4.61
SGR1.5S 60B — 1520		18.24	15.98	12.11	10.24	8.28	5.62	2.92	28.43	25.10	19.30	16.46	13.43	9.29	4.98
SGR1.5S 64B — 1520		20.42	17.95	13.70	11.65	9.43	6.40	3.33	30.00	26.59	20.59	17.65	14.42	9.97	5.34
SGR1.5S 70B — 1520		23.83	21.03	16.25	13.90	11.28	7.66	3.98	32.25	28.69	22.49	19.38	15.90	10.99	5.88
SGR1.5S 75B — 1520		26.81	23.73	18.52	15.86	12.95	8.79	4.56	34.03	30.36	24.03	20.75	17.11	11.82	6.33
SGR1.5S 80B — 1520	0.12~0.20	30.47	26.54	20.91	17.94	14.73	10.00	5.19	36.39	31.95	25.54	22.09	18.31	12.65	6.77
SGR1.5S 90B — 1520		39.00	32.48	25.92	22.43	18.55	12.68	6.54	41.59	34.91	28.27	24.66	20.59	14.33	7.62
SGR1.5S 100B — 1520		48.63	40.21	31.21	27.33	22.69	15.67	8.07	46.85	39.04	30.74	27.14	22.75	16.00	8.49

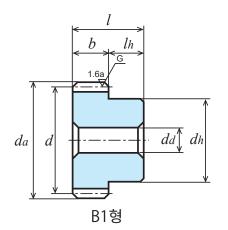

정밀도	재질	압력각	열처리	치면경도	표면처리①	백래시②
JIS B 1702-1 N6급	S45C	20도	치부 고주파	HRC50~56	흑색 염색	표 참조

①표면에 흑색 염색을 했습니다. 치면에는 흑색 염색이 없습니다.②동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ★허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

★허용전달동력표의 테이블은.	JGMA식을 사	용압니나. 난위	위 완산 방법은	잠고자료 201	페이지들 확인	하십시오.			T	
상품 기호	잇수	기준원 직경	이끝원 직경	영	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SGR2S 14B — 2012	14	φ 28	φ 32			φ12	φ22			0.11
SGR2S 15B — 2012	15	φ 30	φ 34			φ12	φ24			0.14
SGR2S 16B — 2012	16	φ 32	φ 36			φ12	ø 26			0.16
SGR2S 17B — 2012	17	φ 34	φ 38			φ12	ø 28			0.19
SGR2S 18B — 2012	18	φ 36	φ 40			φ12	ø 30			0.22
SGR2S 19B — 2012	19	φ 38	φ 42			φ12	φ 31			0.24
SGR2S 20B — 2015	20	φ 40	φ 44			ø 15	φ32			0.25
SGR2S 21B — 2015	21	φ 42	φ 46			ø 15	φ34			0.28
SGR2S 22B — 2015	22	φ 44	φ 48			φ 15	φ36			0.32
SGR2S 23B — 2015	23	φ 46	φ 50			φ 15	φ37			0.35
SGR2S 24B — 2015	24	φ 48	φ 52			φ 15	φ38			0.38
SGR2S 25B — 2015	25	φ 50	φ 54			φ 15	φ40			0.42
SGR2S 26B — 2015	26	φ 52	φ 56			φ 15	φ42			0.46
SGR2S 27B — 2015	27	φ 54	φ 58			φ 15	φ44			0.50
SGR2S 28B — 2015	28	φ 56	φ 60			φ 15	ø 45			0.54
SGR2S 29B — 2015	29	φ 58	φ 62			φ 15	φ48			0.59
SGR2S 30B — 2018	30	φ 60	φ 64			φ 18	φ 50			0.62
SGR2S 32B — 2018	32	φ 64	φ 68			φ 18	φ 50			0.68
SGR2S 34B — 2018	34	φ 68	φ 72	B1	20	φ 18	φ 50	16	36	0.74
SGR2S 35B — 2018	35	φ 70	φ 74			φ 18	φ 50			0.78
SGR2S 36B — 2018	36	φ 72	φ 76			φ 18	φ 50			0.81
SGR2S 38B — 2018	38	φ 76	φ 80			φ 18	φ 50			0.89
SGR2S 40B — 2020	40	φ 80	φ 84			φ 20	φ 60			1.06
SGR2S 42B — 2020	42	φ 84	φ 88			φ 20	φ 60			1.14
SGR2S 44B — 2020	44	φ 88	φ 92			φ20	φ 60			1.22
SGR2S 45B — 2020	45	φ 90	φ 94			<i>φ</i> 20	φ 60			1.27
SGR2S 48B — 2020	48	φ 96	φ100			<i>φ</i> 20	φ 60			1.40
SGR2S 50B — 2025	50	φ100	φ104			φ25	φ60			1.45
SGR2S 55B — 2025	55	φ110	φ114			φ25	φ60			1.71
SGR2S 56B — 2025	56	φ112	φ116			φ25	φ60			1.76
SGR2S 60B — 2025	60	φ120	φ124			φ25	φ65			2.05
SGR2S 64B — 2025	64	φ128	φ132			φ25	φ65			2.30
SGR2S 70B — 2025	70	φ140	φ144			φ25	φ70			2.76
SGR2S 72B — 2025	72	φ144	φ148			φ25	φ70			2.90
SGR2S 75B — 2025	75	φ150	φ154			φ25	φ70			3.12
SGR2S 80B — 2025	80	φ160	φ164			φ25	φ80			3.65
SGR2S 90B — 2025	90	φ180	φ184			φ25	φ80			4.49
SGR2S 100B — 2025	100	<i>φ</i> 200	<i>φ</i> 204			φ 25	φ80			5.42

(보통이)

사꾸 기숙	백래시	W)	E (단위: k	치면강도	통력표 기	허용전달동	전속도별	회 [:]	V)	(단위: kV	휨강도	동력표	허용전달	전속도별	ģ
상품 기호	(단위: mm)	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm	3,000 rpm	2,500 rpm	1,800 rpm	1,500 rpm	1,200 rpm	800 rpm	400 rpm
SGR2S 14B — 2012		2.55	2.14	1.57	1.32	1.07	0.72	0.35	10.86	9.20	6.84	5.82	4.75	3.26	1.64
SGR2S 15B — 2012		2.92	2.46	1.79	1.52	1.23	0.83	0.41	12.23	10.37	7.68	6.54	5.35	3.68	1.86
SGR2S 16B — 2012		3.32	2.80	2.04	1.72	1.40	0.95	0.47	13.55	11.50	8.50	7.25	5.94	4.09	2.08
SGR2S 17B — 2012		3.75	3.16	2.30	1.94	1.58	1.07	0.53	14.83	12.57	9.30	7.91	6.49	4.47	2.28
SGR2S 18B — 2012		4.21	3.54	2.59	2.17	1.77	1.20	0.60	16.11	13.64	10.11	8.57	7.04	4.86	2.49
SGR2S 19B — 2012	0.10 0.20	4.70	3.94	2.88	2.42	1.97	1.34	0.67	17.41	14.72	10.93	9.23	7.59	5.26	2.71
SGR2S 20B — 2015	0.10~0.20	5.21	4.37	3.20	2.68	2.18	1.48	0.74	18.70	15.82	11.74	9.93	8.15	5.65	2.92
SGR2S 21B — 2015		5.74	4.82	3.53	2.96	2.40	1.64	0.82	19.99	16.92	12.56	10.62	8.70	6.04	3.14
SGR2S 22B — 2015		6.30	5.30	3.87	3.25	2.63	1.80	0.91	21.29	18.03	13.38	11.32	9.25	6.44	3.35
SGR2S 23B — 2015		6.89	5.79	4.23	3.56	2.87	1.97	1.00	22.58	19.14	14.19	12.02	9.80	6.83	3.57
SGR2S 24B — 2015		7.50	6.31	4.61	3.87	3.12	2.14	1.09	23.88	20.32	15.01	12.72	10.35	7.23	3.79
SGR2S 25B — 2015		9.03	6.85	5.00	4.20	3.39	2.32	1.19	25.17	21.36	15.83	13.42	10.93	7.62	4.01
SGR2S 26B — 2015		8.78	7.40	5.40	4.55	3.67	2.51	1.28	26.43	22.48	16.64	14.12	11.50	8.02	4.23
SGR2S 27B — 2015		9.44	7.98	5.83	4.91	3.96	2.71	1.39	27.66	23.59	17.47	14.82	12.08	8.41	4.44
SGR2S 28B — 2015		10.12	8.58	6.27	5.28	4.26	2.91	1.49	28.88	24.70	18.31	15.52	12.66	8.80	4.66
SGR2S 29B — 2015		10.82	9.21	6.73	5.66	4.57	3.12	1.60	30.08	25.79	19.14	16.21	13.24	9.19	4.87
SGR2S 30B — 2018		11.54	9.85	7.21	6.05	4.90	3.34	1.72	31.28	26.90	19.98	16.91	13.81	9.58	5.09
SGR2S 32B — 2018		13.05	11.16	8.21	6.88	5.57	3.79	1.96	33.66	29.02	21.65	18.30	14.97	10.36	5.52
SGR2S 34B — 2018		14.63	12.54	9.27	7.78	6.29	4.27	2.22	35.99	31.09	23.32	19.73	16.12	11.13	5.95
SGR2S 35B — 2018		15.45	13.25	9.82	8.25	6.67	4.52	2.35	37.15	32.11	24.15	20.44	16.69	11.52	6.17
SGR2S 36B — 2018	0.12~0.22	16.29	13.98	10.39	8.73	7.06	4.78	2.49	38.29	33.13	24.98	21.16	17.26	11.90	6.39
SGR2S 38B — 2018		18.03	15.50	11.58	9.74	7.86	5.33	2.77	40.55	35.14	26.64	22.58	18.41	12.71	6.82
SGR2S 40B — 2020		19.76	17.08	12.82	10.79	8.70	5.92	3.08	42.62	37.13	28.29	23.99	19.55	13.52	7.25
SGR2S 42B — 2020		21.54	18.72	14.13	11.90	9.61	6.53	3.39	44.59	39.06	29.91	25.39	20.70	14.32	7.68
SGR2S 44B — 2020		23.38	20.43	15.46	13.06	10.55	7.17	3.73	46.54	40.98	31.47	26.79	21.86	15.12	8.10
SGR2S 45B — 2020		24.32	21.30	16.15	13.66	11.04	7.50	3.90	47.49	41.93	32.24	27.49	22.44	15.52	8.32
SGR2S 48B — 2020		27.22	23.93	18.27	15.53	12.57	8.54	4.44	50.29	44.57	34.52	29.58	24.17	16.71	8.95
SGR2S 50B — 2025		29.22	25.73	19.75	16.85	13.64	9.27	4.81	52.09	46.24	36.01	30.96	25.32	17.51	9.37
SGR2S 55B — 2025		34.41	30.42	23.67	20.26	16.51	11.21	5.82	56.40	50.27	39.67	34.23	28.18	19.47	0.42
SGR2S 56B — 2025		35.48	31.40	24.48	20.97	17.12	11.62	6.03	57.23	51.05	40.39	34.87	28.74	19.86	0.63
SGR2S 60B — 2025		40.63	35.39	27.88	23.92	19.64	13.33	6.92	61.60	54.09	43.22	37.39	31.00	21.42	1.45
SGR2S 64B — 2025		46.51	39.54	31.43	27.04	22.32	15.19	7.86	66.51	56.99	45.97	39.86	33.22	23.01	2.27
SGR2S 70B — 2025		56.12	46.39	36.86	32.03	26.51	18.19	9.37	73.89	61.58	49.63	43.47	36.34	25.38	3.48
SGR2S 72B — 2025	0.14~0.24	59.53	49.21	38.74	33.77	27.98	19.25	9.91	76.36	63.63	50.81	44.65	37.36	26.17	3.88
SGR2S 75B — 2025		64.85	53.61	41.62	36.45	30.25	20.90	10.76	80.07	66.73	52.55	46.39	38.88	27.34	4.51
SGR2S 80B — 2025		-	61.37	46.57	40.95	34.19	23.78	12.26	-	71.89	55.35	49.05	41.36	29.28	5.56
SGR2S 90B — 2025		_	78.55	57.05	50.41	42.69	30.08	15.54	_	82.16	60.54	53.92	46.11	33.07	7.62
SGR2S 100B — 2025		-	-	69.51	60.55		36.98	19.20	_	-	66.63	58.50	50.51	36.73	9.66


정밀도	재질	압력각	열처리	치면경도	표면처리①	백래시②
JIS B 1702-1 N6급	S45C	20도	치부 고주파	HRC50~56	흑색 염색	표 참조

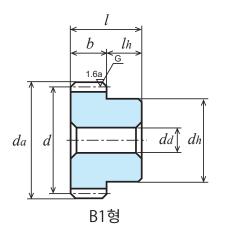
①표면에 흑색 염색을 했습니다. 치면에는 흑색 염색이 없습니다.②동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ★허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

사프 기술	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
상품 기호	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SGR2.5S 14B — 2515	14	φ 35	φ 40			φ 15	φ 28			0.22
SGR2.5S 15B — 2515	15	φ 37.5	φ 42.5			φ15	φ 30			0.26
SGR2.5S 16B — 2515	16	φ 40	φ 45			φ15	φ 32			0.30
SGR2.5S 18B — 2515	18	φ 45	φ 50			φ15	φ38			0.41
SGR2.5S 20B — 2518	20	φ 50	φ 55			φ18	φ40			0.48
SGR2.5S 24B — 2518	24	φ 60	φ 65			φ18	φ48			0.72
SGR2.5S 25B — 2520	25	φ 62.5	φ 67.5			φ 20	φ 50			0.77
SGR2.5S 28B — 2520	28	φ 70	φ 75			φ20	φ60			1.05
SGR2.5S 30B — 2520	30	φ 75	ø 80			<i>φ</i> 20	ø 65			1.23
SGR2.5S 32B — 2520	32	φ 80	ø 85			<i>φ</i> 20	φ 70			1.42
SGR2.5S 35B — 2520	35	φ 87.5	φ 92.5			<i>φ</i> 20	φ 70			1.62
SGR2.5S 36B — 2520	36	φ 90	ø 95	B1	25	<i>φ</i> 20	φ 70	18	43	1.69
SGR2.5S 40B — 2525	40	φ100	φ 105	D1	23	φ 25	φ 70	10	15	1.92
SGR2.5S 45B — 2525	45	φ112.5	φ 117.5			φ 25	φ 75			2.41
SGR2.5S 48B — 2525	48	φ 120	φ 125			φ 25	φ 75			2.68
SGR2.5S 50B — 2525	50	φ 125	φ 130			φ 25	ø 80			2.95
SGR2.5S 55B — 2525	55	φ137.5	φ142.5			φ 25	 \$0			3.46
SGR2.5S 56B — 2525	56	φ140	φ 145			φ 25	φ 80			3.57
SGR2.5S 60B — 2525	60	φ 150	φ 155			φ 25	φ 80			4.01
SGR2.5S 64B — 2525	64	φ160	ø 165			φ 25	ø 80			4.49
SGR2.5S 70B — 2525	70	φ175	φ 180			φ 25	ø 80			5.26
SGR2.5S 72B — 2525	72	φ180	φ185			φ 25	φ 85			5.63
SGR2.5S 75B — 2525	75	φ 187.5	φ 192.5			φ 25	φ 90			6.15
SGR2.5S 80B — 2525	80	φ200	φ205			φ25	φ90			6.90

(보통이)

		140	(FLOL I	HINHTH	=======================================	+10 H-1	다스트법 :	±15	A ()	/FLOL LV	히가ㄷ		+10715	I 지 스 드 버	+	
상품 기호	백래시 (단위: mm)	3,000	= (단위: K 2,500	기건경크 1,800	5덕표 / 1,500	허용전달등 1,200	전쪽도멸 800	외1 400	v) 3,000	(단위: KV 2,500	휨강도 1,800	종덕# 1,500	허용전달 1,200	800	400	
	(21)	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	rpm	
SGR2.5S 14B — 2515		4.98	4.18	3.05	2.57	2.09	1.42	0.70	20.79	17.61	13.05	11.07	9.09	6.28	3.21	
SGR2.5S 15B — 2515		5.72	4.80	3.51	2.94	2.40	1.63	0.81	23.43	19.82	14.71	12.44	10.22	7.08	3.64	
SGR2.5S 16B — 2515	0.10 ~ 0.20	6.51	5.46	4.00	3.35	2.76	1.86	0.93	26.00	21.99	16.32	13.80	11.55	7.86	4.06	
SGR2.5S 18B — 2515		8.24	6.93	5.06	4.25	3.44	2.35	1.19	30.84	26.13	19.38	16.40	13.39	9.33	4.87	
SGR2.5S 20B — 2518		10.16	8.56	6.25	5.26	4.24	2.90	1.48	35.73	30.32	22.46	19.05	15.51	10.82	5.69	
SGR2.5S 24B — 2518		14.43	12.31	9.01	7.57	6.12	4.17	2.15	45.00	38.69	28.74	24.33	19.87	13.78	7.32	
SGR2.5S 25B — 2520		15.60	13.33	9.78	8.21	6.64	4.52	2.33	47.27	40.73	30.33	25.65	20.97	14.52	7.73	
SGR2.5S 28B — 2520		19.32 21.98		12.28	10.31	8.34	5.65	2.94	53.98	46.66	35.09	29.70	24.25	16.73	8.97	
SGR2.5S 30B — 2520	0.10 0.00	21.98		14.10	11.85	9.57	6.49	3.38	58.31	50.51	38.24	32.40	26.42	18.24	9.79	
SGR2.5S 32B - 2520	0.12 ~ 0.22	21.98 24.70 0.12	21.34	16.03	13.49	10.88	7.39	3.85	62.36	54.32	41.39	35.11	28.60	19.78	10.61	
SGR2.5S 35B — 2520		24.70 0.12	26 28.94	25.26	19.12	16.14	13.04	8.86	4.61	68.10	59.93	46.01	39.16	31.94	22.09	11.84
SGR2.5S 36B - 2520		30.38		20.17	17.06	13.79	9.37	4.87	72.36	63.87	49.12	41.89	34.19	23.64	12.67	
SGR2.5S 40B — 2525		36.52	32.16	24.69	21.06	17.06	11.58	6.02	77.12	68.46	53.31	45.84	37.49	25.92	13.88	
SGR2.5S 45B — 2525		44.69	39.55	30.86	26.44	21.59	14.65	7.61	85.42	76.21	60.33	52.10	42.96	29.68	15.88	
SGR2.5S 48B — 2525		50.79	44.24	34.84	29.90	24.55	16.66	8.64	91.85	80.64	64.44	55.75	46.22	31.93	17.08	
SGR2.5S 50B — 2525		55.32	47.46	37.61	32.32	26.63	18.10	9.37	96.56	83.50	67.13	58.15	48.38	33.47	17.87	
SGR2.5S 55B — 2525		38.70 44.63 55.84 67.55		38.70	32.02	21.93	11.31	108.41	90.33	73.24	64.02	53.49	37.30	19.82		
SGR2.5S 56B — 2525		70.15	57.99	46.07	40.03	33.14	22.74	11.71	110.78	92.32	74.41	65.17	54.49	38.06	20.20	
SGR2.5S 60B — 2525	0.14~0.24	81.06	67.01	52.02	45.56	37.81	26.12	13.45	120.32	100.27	78.97	69.71	58.43	41.09	21.81	
SGR2.5S 64B — 2525		-	76.71	58.22	51.19	42.74	29.73	15.32	-	108.25	83.34	73.86	62.28	44.09	23.43	
SGR2.5S 70B — 2525		-	92.56	67.96	59.97	50.62	35.55	18.36	-	120.27	89.58	79.69	67.92	48.56	25.85	
SGR2.5S 72B — 2525		-	98.18	71.32	63.01	53.36	37.60	19.43	-	124.29	91.59	81.57	69.76	50.03	26.65	
SGR2.5S 75B — 2525		-	106.95	76.45	67.67	57.60	40.78	21.09	-	130.32	94.51	84.32	72.48	52.23	27.85	
SGR2.5S 80B — 2525		-	-	86.89	75.68	64.72	46.22	24.00	-	-	101.10	88.76	76.65	55.73	29.83	

목 차


정밀도	재질	압력각	열처리	치면경도	표면처리①	백래시②
JIS B 1702-1 N6급	S45C	20도	치부 고주파	HRC50~56	흑색 염색	표 참조

①표면에 흑색 염색을 했습니다. 치면에는 흑색 염색이 없습니다.②동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ★허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

★이용선글등록표의 데이글는 3 상품기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
01-1-	z	d	da		b	dd(H7)	dh	lh	l	W(kg)
SGR3S 14B — 3016	14	φ 42	φ 48			φ16	φ 34			0.39
SGR3S 15B — 3016	15	φ 45	φ 51			φ16	φ 36			0.46
SGR3S 16B — 3016	16	φ 48	φ 54			φ16	φ 38			0.53
SGR3S 18B — 3016	18	φ 54	φ 60			ø 16	φ 40			0.66
SGR3S 20B — 3020	20	φ 60	φ 66			φ20	φ 50			0.85
SGR3S 24B — 3020	24	φ 72	φ 78			φ20	φ 58			1.25
SGR3S 25B — 3020	25	φ 75	φ 81			φ20	φ 60			1.36
SGR3S 28B — 3020	28	φ 84	φ 90			φ20	φ 70			1.79
SGR3S 30B — 3025	30	φ 90	φ 96			φ 25	φ 75			2.00
SGR3S 32B — 3025	32	φ 96	φ102			φ 25	φ 75			2.21
SGR3S 35B — 3025	35	φ105	φ111			φ 25	φ 80			2.64
SGR3S 36B — 3025	36	ø 108	φ114	B1	30	\$ 25	φ 80	20	50	2.75
SGR3S 40B — 3025	40	φ120	φ126	ы	30	φ 25	φ 80	20	30	3.26
SGR3S 45B — 3025	45	φ135	φ141			φ 25	φ 80			3.97
SGR3S 48B — 3025	48	φ144	φ150			ø 25	φ 85			4.53
SGR3S 50B — 3030	50	φ150	φ156			φ30	φ 85			4.78
SGR3S 55B — 3030	55	φ165	φ171			ø 30	φ 90			5.76
SGR3S 56B — 3030	56	φ168	φ174			φ30	φ 90			5.94
SGR3S 60B — 3030	60	φ180	φ186			φ 30	φ100			6.95
SGR3S 64B — 3030	64	φ192	φ198			φ30	φ100			7.77
SGR3S 70B — 3030	70	φ210	φ 216			ø 30	φ100			9.11
SGR3S 72B — 3030	72	φ 216	φ222			φ30	φ100			9.59
SGR3S 75B — 3030	75	φ 225	φ231			φ 30	φ100			10.32
SGR3S 80B — 3030	80	φ240	φ246			φ30	φ100			11.61

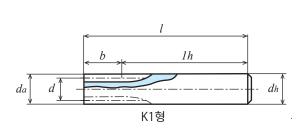
(보통이)

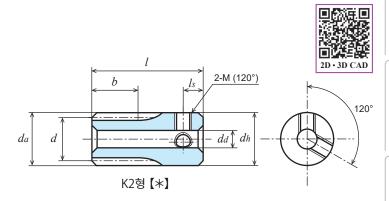
호	전속도별	허용전달	동력표	휨강도	(단위: kV	V)	회	전속도별	허용전달등	동력표 기	치면강도	를 (단위: k	W)	백래시	
400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,500 rpm	3,000 rpm	(단위: mm)	상품 기호
5.55	10.69	15.39	18.79	22.22	29.94	35.37	1.24	2.46	3.60	4.44	5.29	7.23	8.61		SGR3S 14B — 3016
6.29	12.04	17.29	21.18	25.02	33.74	39.82	1.43	2.82	4.12	5.10	6.07	8.31	9.89	0.10 ~ 0.20	SGR3S 15B — 3016
7.01	13.36	19.13	23.51	27.74	37.44	44.13	1.64	3.21	4.68	5.81	6.91	9.46	11.24		SGR3S 16B — 3016
8.36	15.83	22.75	27.90	32.89	44.40	52.07	2.08	4.06	5.94	7.36	8.74	11.98	14.16		SGR3S 18B — 3016
9.73	18.33	26.42	32.35	38.21	51.45	59.84	2.58	5.01	7.35	9.08	10.81	14.77	17.32		SGR3S 20B — 3020
12.49	23.28	33.77	41.38	48.86	64.80	74.98	3.73	7.17	10.58	13.55	15.59	20.97	24.44		SGR3S 24B — 3020
13.19	24.58	35.61	43.67	51.53	68.07	78.59	4.05	7.79	11.48	14.22	16.92	22.67	26.38	0.12 ~ 0.22	SGR3S 25B — 3020
15.27	28.49	41.19	50.53	59.52	77.73	88.75	5.09	9.79	14.41	17.85	21.20	28.08	32.32		SGR3S 28B — 3020
16.66	31.08	44.95	55.07	64.57	83.97	95.12	5.85	11.25	16.56	20.49	24.22	31.95	36.49		SGR3S 30B — 3025
18.04	33.68	48.71	59.61	69.55	89.80	101.33	6.66	12.81	18.86	23.30	27.41	35.90	40.83		SGR3S 32B — 3025
20.11	37.56	54.34	66.26	76.88	98.07	110.25	7.96	15.32	22.57	27.79	32.51	42.06	47.67		SGR3S 35B — 3025
20.79	38.84	56.21	68.39	79.29	100.74	113.12	8.42	16.21	23.88	29.34	34.29	44.19	50.02		SGR3S 36B — 3025
23.52	43.98	63.65	76.77	88.74	111.05	126.48	10.37	20.00	29.46	35.89	41.81	53.08	60.95		SGR3S 40B — 3025
26.85	50.49	72.54	86.88	99.60	123.01	146.54	13.09	25.36	37.09	44.86	51.84	64.95	78.00		SGR3S 45B — 3025
28.85	54.39	77.66	92.80	105.61	132.26	158.71	14.86	28.88	41.97	50.65	58.11	73.82	89.30		SGR3S 48B — 3025
30.24	56.98	81.02	96.67	109.51	139.05	166.86	16.14	31.35	45.37	54.67	62.42	80.41	97.27		SGR3S 50B — 3030
33.71	63.40	89.26	105.47	118.86	156.10	-	19.57	37.93	54.36	64.87	73.69	98.18	-		SGR3S 55B — 3030
34.40	64.68	90.88	107.15	120.66	159.52	-	20.29	39.32	56.25	66.97	76.02	101.96	-	0.14 ~ 0.24	SGR3S 56B — 3030
37.15	69.75	97.25	113.71	127.68	173.26	-	23.31	45.12	64.04	75.61	85.58	117.82	-		SGR3S 60B — 3030
39.89	74.75	103.42	120.01	134.68	-	-	26.54	51.28	72.21	84.62	95.72	-	-		SGR3S 64B — 3030
43.95	81.77	111.67	129.00	149.63	-	-	31.76	60.91	84.68	98.78	115.49	-	-		SGR3S 70B — 3030
45.29	84.07	114.33	131.88	154.63	-	-	33.59	64.28	88.99	103.66	122.51	-	-		SGR3S 72B — 3030
47.29	87.48	118.24	136.10	162.14	-	-	36.44	69.49	95.60	111.13	133.45	-	-		SGR3S 75B — 3030
50.62	93.07	124.54	145.58	174.69	-	-	41.44	78.55	106.99	126.30	152.77	-	-		SGR3S 80B — 3030

베 벨 기 어

2-M (120°) 120° da d

단위:mm

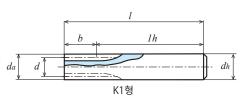

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.02~0.06

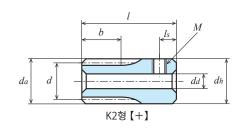

B1형【*】

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나.	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	2-M(120°)	ls	W(g)
S50S 10K — 1006	10	φ 5	ø 6	K1	10	-	ø 6	45	55	-	-	11.5
S50S 12K — 1007	12	φ 6	φ 7	K1	10	-	φ 7	45	55	-	-	15.8
S50S 15K * 0803	15	φ 7.5	φ 8.5	K2	8	φ3(H8)	φ 8.5	10	18	2-M3	3	6.0
S50S 16K * 0803	16	ø 8	φ 9	K2	8	φ3(H8)	ø 9	10	18	2-M3	3	6.9
S50S 18K * 0804	18	ø 9	φ10	K2	8	φ4(H8)	ø 10	10	18	2-M3	3	8.1
S50S 20K * 0804	20	φ10	φ11	K2	8	φ4(H8)	φ11	10	18	2-M3	3	10.3
S50S 22K * 0804	22	φ 11	φ12	K2	8	φ4(H8)	φ12	10	18	2-M3	3	12.7
S50S 24K * 0804	24	φ12	φ13	K2	8	φ4(H8)	φ13	10	18	2-M3	3	15.4
S50S 25B * 0804	25	φ12.5	φ13.5	B1	8	φ4(H8)	φ10	8	16	2-M3	4	10.8
S50S 26B * 0804	26	φ13	φ14	B1	8	φ4(H8)	φ10	8	16	2-M3	4	11.4
S50S 28B * 0804	28	φ14	φ 15	B1	8	φ4(H8)	φ10	8	16	2-M3	4	12.8
S50S 30B * 0805	30	φ 15	φ16	B1	8	φ5(H8)	φ12	8	16	2-M3	4	15.4
S50S 32B * 0505	32	ø 16	φ 17	B1	5	φ 5	φ 12	8	13	2-M3	4	12.7
S50S 35B * 0505	35	φ17.5	φ18.5	B1	5	φ 5	φ 12	8	13	2-M3	4	14.2
S50S 36B * 0505	36	ø 18	ø 19	B1	5	φ 5	φ 12	8	13	2-M3	4	14.8
S50S 40BF — 0504	40	φ20	φ 21	B1	5	φ4(H8)	ø 15	8	13	-	-	22.1
S50S 40B * 0505	40	φ 20	φ 21	B1	5	φ 5	φ 15	8	13	2-M3	4	21.0
S50S 42B * 0505	42	φ 21	<i>φ</i> 22	B1	5	φ 5	ø 15	8	13	2-M3	4	22.3
S50S 44B * 0505	44	φ 22	φ23	B1	5	φ 5	φ 15	8	13	2-M3	4	23.6
S50S 45B * 0505	45	φ 22.5	φ23.5	B1	5	φ 5	φ 15	8	13	2-M3	4	24.3
S50S 48B * 0505	48	<i>φ</i> 24	\$ 25	B1	5	φ 5	ø 15	8	13	2-M3	4	26.4
S50S 50B * 0505	50	φ 25	ø 26	B1	5	φ 5	ø 15	8	13	2-M3	4	27.9
S50S 52B * 0505	52	ø 26	φ 27	B1	5	φ 5	φ 15	8	13	2-M3	4	29.5
S50S 54B * 0505	54	<i>φ</i> 27	φ 28	B1	5	φ 5	φ 15	8	13	2-M3	4	31.1
S50S 55B * 0505	55	φ27.5	φ28.5	B1	5	φ 5	φ 15	8	13	2-M3	4	32.0
S50S 56B * 0505	56	<i>φ</i> 28	φ 29	B1	5	φ 5	φ 15	8	13	2-M3	4	32.8
S50S 60B * 0506	60	φ30	φ31	B1	5	φ 6	φ 18	8	13	2-M4	4	39.9
S50S 64B * 0506	64	φ32	φ33	B1	5	φ 6	φ 18	8	13	2-M4	4	43.7
S50S 70B * 0506	70	φ 35	φ36	B1	5	φ 6	φ18	8	13	2-M4	4	49.9
S50S 72B * 0506	72	φ36	φ37	B1	5	<i>φ</i> 6	φ18	8	13	2-M4	4	52.1
S50S 75B * 0506	75	φ37.5	φ38.5	B1	5	<i>φ</i> 6	φ18	8	13	2-M4	4	55.5
S50S 80BF — 0506	80	φ40	φ41	B1	5	<i>φ</i> 6	φ28	8	13	-	-	85.0
S50S 80B * 0508	80	φ40	φ41	B1	5	<i>φ</i> 8	φ22	8	13	2-M4	4	67.0
S50S 90B * 0508	90	φ45	φ46	B1	5	φ 8	<i>φ</i> 22	8	13	2-M4	4	80.1
S50S 96B * 0508	96	<i>\$</i> 48	ø 49	B1	5	φ 8	φ22	8	13	2-M4	4	88.7

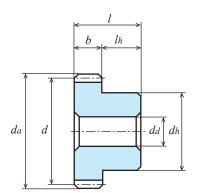
(보통이)



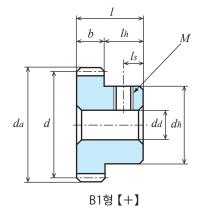


상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나.	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	2-M(120°)	ls	W(g)
S50S 100B * 0508	100	φ 50	φ 51	В1	5	φ 8	ø 25	8	13	2-M4	4	101.4
S50S 110B * 0508	110	ø 55	φ56	B1	5	ø 8	φ 25	8	13	2-M4	4	117.6
S50S 120B * 0508	120	ø 60	φ 61	В1	5	ø 8	ø 25	8	13	2-M4	4	135.4

사프 기술		회전	속도별 허용전	년달동력표 -	휨강도 (단위	P : W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S50S 10K — 1006	0.62	6.19	12.38	24.77	49.53	74.30	92.87
S50S 12K — 1007	0.85	8.49	16.98	33.96	67.91	101.87	127.33
S50S 15K * 0803	0.99	9.92	19.84	39.68	79.37	119.05	148.81
S50S 16K * 0803	1.10	11.01	22.02	44.04	88.08	132.12	165.15
S50S 18K * 0804	1.32	13.24	26.47	52.94	105.88	158.82	198.53
S50S 20K * 0804	1.55	15.54	31.08	62.16	124.32	186.48	233.10
S50S 22K * 0804	1.79	17.88	35.76	71.52	143.04	214.57	268.21
S50S 24K * 0804	2.03	20.26	40.52	81.04	162.07	243.11	303.88
S50S 25B * 0804	2.15	21.46	42.93	85.86	172.72	257.57	321.97
S50S 26B * 0804	2.27	22.68	45.36	90.71	181.43	272.14	339.11
S50S 28B * 0804	2.51	25.13	50.26	100.52	201.03	301.55	371.39
S50S 30B * 0805	2.76	27.59	55.18	110.37	220.74	331.11	403.12
S50S 32B * 0505	1.88	18.81	37.61	75.22	150.44	225.49	271.63
S50S 35B * 0505	2.12	21.17	42.34	84.68	169.36	250.30	300.66
S50S 36B * 0505	2.20	21.96	43.93	87.85	175.71	258.48	310.20
S50S40BF - 0504	2.51	25.13	50.26	100.53	201.05	290.27	347.13
S50S 40B * 0505	2.52	25.16	50.32	100.65	201.29	290.74	347.65
S50S 42B * 0505	2.68	26.77	53.55	107.09	214.19	306.59	365.96
S50S 44B * 0505	2.84	28.37	56.75	113.49	226.99	322.02	383.71
S50S 45B * 0505	2.92	29.18	58.37	116.74	233.47	329.75	392.59
S50S 48B * 0505	3.16	31.63	63.25	126.50	252.80	352.63	418.79
S50S 50B * 0505	3.33	33.26	66.52	133.04	264.20	367.63	435.89
S50S 52B * 0505	3.49	34.90	69.80	139.60	275.51	382.44	452.72
S50S 54B * 0505	3.65	36.54	73.08	146.17	286.71	397.03	469.26
S50S 55B * 0505	3.74	37.37	74.73	149.46	292.27	404.26	477.43
S50S 56B * 0505	3.82	38.19	76.38	152.76	297.80	411.43	485.53
S50S 60B * 0506	4.15	41.50	83.00	165.99	319.68	439.63	517.25
S50S 64B * 0506	4.48	44.82	89.64	179.28	341.14	467.04	547.92
S50S 70B * 0506	4.98	49.82	99.65	199.30	372.55	506.74	592.05
S50S 72B * 0506	5.15	51.50	102.99	205.99	382.81	519.61	606.27
S50S 75B * 0506	5.40	54.01	108.02	216.04	398.01	538.57	627.16
S50S80BF - 0506	5.78	57.80	115.61	231.21	419.70	565.46	662.85
S50S 80B * 0508	5.82	58.21	116.42	232.85	422.85	569.31	668.04
S50S 90B * 0508	6.66	66.56	133.13	266.25	470.10	626.91	752.57
S50S 96B * 0508	7.16	71.63	143.26	286.28	497.59	660.77	802.70
S50S 100B * 0508	7.50	75.01	150.02	297.93	515.45	688.64	835.69
S50S 110B * 0508	8.35	83.48	166.96	326.48	558.60	757.32	916.71
S50S 120B * 0508	9.20	91.98	183.95	354.27	599.68	824.59	995.68



정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.02~0.06

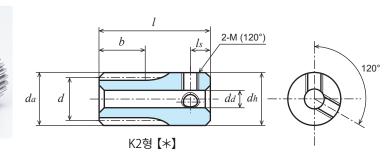

- ★표면처리는 하지 않았습니다. 【+】에는 나사 구멍이 1곳, 세트 스크류 1개 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

(1) 농송품, 농재실, 한 쌍의 ! 상품 기호	모듈	<u> </u>	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	·사	중량
	m	Z	d	da		b	dd(H7)	dh	lh	l	М	ls	W(g)
S75S 10K — 0809		10	φ 7.5	ø 9	K1	8	-	ø 9	47	55	-	-	26.3
S75S 12K — 0811		12	ø 9	φ10.5	K1	8	-	φ 11	47	55	-	-	39.1
S75S 14K + 0805		14	φ10.5	φ12	K2	8	φ5(H8)	φ12	12	20	M3	3	12.9
S75S 15K + 0805		15	φ11.25	φ12.75	K2	8	φ5(H8)	φ12.75	12	20	M3	3	15.0
S75S 16B + 0805		16	φ12	φ13.5	B1	8	φ5(H8)	φ10	7	15	M4	3.5	8.9
S75S 18B + 0805		18	φ13.5	φ15	B1	8	φ5(H8)	φ 11	7	15	M4	3.5	11.7
S75S 20B + 0806		20	φ 15	φ16.5	B1	8	ø 6	φ12	7	15	M4	3.5	13.8
S75S 24B + 0806		24	φ18	φ19.5	B1	8	ø 6	φ14	7	15	M4	3.5	20.8
S75S 28B + 0806		28	φ21	φ22.5	B1	8	ø 6	φ14	7	15	M4	3.5	26.6
S75S 30B + 0806		30	φ22.5	φ24	B1	8	ø 6	φ 15	7	15	M4	3.5	31.0
S75S 32B + 0606		32	φ24	φ25.5	B1	6	φ 6	φ 15	9	15	M4	4	30.1
S75S 35B + 0606		35	φ26.25	φ27.75	B1	6	φ 6	φ18	9	15	M4	4	39.7
S75S 36B + 0606	0.75	36	φ27	φ28.5	B1	6	ø 6	ø 18	9	15	M4	4	41.2
S75S 40B + 0606	0.73	40	ø 30	φ31.5	B1	6	ø 6	φ 20	9	15	M4	4	51.7
S75S 45B + 0606		45	φ33.75	φ35.25	B1	6	ø 6	φ 20	9	15	M4	4	60.5
S75S 48B + 0606		48	ø 36	φ37.5	B1	6	ø 6	φ 20	9	15	M4	4	66.3
S75S 50B + 0606		50	φ37.5	ø 39	B1	6	ø 6	φ 20	9	15	M4	4	70.4
S75S 56B + 0606		56	φ42	φ43.5	B1	6	ø 6	φ20	9	15	M4	4	83.6
S75S 60B + 0606		60	φ45	φ46.5	B1	6	ø 6	<i>φ</i> 22	9	15	M4	4	97.9
S75S 64B + 0606		64	φ48	φ49.5	B1	6	ø 6	<i>φ</i> 22	9	15	M4	4	108.2
S75S 70B + 0606		70	φ52.5	φ54	B1	6	ø 6	φ22	9	15	M4	4	124.9
S75S 72B + 0606		72	ø 54	φ55.5	B1	6	ø 6	φ 25	9	15	M4	4	138.5
S75S 80B + 0608		80	φ60	φ61.5	B1	6	ø 8	φ 25	9	15	M4	4	161.3
S75S 90B + 0608		90	φ67.5	ø 69	B1	6	ø 8	φ 30	9	15	M4	4	211.8
S75S 100B + 0608		100	φ 75	φ76.5	B1	6	ø 8	ø 30	9	15	M4	4	251.3
S75S 120B + 0608		120	φ 90	φ91.5	B1	6	ø 8	φ 30	9	15	M4	4	342.9
S80S 25BF — 0805		25	φ20	φ21.6	B1	8	φ5(H8)	ø 16	10	18	-	-	32.5
S80S 30BF - 0805		30	φ24	φ25.6	B1	8	φ5(H8)	φ 20	10	18	-	-	50.1
S80S 40BF — 0806	0.8	40	φ32	φ33.6	B1	8	φ6(H8)	φ 25	10	18	-	-	84.7
S80S 50BF — 0806	0.0	50	φ40	φ41.6	B1	8	φ6(H8)	φ28	10	18	-	-	122.9
S80S 60BF — 0806		60	φ48	φ49.6	B1	8	φ6(H8)	φ34	10	18	-	-	180.5
S80S 70BF — 0808		70	φ56	φ57.6	B1	8	ø 8	φ40	10	18	-	-	245.7

(보통이)

B1형【一】

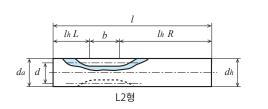
상품 기호	모듈	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	m	z	d	da		b	dd(H7)	dh	lh	l	М	ls	W(g)
S80S 80BF — 0808		80	φ64	φ65.6	B1	8	φ 8	ø 45	10	18	-	-	319.2
S80S 90BF — 0808	0.0	90	φ 72	φ73.6	B1	8	φ 8	φ 50	10	18	-	-	402.1
S80S 100BF — 0810	0.8	100	φ 80	φ81.6	В1	8	φ 10	φ 60	10	18	-	-	525.8
S80S 120BF — 0810		120	φ 96	φ97.6	B1	8	φ 10	φ 70	10	18	-	-	744.7

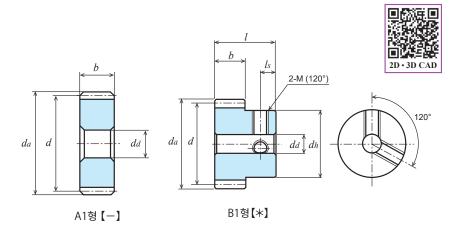

UT -14		회전	속도별 허용진	년달동력표 -		임: W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S75S 10K — 0809	1.10	11.07	22.14	44.29	88.59	132.88	166.10
S75S 12K - 0811	1.53	15.28	30.56	61.12	122.24	183.36	229.20
S75S 14K + 0805	1.99	19.92	39.84	79.67	159.35	239.02	298.77
S75S 15K + 0805	2.23	22.32	44.64	89.29	178.58	267.86	334.83
S75S 16B + 0805	2.48	24.77	49.54	99.09	198.18	297.27	371.59
S75S 18B + 0805	2.98	29.78	59.56	119.12	238.23	357.35	442.68
S75S 20B + 0806	3.50	34.97	69.93	139.86	279.72	419.58	510.83
S75S 24B + 0806	4.56	45.58	91.17	182.33	364.66	536.45	643.79
S75S 28B + 0806	5.65	56.54	113.08	226.16	452.32	647.45	772.83
S75S 30B + 0806	6.21	62.08	124.17	248.66	496.66	701.46	835.14
S75S 32B + 0606	5.08	50.78	101.55	203.10	405.88	566.16	672.37
S75S 35B + 0606	5.72	57.16	114.32	228.63	450.54	625.02	739.59
S75S 36B + 0606	5.93	59.30	118.60	237.20	465.26	644.30	761.51
S75S 40B + 0606	6.79	67.94	135.87	271.74	523.34	719.70	846.78
S75S 45B + 0606	7.88	78.80	157.59	315.19	593.54	809.50	947.38
S75S 48B + 0606	8.54	85.39	170.78	341.55	634.74	861.57	1,005.26
S75S 50B + 0606	8.98	89.80	179.60	359.20	661.75	895.45	1,042.75
S75S 56B + 0606	10.31	103.12	206.23	412.46	740.57	993.21	1,176.28
S75S 60B + 0606	11.20	112.05	224.09	448.18	791.32	1,055.28	1,266.80
S75S 64B + 0606	12.10	121.01	242.03	483.67	840.68	1,116.37	1,356.16
S75S 70B + 0606	13.45	134.52	269.05	530.18	912.13	1,227.65	1,487.91
S75S 72B + 0606	13.90	139.04	278.08	545.45	935.29	1,264.36	1,531.23
S75S 80B + 0608	15.72	157.17	314.34	605.38	1,024.75	1,409.08	1,701.45
S75S 90B + 0608	17.97	179.72	359.44	676.87	1,128.44	1,583.37	1,911.84
S75S 100B + 0608	20.25	202.52	405.04	746.20	1,239.53	1,753.91	2,124.81
S75S 120B + 0608	24.83	248.33	496.67	876.93	1,484.26	2,095.89	2,535.81
S80S 25BF — 0805	5.52	55.18	110.37	220.74	441.48	637.09	761.80
S80S 30BF - 0805	7.07	70.68	141.37	282.73	565.46	848.19	936.16
S80S 40BF — 0806	10.28	102.83	205.66	411.32	782.43	1,071.87	1,256.58
S80S 50BF — 0806	13.57	135.71	271.42	542.84	985.16	1,326.95	1,556.59
S80S60BF - 0806	16.90	169.01	338.02	675.62	1,174.49	1,559.42	1,894.30
S80S70BF - 0808	20.27	202.73	405.46	790.39	1,349.57	1,834.61	2,219.44
S80S80BF - 0808	23.68	236.76	473.52	900.97	1,512.09	2,102.26	2,535.16
S80S90BF - 0808	27.05	270.48	540.96	1,005.69	1,663.72	2,358.61	2,854.02
S80S100BF - 0810	30.47	304.72	609.44	1,106.63	1,850.53	2,609.92	3,168.16
S80S120BF — 0810	37.33	373.31	746.20	1,296.79	2,210.75	3,123.87	3,771.32

목 차

인포메 이션

기 어 박 스





정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.04~0.10

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭' (중부하용)에서 전달할 수 있는 힘이 달라집니다. ★【전위】는 전위계수 x가 0.5인 전위 기어입니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나.	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 8L — 1210F	8	【전위】	φ10.64	L2	12	-	φ10.64	L16 R32	60	-	-	-	39.5
S1S 10L — 1208	10	【전위】	φ12.66	L1	12	-	φ 8 (h9)	L16 R32	60	-	-	-	27.9
S1S 10L — 1212F	10	【전위】	φ12.66	L2	12	-	φ12.66	L16 R32	60	-	-	-	56.4
S1S 12K * 1206	12	φ12	φ14	K2	12	φ6(H8)	φ14	18	30	-	2-M4	5	25.1
S1S 13K * 1206	13	φ 13	ø 15	K2	12	φ6(H8)	φ 15	18	30	-	2-M4	5	30.1
S1S 14A — 0805F	14	φ14	ø 16	A1	8	φ 5	-	-	8	-	-	-	8.4
S1S 14A — 0806	14	φ14	ø 16	A1	8	φ 6	-	-	8	-	-	-	7.9
S1S 14A — 1206	14	φ14	ø 16	A1	12	ø 6	-	-	12	-	-	-	11.8
S1S 14B — 0805	14	φ14	ø 16	B1	8	φ5(H8)	φ11	8	16	-	-	-	13.0
S1S 14K * 0806	14	φ14	ø 16	K2	8	φ6(H8)	ø 16	17	25	-	2-M4	4	30.1
S1S 14K * 1206	14	φ14	ø 16	K2	12	φ6(H8)	ø 16	18	30	-	2-M5	5	35.0
S1S 15A — 0805F	15	φ 15	φ17	A1	8	φ 5	-	-	8	-	-	-	9.9
S1S 15A — 0806	15	φ 15	ø 17	A1	8	ø 6	-	-	8	-	-	-	9.3
S1S 15A — 1206	15	φ 15	φ 17	A1	12	ø 6	-	-	12	-	-	-	14.0
S1S 15B — 0805	15	φ 15	ø 17	B1	8	φ5(H8)	φ 12	8	16	-	-	-	15.7
S1S 15B — 1005	15	φ 15	ø 17	B1	10	φ5(H8)	φ12	10	20	-	-	-	19.68
S1S 15K * 0806	15	φ 15	ø 17	K2	8	φ6(H8)	φ 17	17	25	-	2-M4	4	35.0
S1S 15K * 1206	15	φ 15	φ 17	K2	12	φ6(H8)	φ 17	18	30	-	2-M5	5	40.7
S1S 16A — 0805F	16	ø 16	ø 18	A1	8	φ 5	-	-	8	-	-	-	11.4
S1S 16A — 0806	16	ø 16	ø 18	A1	8	ø 6	-	-	8	-	-	-	10.9
S1S 16A — 1208	16	ø 16		A1	12	ø 8	-	-	12	-	-	-	14.2
S1S 16B — 0805	16	ø 16	ø 18	B1	8	φ5(H8)	φ13	8	16	-	-	-	18.5
S1S 16B — 1005	16	ø 16	φ 18	B1	10	φ5(H8)	φ13	10	20	-	-	-	23.13
S1S 16K * 0806	16	ø 16	ø 18	K2	8	φ6(H8)	φ 18	17	25	-	2-M4	4	40.0
S1S 16K * 0808	16	ø 16	ø 18	K2	8	φ8(H8)	φ 18	17	25	-	2-M4	4	35.9
S1S 16K * 1208	16	ø 16	ø 18	K2	12	φ8(H8)	φ 18	18	30	-	2-M5	5	41.8
S1S 17A — 0805F	17	φ 17	ø 19	A1	8	φ 5	-	-	8	-	-	-	13.0
S1S 17B — 0805	17	ø 17	ø 19	B1	8	φ5(H8)	φ14	8	16	-	-	-	21.5
S1S 17K * 0808	17	φ 17	ø 19	K2	8	φ8(H8)	φ 19	17	25	-	2-M4	4	41.3
S1S 17K * 1208	17	φ 17	ø 19	K2	12	φ8(H8)	ø 19	18	30	-	2-M5	5	48.2
S1S 18A — 0805F	18	φ 18	φ20	A1	8	φ 5	-	-	8	-	-	-	14.8
S1S 18A — 0806	18	ø 18	φ20	A1	8	ø 6	-	-	8	-	-	-	14.2
S1S 18B * 0806	18	φ18	φ 20	B1	8	ø 6	φ14	8	16	-	2-M4	4	21.5
S1S 18B — 1006	18	φ18	φ 20	B1	10	φ6(H8)	ø 15	10	20	-	-	-	29.43
S1S 18B * 1008	18	φ18	φ 20	B1	10	ø 8	φ 15	10	20	-	2-M5	5	25.1
S1S 18K * 1208	18	φ 18	φ 20	K2	12	φ8(H8)	φ 20	18	30	-	2-M4	4	55.6
S1S 19A — 0806F	19	ø 19	φ 21	A1	8	ø 6	-	-	8	-	-	-	16.0
S1S 19A — 1208F	19	ø 19	φ 21	A1	12	ø 8	-	-	12	-	-	-	22.0

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나.	나사	
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 19B — 0806F	19	ø 19	φ 21	B1	8	ø 6	ø 16	8	16	-	-	-	26.9
S1S 20A — 0806F	20	φ 20	φ 22	A1	8	ø 6	-	-	8	-	-	-	18.0
S1S 20A — 0808	20	φ 20	φ 22	A1	8	ø 8	-	-	8	-	-	-	15.0
S1S 20A — 1208F	20	φ 20	φ 22	A1	12	ø 8	-	-	12	-	-	-	24.9
S1S 20A = 1210	20	φ 20	φ22	A1	12	φ10	-	-	12	3 × 1.4	-	-	19.2
S1S 20B — 0806F	20	φ 20	φ 22	B1	8	ø 6	ø 16	8	16	-	-	-	28.8
S1S 20B * 0806	20	φ 20	φ 22	B1	8	ø 6	ø 16	8	16	-	2-M4	4	28.0
S1S 20B * 0808	20	φ 20	φ 22	B1	8	ø 8	ø 16	8	16	-	2-M4	4	25.4
S1S 20BF — 1005	20	φ 20	φ 22	B1	10	φ5(H8)	ø 16	10	20	-	-	-	37.0
S1S 20B * 1008	20	φ 20	φ22	B1	10	ø 8	ø 16	10	20	-	2-M5	5	31.5
S1S 20B — 1206F	20	φ 20	φ 22	B1	12	φ6(H8)	ø 16	8	20	-	-	-	37.8
S1S 20B * 1206	20	φ 20	φ 22	B1	12	φ6(H8)	ø 16	8	20	-	2-M4	4	37.0
S1S 20B * 1208	20	<i>φ</i> 20	φ 22	В1	12	ø 8	ø 16	8	20	-	2-M4	4	33.7

잇수	치폭		회전	속도별 허용전	선달동력표 -	휨강도 (단위	P : W)		허용 토크(단위:
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
8	12	3.21	32.15	64.29	128.58	257.16	385.74	482.18	3.07
10	12	4.43	44.29	88.59	177.17	354.34	531.52	664.40	4.22
12	12	4.07	40.75	81.49	162.99	325.97	488.96	611.20	3.89
13	12	4.68	46.85	93.69	187.38	374.77	562.15	700.48	4.47
14	8	3.54	35.41	70.82	141.64	283.28	424.92	523.34	3.38
14	12	5.31	53.12	106.23	212.46	424.92	637.38	785.01	5.07
15	8	3.97	39.68	79.37	158.73	317.47	476.20	579.76	3.78
15	10	4.50	45.03	90.06	180.11	360.22	540.33	675.41	4.30
15	12	5.95	59.53	119.05	238.10	476.20	714.30	869.64	5.68
16	8	4.40	44.04	88.08	176.16	352.32	528.05	636.11	4.20
16	10	5.03	50.26	100.53	201.05	402.11	603.16	753.95	4.80
16	12	6.61	66.06	132.12	264.24	528.48	792.08	954.16	6.30
17	8	4.85	48.46	96.92	193.84	387.68	575.64	692.11	4.62
17	12	7.27	72.69	145.38	290.76	581.53	863.46	1,038.17	6.94
18	8	5.29	52.94	105.88	217.76	423.52	623.05	747.71	5.06
18	10	6.62	66.18	132.35	264.7	529.41	778.81	934.63	6.32
18	12	7.94	79.41	158.82	317.64	635.29	934.57	1,121.56	7.58
19	8	6.68	66.81	133.62	267.24	534.47	765.05	913.19	6.38
19	12	10.02	100.21	200.43	400.86	801.71	1,147.57	1,369.79	9.57
20	8	6.22	62.16	124.32	248.64	497.28	718.27	858.87	5.93
20	10	7.82	78.22	156.44	312.89	625.78	904.74	1,080.66	7.47
20	12	9.32	93.24	186.48	372.96	745.92	1,077.41	1,288.30	8.90

용 토크(단위: N • m)
100rpm
3.07
4.22
3.89
4.47
3.38
5.07
3.78
4.30
5.68
4.20
4.80
6.30
4.62
6.94
5.06
6.32
7.58
6.38
9.57
5.93
7.47

인포메이션

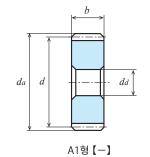
기 어 박 스

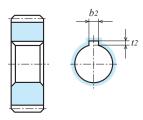
노 백 시 기 어

평 기 어

랙

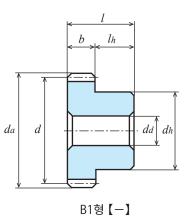
헬리컬 스크류 기

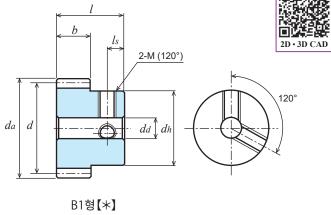

마 이 터 기 어


베 벨 기 어

원, 원 훼

참고자료


A1형 [=]

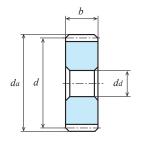

단위:mm

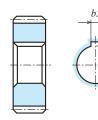
정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.04~0.10

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭' (중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

①농송품, 동재질, 한 쌍의 맞물림 시의 상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나.	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 21A — 0806F	21	φ21	φ23	A1	8	φ 6	-	-	8	-	-	-	19.1
S1S 21B — 0806F	21	φ 21	φ 23	В1	8	φ 6	φ 18	8	16	-	-	-	33.3
S1S 21B — 1208F	21	φ 21	φ 23	B1	12	ø 8	φ 18	8	20	-	-	-	48.6
S1S 22A — 0806F	22	<i>φ</i> 22	<i>φ</i> 24	A1	8	φ 6	-	-	8	-	-	-	22.1
S1S 22A — 1210F	22	φ22	φ24	A1	12	φ10	-	-	12	-	-	-	28.4
S1S 22B — 0806F	22	φ 22	φ24	B1	8	φ 6	φ 18	8	16	-	-	-	36.3
S1S 22B — 1208F	22	<i>φ</i> 22	φ24	В1	12	ø 8	ø 18	8	20	-	-	-	43.9
S1S 23A — 0806F	23	<i>φ</i> 23	φ 25	A1	8	φ 6	-	-	8	-	-	-	24.3
S1S 23B — 0806F	23	<i>φ</i> 23	φ 25	B1	8	φ 6	φ 20	8	16	-	-	-	42.3
S1S 23B — 1208F	23	<i>φ</i> 23	φ 25	B1	12	φ 8	φ 20	8	20	-	-	-	51.0
S1S 24A — 0806F	24	<i>φ</i> 24	φ 26	A1	8	φ 6	-	-	8	-	-	-	26.6
S1S 24A — 0808	24	<i>φ</i> 24	φ 26	A1	8	φ 8	-	-	8	-	-	-	25.3
S1S 24A — 1208F	24	<i>φ</i> 24	\$ 26	A1	12	\$ 8	-	-	12	-	-	-	37.9
S1S 24A = 1210	24	<i>φ</i> 24	φ 26	A1	12	φ10	-	-	12	3×1.4	-	-	34.8
S1S 24B — 0806	24	<i>φ</i> 24	φ 26	B1	8	φ 6	φ 16	8	16	-	-	-	37.5
S1S 24B * 0806	24	<i>φ</i> 24	φ 26	B1	8	φ 6	φ16	8	16	-	2-M4	4	36.7
S1S 24B * 0808	24	<i>φ</i> 24	φ 26	B1	8	φ 8	φ16	8	16	-	2-M4	4	34.1
S1S 24B — 1006	24	<i>φ</i> 24	φ26	B1	10	φ6(H8)	φ 20	10	20	-	-	-	55.77
S1S 24B * 1008	24	φ24	φ26	B1	10	φ8	φ20	10	20	-	2-M5	5	50.7
S1S 24B — 1208F	24	φ24	φ26	B1	12	φ8	φ20	8	20	-	-	-	54.5
S1S 24B * 1208	24	φ24	φ26	B1	12	φ8	φ20	8	20	-	2-M4	4	53.5
S1S 24B * 1210	24	φ24	φ26	B1	12	φ10	φ 20	8	20	-	2-M5	4	48.7
S1S 25A — 0806F	25	φ25	φ27	A1	8	φ6	-	-	8	-	-	-	29.1
S1S 25A — 0808	25	φ25	φ27	A1	8	φ8	-	-	8	-	-	-	27.7
S1S 25A = 0810	25	φ25	φ27	A1	8	φ10	-	-	8	3 × 1.4	-	-	25.6
S1S 25A — 1208F	25	φ25	φ27	A1	12	φ8	-	-	12	3 × 1.4	-	-	41.5
S1S 25A = 1210 S1S 25B - 0806	25 25	ϕ 25 ϕ 25	φ27	A1 B1	12 8	φ10	416	- 8	12 16	3 X 1.4	-	-	38.5 39.9
S1S 25B * 0806	25	φ25 φ25	ϕ 27 ϕ 27	B1	8	φ6 φ6	φ16 φ16	8	16	-	2-M4	4	39.9
S1S 25B * 0808	25	φ25 φ25	$\phi 27$	B1	8	φ0 φ8	φ16 φ16	8	16	_	2-M4	4	36.5
S1S 25BF — 1005	25	φ25 φ25	φ27 φ27	B1	10	φ5(H8)	φ10 φ20	10	20	_	2-1014	4	59.7
S1S 25B — 1006	25	φ25 φ25	$\phi 27$	B1	10	φ6(H8)	φ20 φ20	10	20		_		58.79
S1S 25B * 1008	25	φ25 φ25	φ27 φ27	B1	10	φ0(110) φ8	φ20 φ20	10	20	_	2-M5	5	53.8
S1S 25B — 1208F	25	φ25 φ25	φ27 φ27	B1	12	φ8	φ20 φ20	8	20	_	- 1013	-	58.1
S1S 25B * 1208	25	φ25 φ25	φ27 φ27	B1	12	φ8	φ20 φ20	8	20	_	2-M4	4	57.1
S1S 25B * 1210	25	φ25 φ25	$\phi 27$	B1	12	φ10	φ20 φ20	8	20	_	2-M5	4	52.4
S1S 26A — 0806F	26	φ26	φ28 φ28	A1	8	φ6	-	_	8	_		-	31.6
S1S 26A — 1208F	26	φ26	φ28	A1	12	φ8	_	-	12	_	_	_	45.3
S1S 26B — 0806F	26	φ26	φ28	B1	8	φ6	φ22	8	16	_	_	_	53.7
S1S 26B — 1208F	26	φ26	φ28 φ28	B1	12	φ8	φ22	8	20	_	_	_	66.0
3.3.200 12001	20	¥20	¥20	DI	12	ΨU	477	U	20				00.0

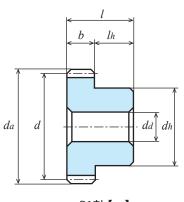
[-]	[-]					
-----	-----	--	--	--	--	--

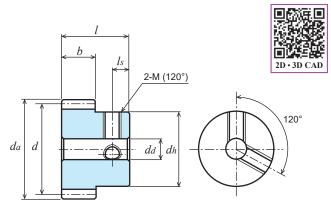

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 27B — 0806F	27	φ 27	ø 29	B1	8	φ 6	<i>φ</i> 24	8	16	-	-	-	60.8
S1S 27B — 1208F	27	φ 27	ø 29	B1	12	ø 8	<i>φ</i> 24	8	20	-	-	-	74.5
S1S 28A — 0806F	28	ø 28	ø 30	A1	8	φ 6	-	-	8	-	-	-	36.9
S1S 28A — 0808	28	ø 28	ø 30	A1	8	ø 8	-	-	8	-	-	-	35.5
S1S 28B — 0806	28	ø 28	ø 30	B1	8	φ 6	ø 20	8	16	-	-	-	54.9
S1S 28B * 0806	28	φ 28	ø 30	B1	8	φ 6	φ 20	8	16	-	2-M4	4	53.7
S1S 28B * 0808	28	ø 28	ø 30	B1	8	ø 8	ø 20	8	16	-	2-M4	4	51.1
S1S 28B * 0810	28	ø 28	ø 30	B1	8	ø 10	φ 20	8	16	-	2-M5	4	52.0
S1S 28B * 1010	28	ø 28	ø 30	В1	10	ø 10	<i>φ</i> 24	10	20	-	2-M5	5	69.7
S1S 28B — 1210F	28	φ 28	ø 30	B1	12	ø 10	<i>φ</i> 24	8	20	-	-	-	74.1
S1S 28B * 1212	28	ø 28	ø 30	B1	12	ø 12	ø 24	8	20	-	2-M5	4	67.1


잇수	치폭		회전	속도별 허용전	달동력표	휨강도(단위	4: W)	
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
21	8	6.68	66.81	133.62	267.24	534.47	765.05	913.19
21	12	10.02	100.21	200.43	400.86	801.71	1,147.57	1,369.79
22	8	7.15	71.52	143.04	286.09	572.18	811.72	967.23
22	12	10.73	107.28	214.57	429.13	858.27	1,217.58	1,450.84
23	8	7.63	76.28	152.56	305.11	610.23	858.05	1,020.71
23	12	11.44	114.42	228.84	457.67	915.34	1,287.07	1,531.06
24	8	8.10	81.04	162.07	324.14	647.77	903.58	1,073.09
24	10	10.13	101.29	202.59	405.18	809.71	1,129.47	1,341.36
24	12	12.16	121.55	243.11	486.21	971.65	1,355.36	1,609.63
25	8	8.59	85.86	171.72	343.43	682.04	949.04	1,125.25
25	10	10.78	107.75	215.50	431.01	855.31	1,189.99	1,412.09
25	12	12.88	128.79	257.57	515.15	1,023.05	1,423.56	1,687.87
26	8	9.07	90.71	181.43	362.85	716.14	994.08	1,176.77
26	12	13.61	136.07	272.14	544.28	1,074.21	1,491.12	1,765.15
27	8	9.56	95.60	191.20	382.40	750.06	1,038.69	1,227.65
27	12	14.34	143.40	286.80	573.60	1,125.09	1,558.03	1,841.47
28	8	10.05	100.52	201.03	402.06	783.81	1,082.86	1,277.89
28	10	12.56	125.65	251.29	502.58	979.76	1,353.58	1,597.36
28	12	15.08	150.77	301.55	603.10	1,175.71	1,624.29	1,916.83

허용 토	크(단위: N • m)
	100rpm
	6.38
	9.56
	6.82
	10.24
	7.28
	10.92
	7.73
	9.67
	11.60
	8.19
	10.29
	12.29
	8.66
	12.99
	9.12
	13.69
	9.59
	11.99
	14.39

A1형【=】


A1형【一】


정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.04~0.10

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

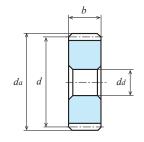
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 30A — 0808F	30	ø 30	φ32	A1	8	ø 8	-	-	8	-	-	-	41.2
S1S 30A = 1010	30	ø 30	φ32	A1	10	ø 10	-	-	10	3 × 1.4	-	-	49.0
S1S 30A — 1208F	30	φ30	<i>φ</i> 32	A1	12	ø 8	-	-	12	-	-	-	61.9
S1S 30A = 1212	30	φ30	<i>φ</i> 32	A1	12	φ12	-	-	12	4×1.8	-	-	55.3
S1S 30B — 0806	30	φ30	<i>φ</i> 32	B1	8	φ 6	<i>φ</i> 24	8	16	-	-	-	69.3
S1S 30B * 0806	30	φ30	φ32	B1	8	φ 6	<i>φ</i> 24	8	16	-	2-M4	4	67.8
S1S 30B * 0808	30	φ30	φ32	B1	8	φ 8	<i>φ</i> 24	8	16	-	2-M4	4	65.2
S1S 30B * 0810	30	φ30	φ32	B1	8	φ 10	<i>φ</i> 24	8	16	-	2-M5	4	61.1
S1S 30B * 0812	30	ø 30	φ32	B1	8	φ 12	<i>φ</i> 24	8	16	-	2-M5	4	57.1
S1S 30B * 1010	30	φ30	φ32	B1	10	φ 10	ø 25	10	20	-	2-M5	5	79.8
S1S 30B — 1210	30	φ30	φ32	B1	12	\$ 10	<i>φ</i> 24	8	20	-	-	-	82.7
S1S 30B * 1210	30	φ30	φ32	B1	12	\$ 10	<i>φ</i> 24	8	20	-	2-M5	4	80.9
S1S 30B * 1212	30	φ30	φ32	B1	12	φ 12	<i>φ</i> 24	8	20	-	2-M5	4	75.7
S1S 32A — 0608F	32	φ32	φ34	A1	6	ø 8	-	-	6	-	-	-	35.5
S1S 32A — 1008F	32	φ32	φ34	A1	10	ø 8	-	-	10	-	-	-	59.2
S1S 32A = 1012	32	φ32	<i>φ</i> 34	A1	10	φ12	-	-	10	4 × 1.8	-	-	53.7
S1S 32B — 0606	32	<i>φ</i> 32	<i>φ</i> 34	B1	6	φ 6	<i>φ</i> 24	10	16	-	-	-	69.9
S1S 32B * 0606	32	<i>φ</i> 32	<i>φ</i> 34	B1	6	φ 6	<i>φ</i> 24	10	16	-	2-M4	4	68.4
S1S 32B * 0608	32	<i>φ</i> 32	<i>φ</i> 34	B1	6	φ 8	<i>φ</i> 24	10	16	-	2-M4	4	65.8
S1S 32B * 0612	32	<i>φ</i> 32	<i>φ</i> 34	B1	6	φ12	<i>φ</i> 24	10	16	-	2-M5	5	57.7
S1S 32B — 1010	32	<i>φ</i> 32	φ34	B1	10	φ10	<i>φ</i> 24	10	20	-	-	-	86.4
S1S 32B * 1010	32	<i>φ</i> 32	<i>φ</i> 34	B1	10	φ10	<i>φ</i> 24	10	20	-	2-M5	5	84.5
S1S 32B * 1012	32	φ32	φ34	B1	10	φ12	<i>φ</i> 24	10	20	-	2-M5	5	79.4
S1S 34A — 0608F	34	<i>φ</i> 34	φ36	A1	6	\$ 8	-	-	6	-	-	-	40.4
S1S 34A — 1008F	34	<i>φ</i> 34	φ36	A1	10	\$ 8	-	-	10	-	-	-	67.3
S1S 34B — 0606F	34	<i>φ</i> 34	φ36	B1	6	φ 6	<i>φ</i> 28	10	16	-	-	-	87.6
S1S 34B — 1010F	34	φ34	φ36	B1	10	φ 10	<i>φ</i> 28	10	20	-	-	-	107.3
S1S 35A — 0608F	35	φ35	φ37	A1	6	ø 8	-	-	6	-	-	-	43.0
S1S 35A — 1008F	35	φ35	φ37	A1	10	φ 8	-	-	10	-	-	-	71.6
S1S 35B — 0606	35	φ35	<i>φ</i> 37	B1	6	φ 6	<i>φ</i> 24	10	16	-	-	-	77.3
S1S 35B * 0606	35	φ35	<i>φ</i> 37	B1	6	\$ 6	<i>φ</i> 24	10	16	-	2-M4	4	75.8
S1S 35B * 0608	35	φ35	φ37	B1	6	ø 8	<i>φ</i> 24	10	16	-	2-M4	4	73.2
S1S 35B * 0610	35	φ35	<i>φ</i> 37	B1	6	φ 10	<i>φ</i> 24	10	16	-	2-M5	5	69.2
S1S 35B * 0612	35	φ35	φ37	B1	6	φ12	<i>φ</i> 24	10	16	-	2-M5	5	65.1
S1S 35B — 1010F	35	φ35	φ37	B1	10	φ10	φ30	10	20	-	-	-	118.7
S1S 35B * 1010	35	φ35	φ37	B1	10	φ10	<i>φ</i> 30	10	20	-	2-M5	5	116.1
S1S 35B * 1012	35	φ35	<i>φ</i> 37	B1	10	φ12	φ30	10	20	-	2-M5	5	111.0
S1S 35B * 1015	35	ø 35	φ37	B1	10	ø 15	ø 30	10	20	-	2-M5	5	101.4

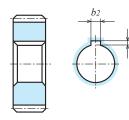
마 이 터 기 어

B1형【一】

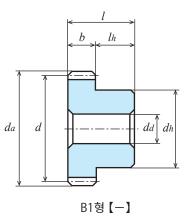
D 1		
ĸı	03	14/1

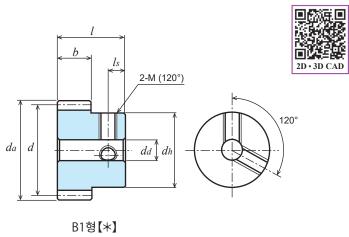
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 36A — 0608F	36	φ 36	ø 38	A1	6	ø 8	-	-	6	-	-	-	45.6
S1S 36A — 1008F	36	ø 36	ø 38	A1	10	ø 8	-	-	10	-	-	-	76.0
S1S 36A = 1010	36	ø 36	ø 38	A1	10	ø 10	-	-	10	3 × 1.4	-	-	73.4
S1S 36B — 0608	36	ø 36	ø 38	B1	6	ø 8	<i>φ</i> 24	10	16	-	-	-	77.2
S1S 36B * 0608	36	ø 36	ø 38	B1	6	ø 8	φ24	10	16	-	2-M4	4	75.9
S1S 36B * 0610	36	ø 36	ø 38	B1	6	φ 10	<i>φ</i> 24	10	16	-	2-M5	5	71.8
S1S 36B * 0612	36	ø 36	ø 38	B1	6	φ12	<i>φ</i> 24	10	16	-	2-M5	5	67.7
S1S 36B — 1010F	36	ø 36	ø 38	B1	10	ø 10	ø 30	10	20	-	-	-	123.1
S1S 36B * 1010	36	ø 36	ø 38	B1	10	φ 10	ø 30	10	20	-	2-M5	5	120.5
S1S 36B * 1012	36	ø 36	ø 38	B1	10	φ 12	φ 30	10	20	-	2-M5	5	115.4
S1S 36B * 1015	36	ø 36	ø 38	B1	10	ø 15	ø 30	10	20	-	2-M5	5	105.8
S1S 38A — 1008F	38	<i>ф</i> 38	φ40	A1	10	ø 8	-	-	10	-	-	-	85.1
S1S 38B — 0608F	38	φ38	φ40	B1	6	ø 8	φ 25	10	16	-	-	-	85.6
S1S 38B — 1010F	38	<i>ф</i> 38	φ40	B1	10	φ10	ø 30	10	20	-	-	-	132.2


잇수	치폭		회전	속도별 허용전	달동력표	휨강도(단위	임: W)	
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
30	8	11.04	110.37	220.74	441.48	850.22	1,169.22	1,375.68
30	10	13.81	138.12	276.24	552.48	1,063.91	1,462.66	1,721.52
30	12	16.56	165.55	331.11	662.22	1,275.33	1,753.83	2,063.52
32	6	9.03	90.27	180.53	361.07	687.05	940.61	1,103.51
32	10	15.04	150.45	300.89	601.78	1,145.09	1,567.69	1,839.19
34	6	9.78	97.82	195.64	391.27	735.73	1,002.88	1,173.30
34	10	16.30	163.03	326.06	652.12	1,226.22	1,671.47	1,955.49
35	6	10.16	101.61	203.23	406.46	759.80	1,033.48	1,207.46
35	10	16.94	169.36	338.72	677.43	1,266.33	1,722.47	2,012.43
36	6	10.54	105.42	210.85	421.69	783.68	1,063.73	1,241.14
36	10	17.57	175.71	351.41	702.82	1,306.12	1,772.88	2,068.56
38	6	11.31	113.08	226.15	452.31	830.87	1,123.15	1,307.07
38	10	18.85	188.46	376.92	753.85	1,384.78	1,871.91	2,178.45


100,,,,,,,,										
100rpm										
10.54										
13.19										
15.80										
8.62										
14.36										
9.34										
15.56										
9.70										
16.17										
10.06										
16.77										
10.79										
17.99										

년위:mm


A1형【=】


A1형【一】

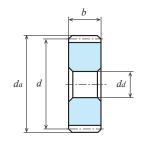
정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.04~0.10
•					

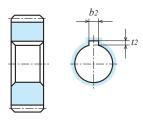
- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭' (중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 40A — 0608F	40	φ40	φ42	A1	6	φ 8	-	-	6	-	-	-	56.8
S1S 40A = 0610	40	φ40	φ42	A1	6	φ10	-	-	6	3 × 1.4	-	-	55.3
S1S 40A = 0612	40	φ40	φ42	A1	6	φ12	-	-	6	4 × 1.8	-	-	53.5
S1S 40A — 1008F	40	φ40	φ42	A1	10	φ 8	-	-	10	-	-	-	94.7
S1S 40A = 1010	40	φ40	φ42	A1	10	φ10	-	-	10	3 × 1.4	-	-	92.2
S1S 40A = 1012	40	<i>φ</i> 40	φ42	A1	10	φ12	-	-	10	4 × 1.8	-	-	89.2
S1S 40B — 0608	40	<i>φ</i> 40	ø 42	В1	6	φ 8	<i>φ</i> 24	10	16	-	-	-	88.4
S1S 40B * 0608	40	<i>φ</i> 40	φ42	B1	6	φ 8	<i>φ</i> 24	10	16	-	2-M4	4	87.1
S1S 40B * 0610	40	<i>φ</i> 40	φ 42	В1	6	φ10	<i>φ</i> 24	10	16	-	2-M5	5	83.1
S1S 40B * 0612	40	<i>φ</i> 40	φ42	B1	6	φ12	<i>φ</i> 24	10	16	-	2-M5	5	79.0
S1S 40BF — 1006	40	<i>φ</i> 40	ø 42	В1	10	φ6(H8)	ø 30	10	20	-	-	-	149.1
S1S 40B — 1010F	40	<i>ф</i> 40	φ42	B1	10	φ10	φ 30	10	20	-	-	-	141.8
S1S 40B * 1010	40	<i>φ</i> 40	ø 42	В1	10	φ10	ø 30	10	20	-	2-M5	5	139.3
S1S 40B * 1012	40	φ40	φ42	B1	10	φ12	φ30	10	20	-	2-M5	5	134.1
S1S 40B * 1015	40	<i>φ</i> 40	ø 42	В1	10	ø 15	ø 30	10	20	-	2-M5	5	124.5
S1S 42A — 1008F	42	φ42	<i>φ</i> 44	A1	10	φ 8	-	-	10	-	-	-	104.8
S1S 42B — 0608F	42	φ42	<i>φ</i> 44	B1	6	ø 8	ø 28	10	16	-	-	-	107.3
S1S 42B — 1010F	42	φ42	<i>φ</i> 44	B1	10	φ10	ø 30	10	20	-	-	-	151.9
S1S 44A — 0608F	44	<i>φ</i> 44	ø 46	A1	6	φ 8	-	-	6	-	-	-	69.3
S1S 44A — 1008F	44	<i>φ</i> 44	ø 46	A1	10	φ 8	-	-	10	-	-	-	115.4
S1S 44B — 0608F	44	<i>φ</i> 44	ø 46	В1	6	φ 8	ø 28	10	16	-	-	-	113.6
S1S 44B — 1010F	44	φ44	ø 46	B1	10	φ10	ø 30	10	20	-	-	-	162.5
S1S 45A — 0608F	45	φ45	ø 47	A1	6	φ 8	-	-	6	-	-	-	72.5
S1S45A = 0610	45	φ45	ø 47	A1	6	φ10	-	-	6	3×1.4	-	-	71.0
S1S 45A — 1008F	45	φ45	φ47	A1	10	φ 8	-	-	10	-	-	-	120.9
S1S 45A = 1015	45	φ45	ø 47	A1	10	φ15	-	-	10	5 × 2.3	-	-	110.1
S1S 45B — 0608	45	\$ 45	ø 47	B1	6	φ 8	<i>φ</i> 24	10	16	-	-	-	104.2
S1S 45B * 0608	45	φ45	ø 47	B1	6	φ 8	<i>φ</i> 24	10	16	-	2-M4	4	102.9
S1S 45B * 0610	45	φ45	ø 47	В1	6	φ10	<i>φ</i> 24	10	16	-	2-M5	5	98.8
S1S 45B * 0612	45	φ45	φ47	B1	6	φ12	<i>φ</i> 24	10	16	-	2-M5	5	94.7
S1S 45B — 1010F	45	φ45	ø 47	В1	10	φ10	ø 30	10	20	-	-	-	168.0
S1S 45B * 1010	45	φ45	φ47	B1	10	φ10	ø 30	10	20	-	2-M5	5	165.5
S1S 45B * 1012	45	ø 45	φ47	В1	10	φ12	φ30	10	20	-	2-M5	5	160.3
S1S 46A — 1010F	46	<i>ф</i> 46	<i>φ</i> 48	A1	10	φ10	-	-	10	-	-	-	124.3
S1S 46B — 0608F	46	 \$\psi 46	<i>φ</i> 48	B1	6	ø 8	φ 30	10	16	-	-	-	127.5
S1S 46B — 1010F	46	ø 46	φ48	B1	10	φ10	φ30	10	20	-	-	-	173.6
S1S 48A — 0608F	48	<i>ф</i> 48	φ 50	A1	6	ø 8	-	-	6	-	-	-	82.9
S1S 48A = 0610	48	<i>ф</i> 48	φ50	A1	6	φ10	-	-	6	3 × 1.4	-	-	81.3
S1S 48A = 0612	48	<i>ф</i> 48	φ 50	A1	6	φ 12	-	-	6	4 × 1.8	-	-	79.6
S1S 48A — 1010F	48	<i>ф</i> 48	φ50	A1	10	φ10	-	-	10	-	-	-	135.9
S1S 48A = 1015	48	φ48	φ 50	A1	10	φ15	-	-	10	5 × 2.3	-	-	127.3

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 48B — 0608	48	φ48	φ 50	B1	6	φ 8	φ24	10	16	-	-	-	114.5
S1S 48B * 0608	48	φ48	φ 50	B1	6	φ 8	<i>φ</i> 24	10	16	-	2-M4	4	113.2
S1S 48B * 0610	48	φ48	φ 50	B1	6	 \$10\$	<i>φ</i> 24	10	16	-	2-M5	5	109.1
S1S 48B — 1010	48	φ48	φ 50	B1	10	φ10	ø 30	10	20	-	-	-	185.3
S1S 48B * 1012	48	 \$\psi 48\$	ø 50	B1	10	φ12	ø 30	10	20	-	2-M5	5	177.5
S1S 48B * 1015	48	φ48	φ50	B1	10	ø 15	ø 30	10	20	-	2-M5	5	167.9
S1S 50A — 0610F	50	φ 50	φ 52	A1	6	ø 10	-	-	6	-	-	-	88.8
S1S 50A — 1008F	50	φ 50	φ 52	A1	10	ø 8	-	-	10	-	-	-	150.2
S1S 50B — 0608	50	φ 50	φ52	B1	6	ø 8	<i>φ</i> 24	10	16	-	-	-	121.8
S1S 50B * 0608	50	φ 50	φ 52	B1	6	ø 8	<i>φ</i> 24	10	16	-	2-M4	4	120.4
S1S 50B * 0610	50	φ 50	φ52	B1	6	 <i> </i>	<i>φ</i> 24	10	16	-	2-M5	5	116.4
S1S 50B * 0612	50	φ 50	φ52	B1	6	φ 12	<i>φ</i> 24	10	16	-	2-M5	5	112.3
S1S 50B — 1010	50	φ 50	φ52	B1	10	 ø 10	ø 30	10	20	-	-	-	197.4
S1S 50B * 1010	50	φ50	φ52	B1	10	φ10	φ30	10	20	-	2-M5	5	194.8
S1S 50B * 1012	50	φ 50	φ52	B1	10	φ12	φ 30	10	20	-	2-M5	5	189.6
S1S 50B * 1015	50	φ 50	φ52	B1	10	ø 15	ø 30	10	20	-	2-M5	5	180.0

잇수	치폭	회전속도별 허용전달동력표 휨강도 (단위: W)										
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm				
40	6	12.08	120.78	241.55	483.10	877.30	1,181.18	1,386.01				
40	10	20.08	200.84	401.69	803.38	1,459.31	1,964.04	2,304.26				
42	6	12.85	128.51	257.02	514.05	922.98	1,237.83	1,465.99				
42	10	21.42	214.19	428.37	856.75	1,538.29	2,063.06	2,443.32				
44	6	13.62	136.19	272.39	544.77	967.23	1,292.26	1,544.38				
44	10	22.70	226.99	453.98	907.95	1,612.04	2,153.77	2,573.97				
45	6	14.01	140.08	280.17	560.34	989.34	1,319.35	1,583.81				
45	10	23.35	233.47	466.95	933.89	1,648.90	2,198.92	2,639.68				
46	6	14.40	143.98	287.96	575.93	1,011.26	1,346.11	1,623.07				
46	10	24.00	239.97	479.94	959.88	1,685.44	2,243.51	2,705.12				
48	6	15.0	150.0	300.0	600.0	1,050.0	1,400.0	1,700.0				
48	10	25.0	250.0	500.0	1,010.0	1,750.0	2,330.0	2,830.0				
50	6	15.00	150.00	310.00	630.00	1,090.00	1,460.00	1,770.00				
50	10	26.00	260.00	530.00	1,050.00	1,820.00	2,430.00	2,950.00				

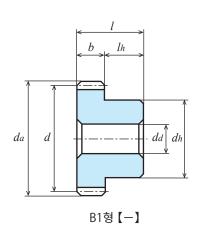

허용 토크(단위: N • m)
100rpm
11.53
19.18
12.27
20.45
13.00
21.67
13.37
22.29
13.74
22.91
14.32
23.87
14.32
24.83

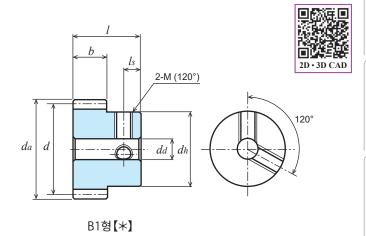

정밀도

재질

S45C

A1형【=】

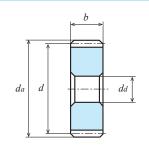

A1형【一】


열처리 치면경도 백래시① 0.04~0.10

- JIS B 1702-1 N8급 20도 ★표면처리는 하지 않았습니다.【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭'(경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

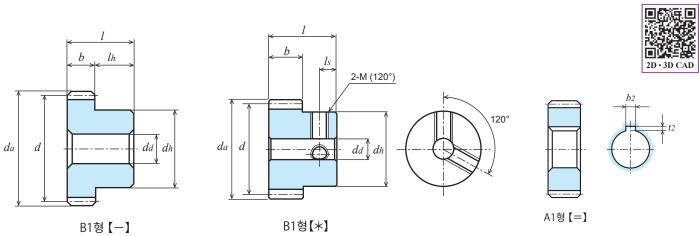
압력각

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 52A — 0610F	52	φ52	φ54	A1	6	φ10	-	-	6	-	-	-	96.3
S1S 52A — 1010F	52	φ52	φ54	A1	10	φ10	-	-	10	-	-	-	160.5
S1S 52B — 0610F	52	φ52	φ54	В1	6	φ10	<i>φ</i> 40	10	16	-	-	-	188.8
S1S 52B — 1010F	52	φ52	φ54	В1	10	φ 10	<i>φ</i> 46	10	20	-	-	-	284.8
S1S 54A — 0610F	54	φ54	φ 56	A1	6	φ10	-	-	6	-	-	-	104.2
S1S 54A — 1010F	54	φ54	φ 56	A1	10	φ10	-	-	10	-	-	-	173.6
S1S 54B — 0610F	54	φ54	φ 56	В1	6	φ10	<i>φ</i> 40	10	16	-	-	-	196.7
S1S 54B — 1010F	54	φ54	ø 56	В1	10	φ10	<i>φ</i> 46	10	20	-	-	-	297.9
S1S 55A — 0610F	55	φ 55	ø 57	A1	6	φ10	-	-	6	-	-	-	108.2
S1S 55B — 1010F	55	φ55	φ 57	В1	10	φ10	<i>φ</i> 46	10	20	-	-	-	304.6
S1S 56A — 0610F	56	ø 56	φ58	A1	6	φ 10	-	-	6	-	-	-	112.3
S1S 56A — 1010F	56	ø 56	φ58	A1	10	φ10	-	-	10	-	-	-	187.2
S1S 56B — 0610	56	ø 56	ø 58	В1	6	φ10	<i>φ</i> 24	10	16	-	-	-	141.7
S1S 56B * 0610	56	ø 56	φ58	В1	6	φ10	<i>φ</i> 24	10	16	-	2-M5	5	139.9
S1S 56B * 0612	56	ø 56	ø 58	В1	6	φ12	<i>φ</i> 24	10	16	-	2-M5	5	135.8
S1S 56B — 1010	56	ø 56	φ58	В1	10	φ10	φ 30	10	20	-	-	-	236.7
S1S 56B * 1010	56	ø 56	φ58	В1	10	φ10	φ 30	10	20	-	2-M5	5	234.0
S1S 56B * 1015	56	φ56	φ58	B1	10	ø 15	ø 30	10	20	-	2-M5	5	219.3
S1S 58A — 0610F	58	φ58	φ60	A1	6	φ10	-	-	6	-	-	-	114.6
S1S 58B — 0610F	58	φ58	φ60	B1	6	φ10	<i>φ</i> 40	10	16	-	-	-	213.2
S1S 58B — 1010F	58	φ58	φ60	В1	10	φ10	φ 50	10	20	-	-	-	361.5
S1S 60A — 0610F	60	φ60	<i>φ</i> 62	A1	6	φ10	-	-	6	-	-	-	129.5
S1S 60A — 1010F	60	φ60	φ62	A1	10	φ10	-	-	10	-	-	-	215.8
S1S60A = 1010	60	φ60	φ62	A1	10	φ10	-	-	10	3 × 1.4	-	-	215.5
S1S60A = 1012	60	φ60	φ62	A1	10	φ12	-	-	10	4 × 1.8	-	-	212.5
S1S60A = 1015	60	φ60	<i>φ</i> 62	A1	10	φ 15	-	-	10	5 × 2.3	-	-	207.2
S1S 60B — 0610	60	φ60	<i>φ</i> 62	B1	6	φ10	ø 30	10	16	-	-	-	178.9
S1S 60B * 0610	60	φ60	φ62	В1	6	φ10	φ 30	10	16	-	2-M5	5	176.3
S1S 60B * 0612	60	φ60	φ62	В1	6	φ12	φ 30	10	16	-	2-M5	5	172.2
S1S 60B * 0615	60	ø 60	φ62	В1	6	ø 15	ø 30	10	16	-	2-M5	5	164.6
S1S 60BF — 1008	60	φ60	φ62	В1	10	ø 8	<i>φ</i> 42	10	20	-	-	-	321.9
S1S 60B — 1010	60	ø 60	φ62	В1	10	φ10	ø 30	10	20	-	-	-	265.3
S1S 60B * 1010	60	ø 60	φ62	В1	10	φ10	ø 30	10	20	-	2-M5	5	262.7
S1S 60B * 1012	60	ø 60	φ62	В1	10	φ12	ø 30	10	20	-	2-M5	5	257.5
S1S 60B * 1015	60	ø 60	φ62	В1	10	φ 15	ø 30	10	20	-	2-M5	5	247.9



	잇수	기준원	이끝원	형	치폭	구멍	허브	허브	전장	키홈	나	사	중량
상품 기호		직경	직경			직경	외경	길이					
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 62A — 0610F	62	φ62	φ64	A1	6	φ10	-	-	6	-	-	-	138.5
S1S 62B — 0610F	62	φ62	φ64	B1	6	φ10	<i>φ</i> 40	10	16	-	-	-	231.0
S1S 62B — 1010F	62	φ62	φ64	B1	10	<i>φ</i> 10	φ 50	10	20	-	-	-	378.8
S1S 64A — 0610F	64	<i>φ</i> 64	φ 66	A1	6	φ10	-	-	6	-	-	-	147.8
S1S 64A — 1010F	64	φ64	φ 66	A1	10	<i>φ</i> 10	-	-	10	-	-	-	246.4
S1S 64B — 0610	64	φ64	φ 66	B1	6	φ10	φ 30	10	16	-	-	-	177.3
S1S 64B * 0610	64	φ64	φ 66	B1	6	<i>φ</i> 10	ø 30	10	16	-	2-M5	5	175.5
S1S 64B * 0612	64	φ64	φ 66	B1	6	φ12	φ 30	10	16	-	2-M5	5	171.4
S1S 64B — 1010	64	φ64	φ 66	B1	10	<i>φ</i> 10	ø 30	10	20	-	-	-	295.9
S1S 64B * 1010	64	φ64	φ 66	В1	10	φ10	ø 30	10	20	-	2-M5	5	293.3
S1S 64B * 1015	64	φ64	ø 66	B1	10	φ 15	ø 30	10	20	-	2-M5	5	278.5

잇수	치폭		허용 토크(단위: N • m)						
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
52	6	0.016	0.16	0.33	0.66	1.13	1.53	1.85	15.27
52	10	0.027	0.27	0.55	1.10	1.89	2.55	3.09	25.78
54	6	0.017	0.17	0.35	0.68	1.17	1.59	1.93	16.23
54	10	0.029	0.29	0.58	1.14	1.96	2.65	3.21	27.69
55	6	0.017	0.17	0.35	0.70	1.20	1.62	1.96	16.23
55	10	0.029	0.29	0.59	1.16	2.00	2.71	3.28	27.69
56	6	0.018	0.18	0.36	0.71	1.22	1.65	2.00	17.18
56	10	0.030	0.30	0.61	1.19	2.03	2.76	3.34	28.64
58	6	0.019	0.19	0.38	0.74	1.25	1.72	2.08	18.14
58	10	0.031	0.31	0.63	1.23	2.09	2.87	3.47	29.60
60	6	0.019	0.19	0.39	0.76	1.29	1.78	2.15	18.14
60	10	0.033	0.330	0.660	1.270	2.150	2.960	3.570	31.51
62	6	0.020	0.20	0.41	0.79	1.33	1.84	2.22	19.09
62	10	0.034	0.34	0.69	1.32	2.22	3.08	3.71	32.46
64	6	0.021	0.21	0.43	0.81	1.37	1.91	2.30	20.05
64	10	0.035	0.35	0.71	1.36	2.29	3.18	3.83	33.42
		·	·	·					

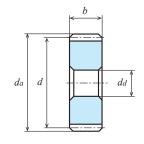


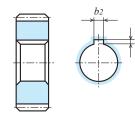
A1형【一】

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.04~0.10

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭' (중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 65A — 0610F	65	φ 65	φ 67	A1	6	φ 10	-	-	6	-	-	-	152.6
S1S 65A — 1010F	65	φ65	φ 67	A1	10	φ10	-	-	10	-	-	-	254.3
S1S 65B — 0610F	65	φ65	φ 67	B1	6	φ 10	<i>ф</i> 40	10	16	-	-	-	245.1
S1S 65B — 1010F	65	φ65	φ 67	B1	10	φ10	φ 50	10	20	-	-	-	402.3
S1S 68A — 0610F	68	φ68	φ 70	A1	6	φ 10	-	-	6	-	-	-	167.4
S1S 68A — 1010F	68	φ68	<i>φ</i> 70	A1	10	φ10	-	-	10	-	-	-	278.9
S1S 68B — 0610F	68	φ68	φ 70	B1	6	φ 10	<i>ф</i> 40	10	16	-	-	-	259.8
S1S 70A — 0610F	70	<i>φ</i> 70	<i>φ</i> 72	A1	6	φ 10	-	-	6	-	-	-	177.6
S1S 70A — 1010F	70	φ 70	φ 72	A1	10	φ 10	-	-	10	-	-	-	295.9
S1S 70B — 0610F	70	φ 70	φ 72	B1	6	φ 10	<i>φ</i> 40	10	16	-	-	-	270.0
S1S 70B — 1010F	70	φ 70	φ 72	B1	10	φ 10	φ 50	10	20	-	-	-	442.9
S1S 72A — 0610F	72	<i>φ</i> 72	φ74	A1	6	φ 10	-	-	6	-	-	-	188.1
S1S 72A — 1010F	72	<i>φ</i> 72	<i>φ</i> 74	A1	10	φ 10	-	-	10	-	-	-	313.4
S1S 72B — 0610	72	<i>φ</i> 72	<i>φ</i> 74	B1	6	φ10	ø 30	10	16	-	-	-	217.6
S1S 72B * 0610	72	<i>φ</i> 72	<i>φ</i> 74	В1	6	φ10	ø 30	10	16	-	2-M5	5	215.7
S1S 72B — 1010	72	<i>φ</i> 72	φ 74	B1	10	φ 10	ø 30	10	20	-	-	-	363.0
S1S 72B * 1010	72	<i>φ</i> 72	φ 74	В1	10	φ 10	ø 30	10	20	-	2-M5	5	360.4
S1S 72B * 1015	72	<i>φ</i> 72	<i>φ</i> 74	B1	10	ø 15	ø 30	10	20	-	2-M5	5	345.6
S1S 75A — 0610F	75	φ 75	φ 77	A1	6	φ10	-	-	6	-	-	-	204.4
S1S 75A — 1010F	75	φ 75	φ 77	A1	10	φ10	-	-	10	-	-	-	340.6
S1S 75B — 0610F	75	φ 75	φ 77	В1	6	φ 10	<i>φ</i> 40	10	16	-	-	-	296.9
S1S 75B — 1010F	75	φ 75	φ 77	B1	10	φ10	φ 50	10	20	-	-	-	488.6
S1S 80A — 0610F	80	ø 80	ø 82	A1	6	φ 10	-	-	6	-	-	-	233.1
S1S 80A — 1010F	80	φ 80	ø 82	A1	10	φ 10	-	-	10	-	-	-	388.4
S1S 80A = 1012	80	ø 80	ø 82	A1	10	φ12	-	-	10	4 × 1.8	-	-	385.1
S1S 80A = 1015	80	φ80	<i>φ</i> 82	A1	10	φ15	-	-	10	5 × 2.3	-	-	379.8
S1S 80B — 0610	80	ø 80	ø 82	B1	6	φ 10	ø 30	10	16	-	-	-	282.6
S1S 80B * 0610	80	ø 80	ø 82	B1	6	φ 10	ø 30	10	16	-	2-M5	5	279.9
S1S 80B * 0612	80	ø 80	ø 82	В1	6	φ12	ø 30	10	16	-	2-M5	5	275.9
S1S 80B * 0615	80	ø 80	<i>φ</i> 82	B1	6	ø 15	ø 30	10	16	-	2-M5	5	268.3
S1S 80BF — 1010	80	ø 80	φ 82	В1	10	φ10	φ60	10	20	-	-	-	603.1
S1S 80B — 1010	80	ø 80	<i>φ</i> 82	В1	10	φ10	φ32	10	20	-	-	-	445.7
S1S 80B * 1010	80	ø 80	φ 82	В1	10	φ10	φ32	10	20	-	2-M5	5	442.8
S1S 80B * 1012	80	ø 80	φ 82	B1	10	φ12	φ32	10	20	-	2-M5	5	437.6
S1S 80B * 1015	80	φ80	φ 82	В1	10	ø 15	φ32	10	20	-	2-M5	5	428.0
S1S 80B * 1016	80	<i>φ</i> 80	φ82	B1	10	ø 16	φ32	10	20	-	2-M5	5	424.3
S1S 84B — 0610F	84	φ84	ø 86	В1	6	φ10	φ 50	10	16	-	-	-	405.3
S1S 84B — 1010F	84	<i>φ</i> 84	φ 86	B1	10	φ10	φ 50	10	20	-	-	-	576.8

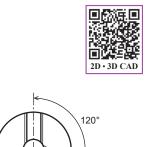

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 85A — 0610F	85	ø 85	ø 87	A1	6	φ10	-	-	6	-	-	-	263.6
S1S 85B — 1010F	85	φ 85	φ 87	B1	10	φ10	φ 50	10	20	-	-	-	587.3
S1S 90A — 0610F	90	ø 90	φ 92	A1	6	φ10	-	-	6	-	-	-	295.9
S1S 90A — 1010F	90	φ90	φ 92	A1	10	φ10	-	-	10	-	-	-	493.2
S1S 90B — 0610F	90	ø 90	ø 92	B1	6	φ10	φ 50	10	16	-	-	-	443.9
S1S 90BF — 1010	90	ø 90	ø 92	B1	10	φ10	φ65	10	20	-	-	-	746.3
S1S 90B — 1010F	90	φ 90	φ 92	B1	10	ø 10	φ 50	10	20	-	-	-	641.2

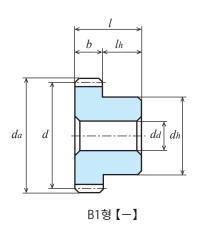

잇수	치폭		회전4	녹도별 허용전	달동력표 함	임강도 (단위	l: kW)		허용 토크(단위: N⋅m)
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
65	6	0.021	0.21	0.43	0.83	1.39	1.94	2.34	20.05
65	10	0.036	0.36	0.73	1.38	2.32	3.23	3.90	34.37
68	6	0.023	0.23	0.46	0.86	1.44	2.03	2.45	21.96
68	10	0.038	0.38	0.77	1.44	2.41	3.38	4.09	36.28
70	6	0.023	0.23	0.47	0.94	1.48	2.09	2.53	21.96
70	10	0.040	0.400	0.790	1.480	2.460	3.470	4.190	38.20
72	6	0.024	0.24	0.49	0.91	1.52	2.15	2.60	22.91
72	10	0.041	0.41	0.82	1.53	2.53	3.59	4.34	39.15
75	6	0.025	0.25	0.51	0.95	1.58	2.24	2.72	23.87
75	10	0.043	0.43	0.86	1.59	2.64	3.74	4.53	41.06
80	6	0.027	0.27	0.55	1.01	1.69	2.39	2.90	25.78
80	10	0.046	0.460	0.920	1.680	2.810	3.960	4.810	43.93
84	6	0.029	0.29	0.59	1.06	1.78	2.51	3.04	27.69
84	10	0.049	0.49	0.98	1.76	2.96	4.19	5.07	46.79
85	6	0.029	0.29	0.59	1.07	1.80	2.54	3.08	27.69
85	10	0.049	0.49	0.99	1.78	3.00	4.24	5.13	46.79
90	6	0.031 0.31		0.63	1.12	1.90	2.69	3.26	29.60
90	10	0.053 0.530		1.060	1.870	3.160 4.460		5.400	50.61

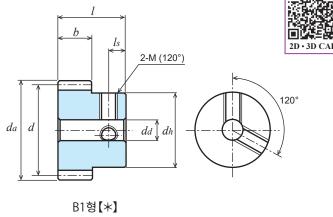
베 벨 기 어

평기어 (S45C)

A1형【=】

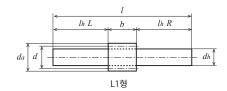

(보통이)


A1형【一】


정밀도	재질	압력각	열처리	치면경도	백래시①					
JIS B 1702-1 N8급	S45C	20도	_	_	0.04~0.10					

- ★표면처리는 하지 않았습니다.【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭'(경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

①동종품, 동재질, 한 쌍의 맞물림 시의 상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	2-M(120°)	ls	W(g)
S1S 96A — 0610F	96	ø 96	ø 98	A1	6	φ10	-	-	6	-	-	-	337.2
S1S 96A — 1010F	96	ø 96	ø 98	A1	10	ø 10	-	-	10	-	-	-	562.0
S1S 96B — 0610F	96	ø 96	ø 98	B1	6	 \$10\$	φ 50	10	16	-	-	-	485.2
S1S 96B — 1010F	96	φ 96	φ 98	B1	10	φ10	φ 50	10	20	-	-	-	710.0
S1S 100A — 0610F	100	φ100	φ102	A1	6	φ 10	-	-	6	-	-	-	366.2
S1S 100A = 0612	100	φ100	φ102	A1	6	φ12	-	-	6	4 × 1.8	-	-	364.3
S1S 100A — 1010F	100	φ100	φ102	A1	10	φ10	-	-	10	-	-	-	610.4
S1S 100B — 0610	100	φ100	φ102	B1	6	φ10	ø 30	10	16	-	-	-	415.8
S1S 100B * 0610	100	φ100	φ102	B1	6	φ 10	φ 30	10	16	-	2-M5	5	413.2
S1S 100B * 0612	100	φ100	φ102	B1	6	φ12	ø 30	10	16	-	2-M5	5	409.1
S1S 100B * 0615	100	φ100	φ102	B1	6	φ 15	ø 30	10	16	-	2-M5	5	401.5
S1S 100B — 1012	100	φ100	φ102	B1	10	φ12	φ 36	10	20	-	-	-	679.1
S1S 100B * 1015	100	φ100	φ102	B1	10	φ 15	φ 36	10	20	-	2-M5	5	666.4
S1S 105A — 1010F	105	φ105	φ107	A1	10	φ 10	-	-	10	-	-	-	673.6
S1S 110A — 0610F	110	φ110	φ112	A1	6	φ 10	-	-	6	-	-	-	443.9
S1S 110A — 1010F	110	φ110	φ112	A1	10	φ 10	-	-	10	-	-	-	739.8
S1S 110B — 0610F	110	φ110	φ112	B1	6	φ 10	φ 50	10	16	-	-	-	591.9
S1S 115A — 0610F	115	φ115	φ117	A1	6	φ 10	-	-	6	-	-	-	485.5
S1S 120A — 0610F	120	φ120	φ122	A1	6	ø 10	-	-	6	-	-	-	529.0
S1S 120A — 1010F	120	φ120	φ122	A1	10	φ 10	-	-	10	-	-	-	881.6
S1S 120A = 1012	120	φ120	φ122	A1	10	φ12	-	-	10	4 × 1.8	-	-	878.4
S1S 120B — 0610	120	φ120	φ122	B1	6	φ10	φ30	10	16	-	-	-	578.7
S1S 120B * 0610	120	φ120	φ122	B1	6	φ 10	φ30	10	16	-	2-M5	5	576.1
S1S 120B * 0612	120	φ120	φ122	B1	6	φ12	ø 30	10	16	-	2-M5	5	572.0
S1S 120B — 1012	120	φ120	φ122	B1	10	φ12	ø 36	10	20	-	-	-	950.6
S1S 120B * 1012	120	φ120	φ122	B1	10	φ 12	φ36	10	20	-	2-M5	5	947.4
S1S 120B * 1015	120	φ120	φ122	B1	10	φ 15	ø 36	10	20	-	2-M5	5	937.8
S1S 120B * 1016	120	φ120	φ122	B1	10	ø 16	ø 36	10	20	-	2-M5	5	934.1

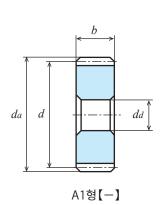


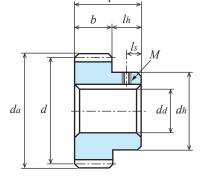
잇수	치폭		회전4	녹도별 허용전	달동력표 원	임강도 (단위	: kW)		
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	
96	6	0.034	0.34	0.68	1.19	2.03	2.87	3.47	
96	10	0.057	0.57	1.14	1.99	3.39	4.79	5.78	
100	6	0.036	0.36	0.71	1.23	2.11	2.99	3.61	
100	10	0.060	0.600	1.180	2.040	3.500	4.950	5.970	
105	10	0.063	0.63	1.24	2.14	3.70	5.23	6.33	
110	6	0.040	0.40	0.40	0.78	1.34	2.32	3.28	4.00
110	10	0.066	0.66	1.30	2.23	3.87	5.47	6.67	
115	6	0.042	0.42	0.81	1.39	2.42	3.42	4.21	
120	6	0.044	0.44	0.85	1.43	2.52	3.56	4.41	
120	10	0.073	0.730	1.400	2.380	4.160	5.890	7.290	

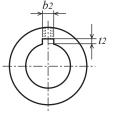
허용 토크(단위: N • m)
100rpm
32.46
54.43
34.37
57.30
60.16
38.19
63.02
40.10
42.01
69.71

b dd dh

K2형【一】


단위:mm


정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.06~0.15


- ★표면처리는 하지 않았습니다. 【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ★【전위】는 전위계수 x가 0.5인 전위 기어입니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

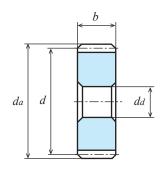
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	W(g)
S1.5S 8L — 1809	8	【전위】	φ15.96	L1	18	-	φ 9(h9)	L24 R48	90	-	-	-	56.2
S1.5S 10L — 1812	10	【전위】	ø 19	L1	18	-	φ12(h9)	L24 R48	90	-	-	-	94.1
S1.5S 12K — 1808	12	<i>φ</i> 18	<i>φ</i> 21	K2	18	φ 8(H8)	<i>φ</i> 21	22	40	-	-	-	80.0
S1.5S 13K — 1808	13	φ19.5	φ22.5	K2	18	φ 8(H8)	φ22.5	22	40	-	-	-	95.1
S1.5S 14K — 1808	14	φ 21	φ24	K2	18	φ 8(H8)	φ 24	22	40	-	-	-	111.3
S1.5S 15A — 1208	15	φ22.5	φ25.5	A1	12	φ 8	-	-	12	-	-	-	32.7
S1.5S 15A — 1808	15	φ22.5	φ25.5	A1	18	φ 8	-	-	18	-	-	-	49.1
S1.5S 15B — 1208	15	φ22.5	φ25.5	B1	12	φ 8	φ18	10	22	-	-	-	48.8
S1.5S 15B — 1608N	15	φ22.5	φ25.5	B1	16	φ 8(H8)	φ 17	10	26	-	-	-	57.5
S1.5S 16A — 1208	16	<i>φ</i> 24	<i>φ</i> 27	A1	12	<i>φ</i> 8	-	-	12	-	-	-	37.9
S1.5S 16A — 1608	16	<i>φ</i> 24	φ27	A1	16	ø 8	-	-	16	-	-	-	50.5
S1.5S 16B — 1208	16	<i>φ</i> 24	φ27	B1	12	ø 8	φ 20	10	22	-	-	-	58.6
S1.5S 16B — 1608N	16	<i>φ</i> 24	φ 27	B1	16	φ 8(H8)	φ18	10	26	-	-	-	66.6
S1.5S 16B — 1808N	16	φ24	φ27	B1	18	φ 8(H8)	φ 20	10	28	-	-	-	77.6
S1.5S 17B — 1208F	17	φ25.5	φ28.5	B1	12	ø 8	φ 20	10	22	-	-	-	64.1
S1.5S 17B — 1808	17	φ25.5	φ28.5	B1	18	φ 8(H8)	φ 20	10	28	-	-	-	85.8
S1.5S 18A — 1210F	18	φ27	φ30	A1	12	φ10	-	-	12	-	-	-	46.5
S1.5S 18A — 1610F	18	<i>φ</i> 27	ø 30	A1	16	φ10	-	-	16	-	-	-	62.1
S1.5S 18A — 1810F	18	φ 27	φ30	A1	18	φ10	-	-	18	-	-	-	69.8
S1.5S 18B — 1210F	18	φ27	φ30	B1	12	φ10	φ22	10	22	-	-	-	70.2
S1.5S 18B — 1610	18	φ 27	φ30	B1	16	φ10	φ 21	10	26	-	-	-	83.1
S1.5S 18B — 1810	18	φ 27	φ30	B1	18	φ10	φ22	10	28	-	-	-	93.5
S1.5S 19A — 1210F	19	φ28.5	φ31.5	A1	12	φ10	-	-	12	-	-	-	52.7
S1.5S 19B — 1210F	19	φ28.5	φ31.5	B1	12	φ10	φ24	10	22	-	-	-	82.0
S1.5S 20A — 1010F	20	φ30	φ33	A1	10	φ10	-	-	10	-	-	-	49.3
S1.5S 20A — 1210F	20	φ30	φ33	A1	12	φ10	-	-	12	-	-	-	59.2
S1.5S 20A = 1212	20	φ30	φ33	A1	12	φ12	-	-	12	4 × 1.8	-	-	55.3
S1.5S 20A = 1215	20	φ30	φ33	A1	12	φ 15	-	-	12	5 × 2.3	-	-	48.9
S1.5S 20A — 1610F	20	φ30	φ33	A1	16	φ10	-	-	16	-	-	-	78.9
S1.5S 20A — 1810F	20	φ30	φ33	A1	18	φ10	-	-	18	-	-	-	88.8
S1.5S 20A = 1812	20	φ30	φ33	A1	18	φ12	-	-	18	4 × 1.8	-	-	82.9
S1.5S 20B — 1010F	20	φ30	φ33	B1	10	ø 10	<i>φ</i> 24	10	20	-	-	-	78.7
S1.5S 20B — 1210F	20	φ30	φ33	B1	12	φ 10	φ 25	10	22	-	-	-	91.6
S1.5S 20B # 1212	20	φ30	φ33	B1	12	φ12	φ 25	10	22	4 × 1.8	МЗ	5	84.2
S1.5S 20B — 1610	20	φ30	φ33	B1	16	φ10	<i>φ</i> 24	10	26	-	-	-	111.4
S1.5S 20B — 1810	20	φ30	φ33	B1	18	ø 10	φ 25	10	28	-	-	-	121.2
S1.5S 20B # 1812	20	φ30	φ33	B1	18	φ12	ø 25	10	28	4 × 1.8	M3	5	111.8

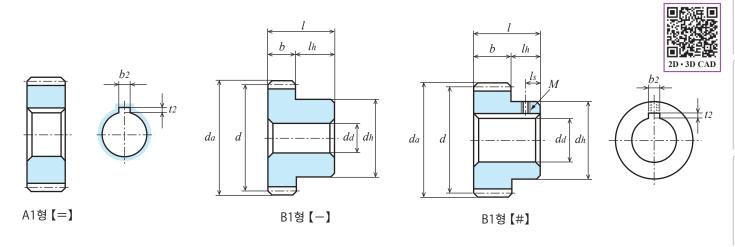
B1형【#】

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	W(g)
S1.5S 23B — 1210F	23	φ34.5	φ37.5	B1	12	φ 10	ø 26	10	22	-	-	-	116.2
S1.5S 24A — 1010F	24	φ36	ø 39	A1	10	φ 10	-	-	10	-	-	-	73.7
S1.5S 24A — 1210F	24	ø 36	ø 39	A1	12	<i>φ</i> 10	-	-	12	-	-	-	88.5
S1.5S 24A = 1212	24	φ36	ø 39	A1	12	φ 12	-	-	12	4 × 1.8	-	-	84.6
S1.5S 24A — 1812F	24	ø 36	ø 39	A1	18	<i>φ</i> 12	-	-	18	-	-	-	127.8
S1.5S 24A = 1816	24	ø 36	ø 39	A1	18	φ 16	-	-	18	5 × 2.3	-	-	113.8
S1.5S 24B — 1010F	24	φ36	ø 39	B1	10	φ 10	ø 30	10	20	-	-	-	123.1
S1.5S 24B — 1210F	24	φ36	ø 39	B1	12	φ 10	ø 30	10	22	-	-	-	137.8
S1.5S 24B # 1212	24	φ36	ø 39	B1	12	φ12	ø 30	10	22	4 × 1.8	М3	5	130.4
S1.5S 24B — 1812	24	φ36	φ39	B1	18	φ12	ø 30	10	28	-	-	-	174.6

잇수	치폭		회전속	속도별 허용전	달동력표 춤	팀강도 (단위	: kW)		허용 토크
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	10
8	18	0.010	0.108	0.216	0.433	0.867	1.301	1.619	1
10	18	0.014	0.149	0.299	0.598	1.197	1.791	2.156	1
12	18	0.013	0.137	0.275	0.550	1.100	1.618	1.942	1
13	18	0.015	0.158	0.316	0.632	1.264	1.835	2.196	1
14	18	0.017	0.179	0.358	0.717	1.434	2.052	2.450	1
15	12	0.013	0.133	0.267	0.535	1.071	1.513	1.801	1
15	16	0.017	0.178	0.357	0.714	1.428	2.017	2.402	1
15	18	0.020	0.200	0.401	0.803	1.607	2.269	2.702	1
16	12	0.014	0.148	0.297	0.594	1.188	1.657	1.968	1
16	16	0.019	0.198	0.396	0.792	1.584	2.209	2.624	1
16	18	0.022	0.222	0.445	0.891	1.782	2.485	2.952	2
17	12	0.016	0.164	0.327	0.654	1.295	1.800	2.133	1
17	18	0.024	0.245	0.490	0.981	1.942	2.700	3.198	2
18	12	0.017	0.178	0.357	0.714	1.401	1.941	2.294	1
18	16	0.023	0.238	0.476	0.952	1.869	2.588	3.059	2
18	18	0.026	0.268	0.536	1.072	2.102	2.911	3.441	2
19	12	0.019	0.194	0.388	0.776	1.509	2.083	2.456	1
20	10	0.017	0.174	0.349	0.699	1.346	1.852	2.179	1
20	12	0.020	0.209	0.419	0.839	1.616	2.222	2.614	1
20	16	0.027	0.279	0.559	1.118	2.154	2.963	3.486	2
20	18	0.031	0.314	0.629	1.258	2.424	3.333	3.922	2
23	12	0.025	0.257	0.514	1.029	1.930	2.628	3.073	2
24	10	0.022	0.227	0.455	0.911	1.694	2.299	2.683	2
24	12	0.027	0.273	0.546	1.093	2.033	2.759	3.219	2
24	18	0.041	0.410	0.820	1.640	3.049	4.139	4.829	3

	허용 토크(단위: N·m)
)rpm	100rpm
19	10.31
56	14.22
42	13.08
96	15.08
50	17.09
01	12.70
02	16.99
02	19.09
68	14.13
24	18.90
52	21.20
33	15.66
98	23.39
94	16.99
59	22.72
41	25.59
56	18.52
79	16.61
14	19.95
86	26.64
22	29.98
73	24.54
83	21.67
19	26.07
29	39.15




정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.06~0.15

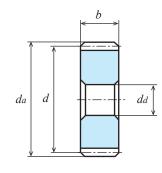
- ★표면처리는 하지 않았습니다.【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

A1형【一】

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	W(g)
S1.5S 25A — 1010F	25	φ37.5	φ40.5	A1	10	φ10	-	-	10	-	-	-	80.5
S1.5S 25A — 1210F	25	φ37.5	\$ 40.5	A1	12	φ 10	-	-	12	-	-	-	96.6
S1.5S 25A = 1212	25	φ37.5	\$ 40.5	A1	12	ø 12	-	-	12	4 × 1.8	-	-	92.7
S1.5S 25A = 1816	25	φ37.5	φ40.5	A1	18	φ 16	-	-	18	5 × 2.3	-	-	126.0
S1.5S 25B — 1010F	25	φ37.5	φ40.5	B1	10	φ 10	ø 30	10	20	-	-	-	129.9
S1.5S 25B — 1210	25	φ37.5	φ40.5	B1	12	φ10	φ30	10	22	-	-	-	146.1
S1.5S 25B # 1215	25	φ37.5	φ40.5	B1	12	φ 15	ø 30	10	22	5 × 2.3	M4	5	126.7
S1.5S 25B — 1612	25	φ37.5	φ40.5	B1	16	φ12	φ30	10	26	-	-	-	171.2
S1.5S 25B — 1812	25	φ37.5	φ40.5	B1	18	φ 12	φ 32	10	28	-	-	-	194.5
S1.5S 26A — 1210F	26	φ39	φ42	A1	12	ø 10	-	-	12	-			105.1
S1.5S 26A — 1812F	26	ø 39	φ42	A1	18	φ12	-	-	18	-			152.8
S1.5S 26B — 1210F	26	ø 39	φ42	B1	12	ø 10	φ32	10	22	-			162.1
S1.5S 26B — 1812	26	ø 39	φ42	B1	18	φ12	φ32	10	28	-			207.2
S1.5S 27A — 1210F	27	φ40.5	φ43.5	A1	12	φ10	-	-	12	-			114.0
S1.5S 27B — 1210F	27	φ40.5	φ43.5	B1	12	ø 10	φ 32	10	22	-			170.9
S1.5S 28A — 1012F	28	φ42	ø 45	A1	10	ø 12	-	-	10	-	-	-	99.9
S1.5S 28A — 1210F	28	φ42	φ 45	A1	12	φ 10	-	-	12	-	-	-	123.1
S1.5S 28A — 1612F	28	φ42	φ 45	A1	16	φ 12	-	-	16	-	-	-	159.8
S1.5S 28A — 1812F	28	φ42	ø 45	A1	18	φ 12	-	-	18	-	-	-	179.8
S1.5S 28B — 1010F	28	φ42	ø 45	B1	10	φ 10	φ36	10	20	-	-	-	176.3
S1.5S 28B — 1210	28	φ42	φ 45	B1	12	φ 10	φ 30	10	22	-	-	-	172.5
S1.5S 28B # 1212	28	φ42	φ45	B1	12	φ 12	φ30	10	22	4 × 1.8	M3	5	165.0
S1.5S 28B — 1812	28	φ42	φ 45	B1	18	φ12	φ 36	10	28	-	-	-	251.0
S1.5S 28B # 1815	28	φ42	\$\phi 45	B1	18	φ 15	φ36	10	28	5 × 2.3	M4	5	233.8
S1.5S 29B — 1812	29	φ43.5	φ46.5	B1	18	φ12	φ38	10	28	-	-	-	274.3
S1.5S 30A — 1012F	30	φ45	φ48	A1	10	φ12	-	-	10	-	-	-	116.0
S1.5S 30A — 1210F	30	φ45	φ48	A1	12	φ10	-	-	12	-	-	-	142.4
S1.5S 30A = 1215	30	\$\phi45	φ48	A1	12	φ 15	-	-	12	5×2.3	-	-	132.1
S1.5S 30A — 1614F	30	\$\phi 45	φ48	A1	16	<i>φ</i> 14	-	-	16	-	-	-	180.4
S1.5S 30A — 1814F	30	φ45	φ48	A1	18	<i>φ</i> 14	-	-	18	-	-	-	203.0
S1.5S 30A = 1818	30	φ45	φ48	A1	18	φ 18	-	-	18	6 × 2.8	-	-	186.4
S1.5S 30B — 1010F	30	φ45	φ48	B1	10	φ 10	ø 38	10	20	-	-	-	201.5
S1.5S 30B — 1210	30	φ45	φ48	B1	12	φ10	φ30	10	22	-	-	-	191.9
S1.5S 30B # 1212	30	φ45	φ48	B1	12	φ12	φ30	10	22	4 × 1.8	M3	5	184.3
S1.5S 30B # 1215	30	φ45	φ48	B1	12	φ15	φ30	10	22	5 × 2.3	M4	5	172.5
S1.5S 30B — 1612	30	φ45	φ48	B1	16	φ12	φ38	10	26	-	-	-	265.9
S1.5S 30B — 1812	30	ø 45	φ48	B1	18	φ12	\$\phi 40	10	28	-	-	-	298.7

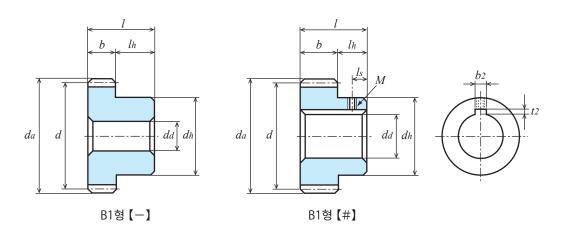
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	W(g)
S1.5S 32A — 1010F	32	φ48	φ51	A1	10	ø 10	-	-	10	-	-	-	135.9
S1.5S 32A — 1614F	32	φ48	φ 51	A1	16	φ14	-	-	16	-	-	-	207.9
S1.5S 32B — 1010	32	φ48	φ 51	B1	10	ø 10	ø 30	10	20	-	-	-	185.3
S1.5S 32B — 1612	32	φ48	φ51	B1	16	φ12	φ40	10	26	-	-	-	303.0
S1.5S 34A — 1012F	34	φ 51	φ54	A1	10	φ 12	-	-	10	-	-	-	151.5
S1.5S 34B — 1010F	34	φ 51	φ54	B1	10	ø 10	ϕ 44	10	20	-	-	-	267.4
S1.5S 35A — 1614F	35	φ52.5	φ55.5	A1	16	φ14	-	-	16	-	-	-	252.6
S1.5S 35B — 1010F	35	φ52.5	φ55.5	B1	10	φ 10	φ44	10	20	-	-	-	277.0

잇수	치폭		회전속	녹도별 허용전	달동력표 함	임강도 (단위	: kW)		허용 토크(단위: N • m)
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
25	10	0.024	0.241	0.482	0.965	1.779	2.407	2.803	23.01
25	12	0.028	0.289	0.579	1.159	2.135	2.889	3.364	27.59
25	16	0.038	0.386	0.772	1.545	2.847	3.852	4.486	36.86
25	18	0.043	0.434	0.869	1.738	3.203	4.334	4.047	41.44
26	12	0.030	0.306	0.612	1.224	2.236	3.017	3.524	29.22
26	18	0.045	0.459	0.918	1.836	3.355	4.526	5.286	43.83
27	12	0.032	0.322	0.645	1.290	2.337	3.143	3.697	30.75
28	10	0.028	0.282	0.565	1.130	2.030	2.722	3.224	26.73
28	12	0.033	0.339	0.678	1.356	2.436	3.267	3.869	32.37
28	16	0.045	0.452	0.904	1.809	3.248	4.356	5.159	43.16
28	18	0.050	0.508	1.017	2.035	3.654	4.901	5.804	48.51
29	18	0.053	0.533	1.067	2.135	3.802	5.084	6.063	50.89
30	10	0.031	0.310	0.620	1.241	2.192	2.923	3.509	29.60
30	12	0.037	0.372	0.744	1.489	2.630	3.508	4.211	35.52
30	16	0.049	0.496	0.993	1.986	3.507	4.677	5.615	47.36
30	18	0.055	0.558	1.117	2.234	3.946	5.262	6.317	53.28
32	10	0.033	0.338	0.677	1.352	2.351	3.122	3.793	32.27
32	16	0.054	0.541	1.083	2.164	3.762	4.996	6.069	51.66
34	10	0.036	0.366	0.733	1.452	2.507	3.359	4.074	34.95
35	10	0.038	0.381	0.762	1.501	2.583	3.477	4.214	36.38
35	16	0.060	0.609	1.219	2.402	4.133	5.563	6.743	58.15



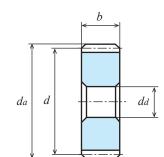
정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.06~0.15

- ★표면처리는 하지 않았습니다.【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭' (중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.



A1형【一】

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(g)
S1.5S 36A — 1012F	36	φ54	φ 57	A1	10	φ12	-	-	10	-	-	-	170.9
S1.5S 36A — 1614F	36	φ54	φ 57	A1	16	φ14	-	-	16	-	-	-	268.3
S1.5S 36B — 1010	36	φ54	φ 57	В1	10	φ10	φ32	10	20	-	-	-	230.7
S1.5S 36B # 1012	36	φ54	φ 57	В1	10	φ12	φ32	10	20	4 × 1.8	M3	5	223.8
S1.5S 36B — 1612	36	φ54	φ57	B1	16	φ12	φ40	10	26	-	-	-	363.5
S1.5S 38B — 1012F	38	φ57	φ60	В1	10	φ12	φ 50	10	20	-	-	-	336.7
S1.5S 38B — 1612	38	φ 57	ø 60	B1	16	φ12	φ 50	10	26	-	-	-	451.8
S1.5S 40A — 1012F	40	φ60	ø 63	A1	10	φ12	-	-	10	-	-	-	213.1
S1.5S 40A = 1016	40	φ60	φ63	A1	10	ø 16	-	-	10	5 × 2.3	-	-	205.3
S1.5S 40A — 1614F	40	φ60	φ63	A1	16	φ14	-	-	16	-	-	-	335.8
S1.5S 40B — 1012	40	φ60	ø 63	В1	10	φ12	ø 36	10	20	-	-	-	284.3
S1.5S 40B # 1015	40	φ60	ø 63	B1	10	φ 15	ø 36	10	20	5 × 2.3	M4	5	271.8
S1.5S 40B # 1018	40	ø 60	ø 63	B1	10	φ18	ø 36	10	20	6 × 2.8	M5	5	258.6
S1.5S 40B — 1612	40	ø 60	φ63	В1	16	φ12	<i>φ</i> 40	10	26	-	-	-	431.0
S1.5S 42B — 1012F	42	φ63	ø 66	В1	10	φ12	φ 50	10	20	-	-	-	381.1
S1.5S 42B — 1612	42	φ63	ø 66	В1	16	φ12	φ 50	10	26	-	-	-	522.9
S1.5S 44A — 1012F	44	φ66	ø 69	A1	10	φ12	-	-	10	-	-	-	259.7
S1.5S 44A — 1612F	44	φ66	ø 69	A1	16	φ12	-	-	16	-	-	-	415.5
S1.5S 44B — 1012F	44	φ66	ø 69	В1	10	φ12	φ 50	10	20	-	-	-	404.9
S1.5S 44B — 1612	44	φ66	ø 69	B1	16	φ12	φ50	10	26	-	-	-	561.1
S1.5S 45A — 1012F	45	φ67.5	φ70.5	A1	10	φ12	-	-	10	-	-	-	272.0
S1.5S 45B — 1012F	45	φ67.5	φ70.5	B1	10	φ12	φ 50	10	20	-	-	-	417.3
S1.5S 46A — 1012F	46	ø 69	φ72	A1	10	φ12	-	-	10	-	-	-	284.7
S1.5S 46B — 1012F	46	ø 69	φ72	B1	10	φ12	φ50	10	20	-	-	-	429.9
S1.5S 48A — 1014F	48	<i>φ</i> 72	ø 75	A1	10	φ14	-	-	10	-	-	-	307.5
S1.5S 48A — 1616F	48	<i>φ</i> 72	ø 75	A1	16	φ16	-	-	16	-	-	-	486.1
S1.5S 48B — 1012	48	<i>φ</i> 72	ø 75	B1	10	φ12	φ 36	10	20	-	-	-	382.0
S1.5S 48B — 1612	48	<i>φ</i> 72	ø 75	B1	16	φ12	<i>φ</i> 40	10	26	-	-	-	587.3
S1.5S 50A — 1014F	50	φ 75	ø 78	A1	10	φ14	-	-	10	-	-	-	334.7
S1.5S 50A — 1616F	50	φ 75	φ 78	A1	16	φ16	-	-	16	-	-	-	529.6
S1.5S 50B — 1012	50	φ 75	 \$\phi 78\$	B1	10	φ12	φ40	10	20	-	-	-	428.0
S1.5S 50B # 1015	50	φ 75	ø 78	B1	10	φ 15	φ40	10	20	5 × 2.3	M4	5	415.3
S1.5S 50B # 1018	50	φ 75	ø 78	В1	10	φ18	φ40	10	20	6 × 2.8	M5	5	402.1
S1.5S 50B — 1615	50	φ 75	ø 78	B1	16	φ 15	φ 50	10	26	-	-	-	673.4



da										
		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	W(g)
β φ 81	A1	10	φ14	-	-	10	-	-	-	363.0
β φ 81	A1	16	φ 16	-	-	16	-	-	-	574.9
φ81	B1	16	ø 16	φ60	10	26	-	-	-	781.6
<i>φ</i> 84	B1	16	φ16	φ60	10	26	-	-	-	828.7
3	'8 φ81 '8 φ81	 φ81 φ81 β8 φ81 β1 	 φ81 φ81 β8 φ81 β1 β1 	68 φ81 A1 16 φ16 68 φ81 B1 16 φ16	88 φ81 A1 16 φ16 - 88 φ81 B1 16 φ16 φ60	88 φ81 A1 16 φ16 88 φ81 B1 16 φ16 φ60 10	88 φ81 A1 16 φ16 16 88 φ81 B1 16 φ16 φ60 10 26	8 φ81 A1 16 φ16 - - 16 - 8 φ81 B1 16 φ16 φ60 10 26 -	8 φ81 A1 16 φ16 - - 16 - - 8 φ81 B1 16 φ16 φ60 10 26 - -	88 φ81 A1 16 φ16 16 188 φ81 B1 16 φ16 φ60 10 26

잇수	치폭		회전4	녹도별 허용전	달동력표 휨	팀강도 (단위	: kW)		허용 토크(단위: N • m)
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
36	10	0.039	0.395	0.790	1.550	2.659	3.594	4.353	37.72
36	16	0.063	0.632	1.265	2.481	4.254	5.751	6.966	60.35
38	10	0.042	0.424	0.848	1.648	2.807	3.828	4.629	40.49
38	16	0.067	0.678	1.356	2.637	4.492	6.125	7.407	64.74
40	10	0.045	0.452	0.905	1.744	2.952	4.060	4.902	43.16
40	16	0.072	0.724	1.449	2.791	4.724	6.496	7.844	69.13
42	10	0.048	0.481	0.963	1.839	3.094	4.290	5.173	45.93
42	16	0.077	0.771	1.542	2.943	4.951	6.864	8.276	73.62
44	10	0.051	0.510	1.021	1.932	3.230	4.515	5.448	48.70
44	16	0.080	0.820	1.630	3.090	5.170	7.220	8.720	78.30
45	10	0.052	0.525	1.050	1.978	3.298	4.628	5.588	50.13
46	10	0.053	0.539	1.079	2.024	3.365	4.740	5.727	51.47
48	10	0.05	0.56	1.13	2.11	3.50	4.96	6.00	53.47
48	16	0.09	0.91	1.82	3.39	5.60	7.94	9.61	86.90
50	10	0.059	0.59	1.19	2.20	3.66	5.18	6.28	56.34
50	16	0.096	0.96	1.92	3.53	5.86	8.30	10.05	91.67
52	10	0.062	0.62	1.25	2.29	3.82	5.40	6.55	59.20
52	16	0.101	1.01	2.01	3.67	6.12	8.65	10.49	96.45
54	16	0.105	1.05	2.10	3.81	6.38	9.00	10.92	100.27

A1형【一】

단위:mm

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8	S45C	20도	_	_	0.06~0.15

- ★표면처리는 하지 않았습니다.
- ★보 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
88712	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
S1.5S 55A — 1616F	55	φ 82.5	φ 85.5	A1	16	ø 16	-	-	16	0.65
S1.5S 56A — 1616F	56	φ 84	φ 87	A1	16	φ 16	-	-	16	0.67
S1.5S 56B — 1616	56	φ 84	φ 87	B1	16	φ16	φ 50	10	26	0.81
S1.5S 58B — 1014F	58	φ 87	φ 90	B1	10	φ14	φ 50	10	20	0.60
S1.5S 60A — 1014F	60	ø 90	φ 93	A1	10	φ14	-	-	10	0.49
S1.5S 60A — 1616F	60	ø 90	φ 93	A1	16	φ 16	-	-	16	0.77
S1.5S 60B — 1014	60	ø 90	φ 93	B1	10	φ14	<i>φ</i> 40	10	20	0.57
S1.5S 64A — 1014F	64	φ 96	φ 99	A1	10	<i>φ</i> 14	-	-	10	0.56
S1.5S 64B — 1014	64	φ 96	φ 99	B1	10	<i>φ</i> 14	<i>φ</i> 40	10	20	0.64
S1.5S 68B — 1014F	68	φ102	φ105	B1	10	<i>φ</i> 14	φ 50	10	20	0.77
S1.5S 70B — 1616	70	φ105	φ108	B1	16	φ 16	φ50	10	26	1.20
S1.5S 72A — 1016F	72	 \$\phi 108	φ111	A1	10	φ 16	-	-	10	0.70
S1.5S 72A — 1618F	72	φ108	φ111	A1	16	φ 18	-	-	16	1.12
S1.5S 72B — 1016	72	φ108	φ111	B1	10	φ 16	φ40	10	20	0.79
S1.5S 75B — 1016F	75	φ112.5	φ115.5	B1	10	ø 16	φ 50	10	20	0.90
S1.5S 75B — 1618	75	φ112.5	φ115.5	B1	16	φ 18	φ 60	10	26	1.42
S1.5S 80A — 1618F	80	φ120	φ123	A1	16	φ18	-	-	16	1.39
S1.5S 80B — 1016	80	φ120	φ123	B1	10	φ 16	φ40	10	20	0.96
S1.5S 90A — 1622F	90	φ135	φ138	A1	16	φ 22	-	-	16	1.75
S1.5S 90B — 1618	90	φ135	φ138	B1	16	φ 18	φ 70	10	26	2.05
S1.5S 100A — 1016F	100	φ150	φ153	A1	10	ø 16	-	-	10	1.37
S1.5S 100A — 1618F	100	φ150	φ153	A1	16	ø 18	-	-	16	2.19
S1.5S 100B — 1016	100	φ150	φ153	B1	10	ø 16	φ40	10	20	1.46
S1.5S 100B — 1618	100	φ150	φ153	B1	16	ø 18	φ 50	10	26	2.32

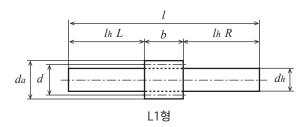
B1형【一】

목 차

인포메이션

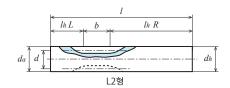
기 어 박 스

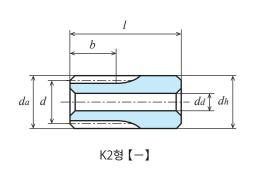
t	ŀ	
	i	
Ţ	ŀ	
	į	

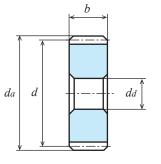

잇수	치폭		회전속	속도별 허용전	달동력표 함	림강도 (단위	: kW)		허용 토크(단위: N • m)
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
55	16	0.108	1.08	2.15	3.88	6.51	9.18	11.14	103.13
56	16	0.110	1.10	2.20	3.95	6.64	9.37	11.35	105.04
58	10	0.071	0.71	1.43	2.55	4.30	6.07	7.36	67.80
60	10	0.074	0.74	1.49	2.63	4.46	6.30	7.62	70.66
60	16	0.120	1.20	2.39	4.22	7.14	10.09	12.20	114.59
64	10	0.080	0.80	1.61	2.80	4.77	6.74	8.15	76.39
68	10	0.087	0.87	1.72	2.96	5.08	7.19	8.67	83.08
70	16	0.143	1.43	2.83	4.86	8.38	11.85	14.35	136.56
72	10	0.092	0.93	1.82	3.12	5.39	7.62	9.27	88.81
72	16	0.148	1.48	2.91	4.99	8.62	12.19	14.83	141.33
75	10	0.097	0.97	1.89	3.23	5.61	7.94	9.72	92.63
75	16	0.156	1.56	3.03	5.17	8.98	12.71	15.56	148.97
80	10	0.10	1.05	2.02	3.42	5.98	8.47	10.48	100.27
80	16	0.17	1.68	3.23	5.47	9.57	13.55	16.76	160.43
90	16	0.19	1.92	3.61	6.02	10.79	15.34	-	183.35
100	10	0.14	1.35	2.49	4.13	7.49	10.80	-	128.92
100	16	0.22	2.16	3.98	6.61	11.98	17.28	-	206.27

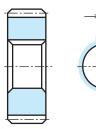
인포메 이션

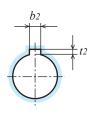
평기어 (S45C) (보통이)



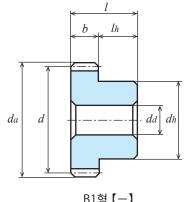

정밀도	재질	압력각	열처리	치면경도	백래시①					
JIS B 1702-1 N8급	S45C	20도	-	-	0.08~0.20					
★표면처리는 하지 않았습니다.【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함.										

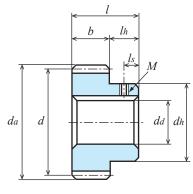

- 【=】에는 키 홈, 키 재료가 포함되어 있습니다. ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ★【전위】는 전위계수 x가 0.5인 전위 기어입니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.




상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(g)
S2S 8L — 2221F	8	【전위】	φ21.28	L2	22	-	φ21.28	L32 R64	118	-	-	-	312.0
S2S 10L — 2216	10	【전위】	φ25.33	L1	22	-	φ16(h9)	L32 R64	118	-	-	-	217.2
S2S 12K — 2210	12	φ 24	φ 28	K2	22	φ10(H8)	ø 28	28	50	-	-	-	182.6
S2S 13K — 2210F	13	φ 26	φ30	K2	22	φ10(H8)	φ30	28	50	-	-	-	216.2
S2S 14A — 1410	14	φ 28	φ32	A1	14	φ 10	-	-	14	-	-	-	59.0
S2S 14A — 2010	14	<i>φ</i> 28	φ32	A1	20	φ10	-	-	20	-	-	-	84.3
S2S 14B — 1410N	14	φ 28	φ32	B1	14	ø 10	ø 22	10	24	-	-	-	82.8
S2S 14B — 2010N	14	<i>φ</i> 28	φ32	B1	20	φ10(H8)	φ 22	10	30	-	-	-	108.1
S2S 15A — 1410	15	ø 30	φ34	A1	14	φ 10	-	-	14	-	-	-	69.5
S2S 15A — 2010	15	φ30	φ34	A1	20	φ10	-	-	20	-	-	-	98.7
S2S 15A — 2210	15	φ30	φ34	A1	22	φ10	-	-	22	-	-	-	108.5
S2S 15B — 1410N	15	φ30	φ34	B1	14	φ10	<i>φ</i> 24	10	24	-	-	-	98.5
S2S 15B — 2010N	15	φ30	φ34	B1	20	φ10(H8)	φ 24	10	30	-	-	-	128.1
S2S 15B — 2210N	15	φ30	φ34	B1	22	φ10(H8)	φ 24	10	32	-	-	-	138.0
S2S 16A — 1412	16	φ32	ø 36	A1	14	φ12	-	-	14	-	-	-	76.0
S2S 16B — 1412N	16	φ32	φ36	B1	14	φ12	ø 26	10	24	-	-	-	108.8
S2S 17B — 2212	17	φ34	φ 38	B1	22	φ12	φ 28	10	32	-	-	-	176.8
S2S 18A — 1212F	18	φ 36	φ40	A1	12	φ12	-	-	12	-	-	-	85.2
S2S 18A — 1412F	18	ø 36	φ40	A1	14	φ12	-	-	14	-	-	-	99.4
S2S 18A — 2012F	18	ø 36	<i>φ</i> 40	A1	20	φ12	-	-	20	-	-	-	142.1
S2S 18A — 2212F	18	φ36	φ40	A1	22	φ12	-	-	22	-	-	-	156.3
S2S 18A = 2215	18	ø 36	<i>φ</i> 40	A1	22	φ15	-	-	22	5 × 2.3	-	-	143.3
S2S 18B — 1412	18	φ 36	<i>φ</i> 40	B1	14	φ12	ø 30	10	24	-	-	-	146.1
S2S 18B # 1415	18	ø 36	φ40	B1	14	φ15	ø 30	10	24	5 × 2.3	M4	5	131.6
S2S 19B — 1412	19	<i>ф</i> 38	φ42	B1	14	φ12	φ32	10	24	-	-	-	166.6

2D · 3D CAD



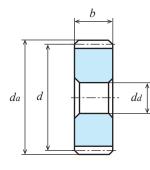


A1형【**=**】

	b lh	
da d	ls M dd dh	
	B1형【#】	

잇수	치폭		회전4	속도별 허용전	달동력표 휨	팀강도 (단위	: kW)	
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
8	22	0.023	0.235	0.471	0.942	1.885	2.785	3.345
10	22	0.032	0.325	0.650	1.300	2.600	3.702	4.414
12	22	0.029	0.298	0.597	1.195	2.388	3.331	3.956
13	22	0.034	0.343	0.687	1.374	2.712	3.764	4.456
14	14	0.024	0.247	0.495	0.991	1.932	2.670	3.151
14	20	0.035	0.354	0.708	1.416	2.761	3.814	4.501
15	14	0.027	0.277	0.555	1.111	2.139	2.942	3.462
15	20	0.039	0.396	0.793	1.587	3.056	4.203	4.946
15	22	0.043	0.436	0.873	1.746	3.362	4.624	5.440
16	14	0.030	0.308	0.616	1.233	2.346	3.212	3.768
17	22	0.053	0.533	1.066	2.132	4.009	5.465	6.393
18	12	0.031	0.317	0.635	1.270	2.361	3.205	3.739
18	14	0.037	0.370	0.741	1.482	2.754	3.739	4.362
18	20	0.052	0.529	1.058	2.117	3.935	5.341	6.232
18	22	0.058	0.582	1.164 2.329		4.328	5.875	6.855
19	14	0.040	0.403	0.806	1.611	2.960	4.001	4.656

허용 토크(단위: N • m)
100rpm
22.44
31.03
28.45
32.75
23.58
33.80
26.45
37.81
41.63
29.41
50.89
30.27
35.33
50.51
55.57
38.48



정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	-	_	0.08~0.20

- ★표면처리는 하지 않았습니다.【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭' (중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

A1형【一】

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(g)
S2S 20A — 1212F	20	<i>φ</i> 40	<i>φ</i> 44	A1	12	φ 12	-	-	12	-	-	-	107.7
S2S 20A — 1412F	20	<i>φ</i> 40	<i>φ</i> 44	A1	14	φ 12	-	-	14	-	-	-	125.7
S2S 20A — 2012F	20	<i>φ</i> 40	<i>φ</i> 44	A1	20	φ 12	-	-	20	-	-	-	179.5
S2S 20A — 2212F	20	<i>φ</i> 40	<i>ф</i> 44	A1	22	φ12	-	-	22	-	-	-	197.5
S2S 20A = 2215	20	<i>φ</i> 40	<i>ф</i> 44	A1	22	φ 15	-	-	22	5 × 2.3	-	-	184.5
S2S 20B — 1212	20	<i>φ</i> 40	φ44	В1	12	φ12	φ33	10	22	-	-	-	162.1
S2S 20B — 1412	20	<i>φ</i> 40	<i>ф</i> 44	В1	14	φ 12	φ32	10	24	-	-	-	180.0
S2S 20B # 1415	20	<i>φ</i> 40	<i>φ</i> 44	B1	14	φ 15	φ32	10	24	5 × 2.3	M4	5	165.4
S2S 20BF — 2008	20	<i>φ</i> 40	<i>φ</i> 44	B1	20	φ8(H8)	φ34	20	40	-	-	-	321.1
S2S 20B — 2012N	20	<i>φ</i> 40	<i>φ</i> 44	B1	20	φ12	φ34	10	30	-	-	-	242.1
S2S 20B — 2212	20	<i>φ</i> 40	<i>φ</i> 44	B1	22	φ12	φ34	10	32	-	-	-	260.1
S2S 20B # 2215	20	<i>φ</i> 40	<i>φ</i> 44	B1	22	ø 15	φ34	10	32	5 × 2.3	M4	5	240.6
S2S 20B # 2220	20	<i>φ</i> 40	<i>φ</i> 44	В1	22	ø 20	φ34	10	32	6 × 2.8	M4	5	204.9
S2S 21B — 2212	21	φ42	<i>ф</i> 46	B1	22	φ12	φ 36	10	32	-	-	-	290.9
S2S 22B — 2212	22	<i>φ</i> 44	<i>ф</i> 48	B1	22	φ12	φ 38	10	32	-	-	-	323.4
S2S 24A — 1214F	24	<i>ф</i> 48	φ52	A1	12	φ14	-	-	12	-	-	-	156.0
S2S 24A — 1412F	24	<i>φ</i> 48	φ 52	A1	14	φ12	-	-	14	-	-	-	186.4
S2S 24A — 2014F	24	<i>ф</i> 48	φ52	A1	20	φ14	-	-	20	-	-	-	259.9
S2S 24A — 2214F	24	φ48	φ 52	A1	22	φ14	-	-	22	-	-	-	285.9
S2S 24A = 2220	24	<i>ф</i> 48	φ52	A1	22	ø 20	-	-	22	6 × 2.8	-	-	255.4
S2S 24B — 1214	24	φ48	φ 52	B1	12	φ14	\$ 40	10	22	-	-	-	207.1
S2S 24B — 1414	24	<i>ф</i> 48	φ52	B1	14	φ14	φ32	10	24	-	-	-	233.2
S2S 24B — 2014N	24	φ48	φ 52	B1	20	φ14	φ42	10	30	-	-	-	356.8
S2S 24B — 2214	24	<i>\$</i> 48	φ52	B1	22	φ14	φ40	10	32	-	-	-	372.7
S2S 25A — 1414F	25	φ50	φ54	A1	14	<i>φ</i> 14	-	-	14	-	-	-	198.9
S2S 25A = 1416	25	φ50	φ54	A1	14	ø 16	-	-	14	5 × 2.3	-	-	192.4
S2S 25A — 2014F	25	φ50	φ54	A1	20	<i>φ</i> 14	-	-	20	-	-	-	284.1
S2S 25A — 2214F	25	φ50	φ54	A1	22	<i>φ</i> 14	-	-	22	-	-	-	312.5
S2S 25B — 1214	25	φ 50	φ54	B1	12	<i>φ</i> 14	φ42	10	22	-	-	-	221.7
S2S 25B — 1414	25	φ50	φ54	B1	14	<i>φ</i> 14	φ32	10	24	-	-	-	250.1
S2S 25BF — 2008	25	φ50	φ54	B1	20	φ8(H8)	φ40	20	40	-	-	-	486.2
S2S 25B — 2014N	25	φ50	φ54	B1	20	<i>φ</i> 14	φ44	10	30	-	-	-	391.6
S2S 25B — 2214	25	φ 50	φ54	B1	22	<i>φ</i> 14	φ40	10	32	-	-	-	399.3
S2S 25B # 2220	25	φ 50	φ54	B1	22	φ 20	φ40	10	32	6 × 2.8	M5	5	353.9

A1형【=】

B1형【一】

B1형【#】

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(g)
S2S 28A — 1214F	28	φ56	φ60	A1	12	φ14	-	-	12	-	-	-	217.5
S2S 28A — 1414F	28	φ 56	<i>φ</i> 60	A1	14	φ14	-	-	14	-	-	-	253.8
S2S 28A = 1415	28	ø 56	φ60	A1	14	ø 15	-	-	14	5 × 2.3	-	-	250.0
S2S 28A = 1416	28	ø 56	φ60	A1	14	ø 16	-	-	14	5 × 2.3	-	-	247.3
S2S 28A — 2216F	28	φ 56	φ60	A1	22	ø 16	-	-	22	-	-	-	390.6
S2S 28B — 1214	28	φ 56	<i>φ</i> 60	B1	12	φ14	φ48	10	22	-	-	-	304.3
S2S 28B — 1414	28	φ56	φ60	B1	14	φ14	φ40	10	24	-	-	-	340.6
S2S 28B # 1415	28	φ 56	<i>φ</i> 60	B1	14	ø 15	φ40	10	24	5 × 2.3	M4	5	333.3
S2S 28B — 2016N	28	φ56	φ60	B1	20	ø 16	φ 50	10	30	-	-	-	493.8
S2S 28B — 2216	28	φ 56	φ60	B1	22	ø 16	φ 50	10	32	-	-	-	529.3

잇수	치폭		회전=	속도별 허용전	달동력표 함	힘강도 (단위	: kW)		허용 토크(단위: N • m)
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
20	12	0.037 0.372		0.745	1.491	2.709	3.647	4.280	35.52
20	14	0.043	0.435	0.870	1.740	3.160	4.255	4.993	41.54
20	20	0.063	0.630	1.250	2.500	4.550	6.120	7.190	60.16
20	22	0.068	0.683	1.367	2.735	4.966	6.687	7.846	65.22
21	22	0.073	0.73	1.47	2.94	5.28	7.08	8.38	69.71
22	22	0.078	0.79	1.57	3.15	5.59	7.47	8.92	75.44
24	12	0.048	0.49	0.97	1.94	3.377	4.49	5.45	46.79
24	14	0.056	0.57	1.14	2.27	3.940	5.23	6.36	54.43
24	20	0.081	0.81	1.62	3.24	5.63	7.48	9.08	77.35
24	22	0.089	0.89	1.78	3.56	6.19	8.22	9.99	84.99
25	12	0.051	0.52	1.03	2.05	3.54	4.73	5.74	49.65
25	14	0.060	0.60	1.20	2.39	4.13	5.52	6.70	57.29
25	20	0.086	0.860	1.720	3.420	5.920	7.910	9.600	82.13
25	22	0.094	0.94	1.89	3.75	6.49	8.67	10.52	89.76
28	12	0.060	0.60	1.21	2.35	4.01	5.46	6.60	57.29
28	14	0.070	0.70	1.41	2.74	4.68	6.37	7.70	66.84
28	20	0.101	1.01	2.01	3.92	6.69	9.10	11.01	96.45
28	22 0.111 1.11		2.21	4.31	7.36	10.01	12.11	106.00	

인포메이션

기 어 박 스

노백래시 기어

평 기 어

랙

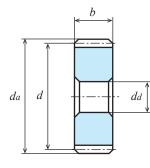
헬리컬 스크류 기어

마 이 터 기 어

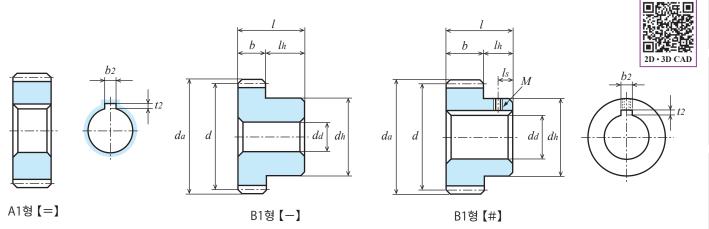
베 벨 기 어

> 원, 원 원

> 참고자료



단위:mm


	정밀도	재질	압력각	열처리	치면경도	백래시①
JIS	B 1702-1 N8급	S45C	20도	_	_	0.08~0.20

- ★표면처리는 하지 않았습니다. 【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함.
 - 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

A1형【一】

	상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
		Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(g)
	S2S 30A — 1216F	30	φ60	φ64	A1	12	ø 16	-	-	12	-	-	-	247.4
	S2S 30A — 1414F	30	ø 60	φ64	A1	14	ø 14	-	-	14	-	-	-	293.8
	S2S 30A — 2016F	30	ø 60	φ64	A1	20	ø 16	-	-	20	-	-	-	412.3
	S2S 30A = 2020	30	ø 60	φ64	A1	20	ø 20	-	-	20	6 × 2.8	-	-	391.9
	S2S 30A — 2216F	30	ø 60	ø 64	A1	22	ø 16	-	-	22	-	-	-	453.6
	S2S 30B — 1214	30	φ 60	<i>φ</i> 64	B1	12	φ14	φ52	10	22	-	-	-	338.6
	S2S 30B — 1414	30	ø 60	φ64	B1	14	φ14	φ40	10	24	-	-	-	380.6
	S2S 30B # 1415	30	ø 60	φ64	B1	14	ø 15	 \$40	10	24	5 × 2.3	M4	5	373.3
	S2S 30B — 2018N	30	ø 60	φ64	B1	20	ø 18	φ 54	10	30	-	-	-	564.1
	S2S 30B — 2216	30	ø 60	φ64	B1	22	ø 16	φ 50	10	32	-	-	-	592.3
	S2S 30B # 2220	30	ø 60	φ64	В1	22	φ 20	ø 50	10	32	6 × 2.8	M5	5	558.1
	S2S 32A — 1214F	32	φ64	φ 68	A1	12	φ14	-	-	12	-	-	-	288.5
	S2S 32A — 2016F	32	φ64	φ 68	A1	20	ø 16	-	-	20	-	-	-	473.5
	S2S 32B — 1214	32	φ64	ø 68	B1	12	φ14	\$\phi 40	10	22	-	-	-	375.3
	S2S 32B — 2016	32	φ64	φ 68	B1	20	ø 16	φ 50	10	30	-	-	-	621.2
	S2S 32B # 2020	32	φ64	ø 68	B1	20	\$ 20	φ 50	10	30	6 × 2.8	M5	5	580.1
	S2S 35A — 1216F	35	φ 70	<i>φ</i> 74	A1	12	φ 16	-	-	12	-	-	-	343.6
	S2S 35A — 2020F	35	φ 70	<i>φ</i> 74	A1	20	φ 20	-	-	20	-	-	-	554.9
	S2S 35B — 1214	35	φ 70	<i>φ</i> 74	B1	12	φ14	φ60	10	22	-	-	-	558.3
	S2S 35B — 2016	35	φ 70	<i>φ</i> 74	B1	20	ø 16	φ 60	10	30	-	-	-	779.3
	S2S 36A — 1216F	36	φ 72	φ 76	A1	12	φ16	-	-	12	-	-	-	360.0
	S2S 36A — 2016F	36	φ 72	φ 76	A1	20	ø 16	-	-	20	-	-	-	610.0
	S2S 36B — 1214	36	<i>φ</i> 72	<i>φ</i> 76	B1	12	φ14	φ40	10	22	-	-	-	460.0
	S2S 36B # 1215	36	<i>φ</i> 72	φ 76	B1	12	φ15	φ40	10	22	5×2.3	M4	5	450.0
	S2S 36B # 1220	36	<i>φ</i> 72	<i>φ</i> 76	B1	12	<i>φ</i> 20	φ40	10	22	6 × 2.8	M5	5	420.0
	S2S 36B — 2016	36	<i>φ</i> 72	<i>φ</i> 76	B1	20	φ 16	φ 50	10	30	-	-	-	750.0
	S2S 36B # 2020	36	<i>φ</i> 72	φ 76	B1	20	<i>φ</i> 20	φ50	10	30	6 × 2.8	M5	5	710.0
	S2S 38B — 1214	38	<i>φ</i> 76	φ80	B1	12	<i>φ</i> 14	φ 60	10	22	-	-	-	620.0
	S2S 40A — 1216F	40	φ80	φ84	A1	12	φ16	-	-	12	-	-	-	0.45(kg)
	S2S 40A = 1220	40	φ80	φ84	A1	12	φ20	-	-	12	6 × 2.8	-	-	0.44(kg)
	S2S 40A — 2016F	40	φ80	φ84	A1	20	φ16	-	-	20	-	-	-	0.76(kg)
	S2S 40A = 2025	40	φ80	φ84	A1	20	φ25	-	-	20	8 × 3.3	-	-	0.71(kg)
	S2S 40B — 1214	40	\$\phi 80	φ84	B1	12	φ14	φ40	10	22	- -	- N A A	-	0.55(kg)
	S2S 40B # 1215	40	φ80	φ84	B1	12	φ15	φ40	10	22	5 × 2.3	M4	5	0.54(kg)
	S2S 40B # 1218	40	φ80	φ84	B1	12	φ18	φ40 *40	10	22	6 × 2.8	M5	5	0.52(kg)
	S2S 40B # 1220	40	\$80 \$80	φ84	B1	12	φ20	φ40 460	10	22	6 × 2.8	M5	5	0.51(kg)
	S2S 40BF — 2010	40	φ80 400	φ84	B1	20	φ10(H8)	φ60 450	20	40	-	-	-	1.2 (kg)
,	S2S 40B — 2016	40	<i>φ</i> 80	<i>φ</i> 84	B1	20	ø 16	φ 50	10	30	-	-	-	0.90(kg)

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
08.12	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(kg)
S2S 42B — 1214	42	φ84	φ 88	B1	12	φ14	φ60	10	22	-	-	-	0.72
S2S 44B — 1214	44	φ88	φ 92	B1	12	φ14	φ60	10	22	-	-	-	0.77
S2S 45A — 1218F	45	φ 90	ø 94	A1	12	φ18	-	-	12	-	-	-	0.58
S2S 45A — 2020F	45	φ 90	ø 94	A1	20	<i>φ</i> 20	-	-	20	-	-	-	0.95
S2S 45B — 1214	45	φ90	φ 94	B1	12	φ14	ø 60	10	22	-	-	-	0.80
S2S 45B — 2016	45	φ90	φ 94	B1	20	φ16	φ60	10	30	-	-	-	1.17
S2S 46B — 1214	46	φ 92	ø 96	B1	12	φ14	ø 60	10	22	-	-	-	0.82
S2S 46B — 2016	46	φ92	φ 96	B1	20	ø 16	ø 60	10	30	-	-	-	1.22
S2S 48A — 2018F	48	φ96	φ100	A1	20	φ18	-	-	20	-	-	-	1.10
S2S 48B — 1216	48	φ96	φ100	B1	12	φ16	<i>φ</i> 40	10	22	-	-	-	0.75
S2S 48B — 2018	48	ø 96	φ100	B1	20	φ18	φ 50	10	30	-	-	-	1.23

잇수	치폭		회전4	누도별 허용전	달동력표 휨	팀강도 (단위	: kW)		허용 토크(단위: N • m)
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
30	12	0.066	0.66	1.32	2.55	4.32	5.94	7.17	63.02
30	14	0.077	0.77	1.55	2.98	5.04	6.93	8.36	73.53
30	20	0.110	1.100	2.210	4.260	7.200	9.900	11.960	105.05
30	22	0.121	1.21	2.43	4.68	7.92	10.88	13.14	115.55
32	12	0.072	0.72	1.44	2.75	4.61	6.41	7.73	68.75
32	20	0.120	1.20	2.41	4.58	7.69	10.69	12.89	114.59
35	12	0.081	0.81	1.63	3.04	5.04	7.12	8.61	77.35
35	20	0.135	1.35	2.71	5.07	8.40	11.87	14.35	128.92
36	12	0.084	0.84	1.69	3.13	5.19	7.35	8.90	80.21
36	20	0.141	1.41	2.81	5.22	8.64	12.26	14.83	134.65
38	12	0.090	0.90	1.81	3.32	5.53	7.82	9.47	85.94
40	12	0.10	0.97	1.93	3.51	5.87	8.28	10.05	92.63
40	20	0.160	1.610	3.210	5.840	9.760	13.760	16.700	153.75
42	12	0.10	1.03	2.06	3.69	6.20	8.75	10.61	98.36
44	12	0.11	1.09	2.18	3.87	6.53	9.22	11.17	104.09
45	12	0.11	1.12	2.24	3.96	6.70	9.46	11.44	106.95
45	20	0.19	1.87	3.74	6.60	11.16	15.76	19.07	178.57
46	12	0.12	1.15	2.30	4.05	6.86	9.69	11.72	109.82
46	20	0.19	1.92	3.84	6.74	11.44	16.15	19.53	183.35
48	12	0.12	1.21	2.43	4.22	7.19	10.16	12.27	115.55
48	20	0.20	2.02	4.04	7.03	11.98	16.93	20.45	192.90

인포 메 이션

기어박스

노백래시 기어

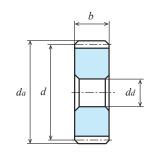
평 기 어

랙

헬리컬 스크류 기어

마 이 터 기 어

베 벨 기 어

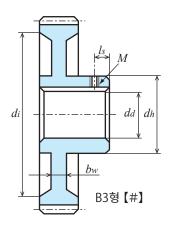

웜 , 웜 휠

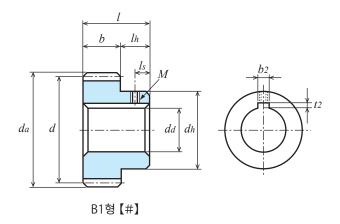
참고자료

정밀도 재질 압력각 열처리 치면경도 백래시① JIS B 1702-1 N8급 S45C 20도 0.08~0.20

A1형【一】

- 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★KG 규격품의 치폭은 '보통폭'(경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


★표면처리는 하지 않았습니다.【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함.

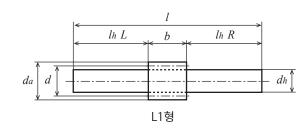

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	림 내경	웹 두께	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	di	bw	W(kg)
S2S 50A — 1218F	50	φ100	φ104	A1	12	φ18	-	-	12	-	-	-	-	-	0.72
S2S 50A = 1220	50	φ100	<i>ф</i> 104	A1	12	<i>φ</i> 20	-	-	12	6 × 2.8	-	-	-	-	0.71
S2S 50A — 2018F	50	φ100	φ104	A1	20	φ18	-	-	20	-	-	-	-	-	1.19
S2S 50B — 1216	50	φ100	φ104	B1	12	φ16	φ 50	10	22	-	-	-	-	-	0.86
S2S 50B # 1220	50	φ100	φ104	В1	12	<i>φ</i> 20	φ 50	10	22	6 × 2.8	M5	5	-	-	0.84
S2S 50BF — 2012	50	φ100	φ104	B1	20	φ12(H8)	φ 70	20	40	-	-	-	-	-	1.8
S2S 50B — 2018	50	φ100	<i>ф</i> 104	B1	20	φ18	φ60	10	30	-	-	-	-	-	1.40
S2S 50B # 2020	50	φ100	φ104	B1	20	φ20	φ60	10	30	6 × 2.8	M5	5	-	-	1.38
S2S 50B # 2025	50	φ100	φ104	B1	20	φ 25	ø 60	10	30	8 × 3.3	M6	5	-	-	1.33
S2S 52B — 2018	52	φ104	 \$\phi 108	B1	20	φ18	φ60	10	30	-	-	-	-	-	1.50
S2S 55B — 2018	55	φ110	φ114	B1	20	φ18	ø 60	10	30	-	-	-	-	-	1.66
S2S 56A — 1218F	56	φ112	φ116	A1	12	φ18	-	-	12	-	-	-	-	-	0.90
S2S 56A — 2020F	56	φ112	ø 116	A1	20	φ 20	-	-	20	-	-	-	-	-	1.50
S2S 56B — 1216	56	φ112	φ116	B1	12	φ16	φ50	10	22	-	-	-	-	-	1.05
S2S 56B — 2018	56	φ112	ø 116	B1	20	φ18	ø 60	10	30	-	-	-	-	-	1.71
S2S 60A — 1220F	60	φ120	φ124	A1	12	φ20	-	-	12	-	-	-	-	-	1.04
S2S 60A — 2018F	60	φ120	φ124	A1	20	<i>φ</i> 18	-	-	20	-	-	-	-	-	1.74
S2S 60B — 1216	60	φ120	φ124	B1	12	φ16	φ50	10	22	-	-	-	-	-	1.19
S2S 60B # 1220	60	φ120	φ124	В3	12	<i>φ</i> 20	φ50	10	22	6 × 2.8	M5	5	φ102	6	1.16
S2S 60BF — 2012	60	φ120	φ124	B1	20	φ12(H8)	ø 85	20	40	-	-	-	-	-	2.62
S2S 60B — 2018	60	φ120	φ124	B1	20	φ18	φ60	10	30	-	-	-	-	-	1.94
S2S 64A — 1220F	64	φ128	φ132	A1	12	φ 20	-	-	12	-	-	-	-	-	1.18
S2S 64B — 1216	64	φ128	<i>ф</i> 132	B1	12	ø 16	φ 50	10	22	-	-	-	-	-	1.33
S2S 64B — 2018	64	φ128	φ132	B1	20	ø 18	ø 60	10	30	-	-	-	-	-	2.18
S2S 65A — 1218F	65	φ130	<i>ф</i> 134	A1	12	ø 18	-	-	12	-	-	-	-	-	1.23
S2S 70A — 1220F	70	φ140	<i>ф</i> 144	A1	12	<i>φ</i> 20	-	-	12	-	-	-	-	-	1.42
S2S 70A — 2018F	70	φ140	<i>ф</i> 144	A1	20	φ 18	-	-	20	-	-	-	-	-	2.38
S2S 70B — 2018	70	φ140	<i>ф</i> 144	B1	20	<i>φ</i> 18	φ 70	10	30	-	-	-	-	-	2.66
S2S 72A — 1220F	72	φ144	φ148	A1	12	φ20	-	-	12	-	-	-	-	-	1.51
S2S 72B — 2020	72	φ144	<i>ф</i> 148	B1	20	<i>φ</i> 20	ø 60	10	30	-	-	-	-	-	2.71
S2S 75A — 1218F	75	φ150	φ154	A1	12	<i>φ</i> 18	-	-	12	-	-	-	-	-	1.64
S2S 75A — 2020F	75	φ150	φ154	A1	20	<i>φ</i> 20	-	-	20	-	-	-	-	-	2.73
S2S 75B — 2020	75	φ150	φ154	В1	20	<i>φ</i> 20	φ70	10	30	-	-	-	-	-	3.00
S2S 80A — 1220F	80	φ160	ø 164	A1	12	<i>φ</i> 20	-	-	12	-	-	-	-	-	1.86
S2S 80A — 2018F	80	φ160	φ164	A1	20	φ18	-	-	20	-	-	-	-	-	3.12

인포메 이 션

기 어 박 스

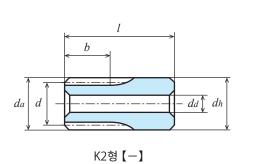
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	림 내경	웹 두께	중량
88712	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	di	bw	W(kg)
S2S 80B — 1218	80	φ160	φ164	B1	12	φ18	φ 50	10	22	-	-	-	-	-	2.01
S2S 80BF — 2015	80	φ160	φ164	B1	20	ø 15	φ115	20	40	-	-	-	-	-	4.72
S2S 80B — 2020	80	φ160	φ164	B1	20	φ20	φ 60	10	30	-	-	-	-	-	3.31
S2S 85A — 2020F	85	φ170	φ174	A1	20	φ20	-	-	20	-	-	-	-	-	3.51
S2S 85B — 2020	85	φ170	φ174	B1	20	<i>φ</i> 20	φ 70	10	30	-	-	-	-	-	3.79
S2S 90A — 1218F	90	φ180	φ184	A1	12	φ18	-	-	12	-	-	-	-	-	2.37
S2S 90A — 2020F	90	φ180	φ184	A1	20	<i>φ</i> 20	-	-	20	-	-	-	-	-	3.95
S2S 90B — 1218	90	φ180	φ184	B1	12	φ18	φ 60	10	22	-	-	-	-	-	2.58
S2S 90B — 2020	90	φ180	<i>ф</i> 184	B1	20	<i>φ</i> 20	φ 80	10	30	-	-	-	-	-	4.32
S2S 100A — 1220F	100	φ200	φ204	A1	12	<i>φ</i> 20	-	-	12	-	-	-	-	-	2.93
S2S 100A — 2018F	100	φ200	φ204	A1	20	<i>φ</i> 18	-	-	20	-	-	-	-	-	4.89
S2S 100B — 1218	100	φ200	<i>ф</i> 204	B1	12	<i>φ</i> 18	φ 50	10	22	-	-	-	-	-	3.07
S2S 100B # 1220	100	φ200	<i>ф</i> 204	В3	12	<i>φ</i> 20	φ 50	10	22	6 × 2.8	M5	5	φ182	6	1.95
S2S 100B — 2020	100	φ200	φ204	B1	20	<i>φ</i> 20	φ 60	10	30	-	-	-	-	-	5.08

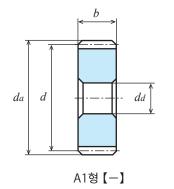
잇수	치폭		회전속	녹도별 허용전	달동력표 출	팀강도 (단위	: kW)	
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
50	12	0.13	1.28	2.54	4.39	7.52	10.62	12.81
50	20	0.210	2.120	4.210	7.280	12.470	17.630	21.270
52	20	0.22	2.23	4.41	7.59	13.06	18.47	22.34
55	20	0.24	2.39	4.68	8.00	13.86	19.61	23.91
56	12	0.15	1.47	2.86	4.88	8.47	11.99	14.67
56	20	0.24	2.44	4.76	8.13	14.12	19.98	24.44
60	12	0.16	1.59	3.07	5.19	9.10	12.88	15.94
60	20	0.260	2.640	5.090	8.610	15.080	21.350	26.410
64	12	0.17	1.72	3.27	5.50	9.75	13.77	-
64	20	0.29	2.87	5.46	9.16	16.25	22.95	-
65	12	0.18	1.75	3.33	5.57	9.91	14.02	-
70	12	0.19	1.91	3.58	5.93	10.71	15.31	-
70	20	0.320	3.170	5.920	9.820	17.740	25.350	-
72	12	0.20	1.98	3.67	6.08	11.03	15.82	-
72	20	0.33	3.30	6.12	10.13	18.38	26.37	-
75	12	0.21	2.07	3.82	6.35	11.50	16.59	-
75	20	0.35	3.46	6.37	10.58	19.14	27.65	-
80	12	0.22	2.24	4.06	6.79	12.28	-	-
80	20	0.370	3.700	6.720	11.230	20.310	-	-
85	20	0.40	3.99	7.14	12.02	21.71	-	-
90	12	0.26	2.56	4.51	7.64	13.77	-	-
90	20	0.420	4.230	7.460	12.630	22.780	-	-
100	12	0.29	2.86	4.95	8.48	15.36	-	-
100	20	0.480	0.480 4.730		14.010	25.390	-	-

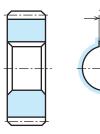

	허용 토크(단위: N·m)
	100rpm
1	122.23
	202.45
	212.95
	228.23
	140.38
	233.01
	151.84
	252.11
	164.25
	274.07
	167.12
	182.39
	302.73
	189.08
	315.14
	197.67
	330.42
	213.91
	353.34
	381.03
	244.47
	403.95
	273.12
	451.70

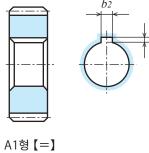
마 이 터 기 어

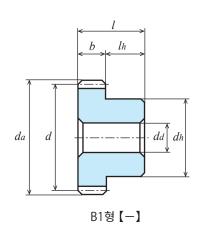
베 벨 기 어

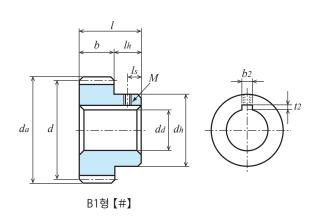

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.1~0.25

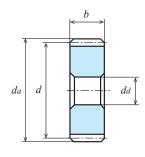

- ★표면처리는 하지 않았습니다. 【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.


- ★보 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭'(경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ★【전위】는 전위계수 x가 0.5인 전위 기어입니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	W(g)
S2.5S 10L — 2820	10	【전위】	φ31.66	L1	28	-	φ20(h9)	L40 R80	148	-	-	-	403.8
S2.5S 12K — 2812	12	ø 30	φ 35	K2	28	φ12(H8)	ø 35	32	60	-	-	-	343.8
S2.5S 14B — 1612N	14	φ 35	φ40	B1	16	φ12	φ 27	12	28	-	-	-	150.0
S2.5S 14B — 1812N	14	φ35	φ40	B1	18	φ12	φ 28	12	30	-	-	-	167.4
S2.5S 16A — 1612	16	φ40	φ45	A1	16	φ12	-	-	16	-	-	-	143.6
S2.5S 16A — 2812	16	φ40	φ45	A1	28	φ12	-	-	28	-	-	-	251.4
S2.5S 16B — 1812N	16	φ40	φ45	B1	18	φ12	φ32	12	30	-	-	-	226.8
S2.5S 18A — 1612	18	φ45	φ50	A1	16	φ12	-	-	16	-	-	-	185.6
S2.5S 18B — 1612N	18	\$\phi 45	φ 50	B1	16	φ12	ø 36	12	28	-	-	-	271.0
S2.5S 18B — 1814N	18	φ45	φ50	B1	18	φ14	ø 36	12	30	-	-	-	284.5
S2.5S 20A — 1612F	20	φ 50	φ 55	A1	16	φ12	-	-	16	-	-	-	232.4
S2.5S 20A — 1812F	20	φ 50	φ 55	A1	18	φ12	-	-	18	-	-	-	261.5
S2.5S 20A — 2514F	20	φ 50	φ 55	A1	25	φ14	-	-	25	-	-	-	355.1
S2.5S 20A — 2814F	20	φ 50	φ 55	A1	28	φ14	-	-	28	-	-	-	397.7
S2.5S 20A = 2825	20	φ 50	φ 55	A1	28	\$ 25	-	-	28	8 × 3.3	-	-	317.9
S2.5S 20B — 1812	20	φ50	φ 55	B1	18	φ12	φ40	12	30	-	-	-	369.4
S2.5S 20B # 1820	20	φ 50	φ 55	B1	18	φ 20	ø 40	12	30	6 × 2.8	M5	6	317.2
S2.5S 20B — 2814	20	φ50	φ 55	B1	28	φ14	φ42	12	40	-	-	-	514.1
S2.5S 20B # 2825	20	φ 50	φ 55	B1	28	\$ 25	φ42	12	40	8 × 3.3	M5	6	399.3
S2.5S 24A — 1814F	24	φ60	φ65	A1	18	φ14	-	-	18	-	-	-	377.8
S2.5S 24A = 1820	24	φ60	φ65	A1	18	φ 20	-	-	18	6 × 2.8	-	-	352.8
S2.5S 24A — 2814F	24	φ60	φ65	A1	28	φ14	-	-	28	-	-	-	587.6
S2.5S 24B — 1614	24	φ60	φ65	B1	16	φ14	φ 50	12	28	-	-	-	506.6
S2.5S 24B — 1814	24	φ60	φ65	B1	18	φ14	φ40	12	30	-	-	-	482.0
S2.5S 24B — 2515	24	φ60	φ65	B1	25	φ 15	ø 50	12	37	-	-	-	689.0
S2.5S 25A = 1820	25	φ62.5	φ67.5	A1	18	φ 20	-	-	18	6 × 2.8	-	-	386.7
S2.5S 28A — 1614F	28	φ70	φ 75	A1	16	φ14	-	-	16	-	-	-	460.0
S2.5S 28A — 1814F	28	φ70	φ 75	A1	18	φ14	-	-	18	-	-	-	520.0
S2.5S 28B — 1814	28	φ 70	φ 75	B1	18	φ14	φ40	12	30	-	-	-	630.0
S2.5S 28B # 1820	28	φ 70	φ 75	B1	18	<i>φ</i> 20	φ40	12	30	6 × 2.8	M5	6	580.0
S2.5S 30A — 2518F	30	ø 75	φ80	A1	25	φ18	-	-	25	-	-	-	0.82(kg)
S2.5S 30B — 1814	30	φ 75	φ80	B1	18	φ14	φ40	12	30	-	-	-	0.71(kg)
S2.5S 30B — 2816	30	ø 75	φ80	B1	28	φ16	φ 50	12	40	-	-	-	1.09(kg)


2D · 3D CAD



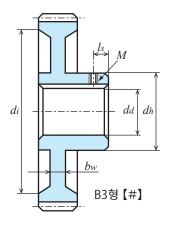

잇수	치폭		회전4	녹도별 허용전	달동력표 함	팀강도 (단위	: kW)		
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	
10	28	0.064	0.64	1.29	2.58	5.07	7.02	8.29	Г
12	28	0.059	0.59	1.18	2.37	4.57	6.29	7.40	
14	16	0.044	0.44	0.88	1.77	3.30	4.50	5.25	
14	18	0.049	0.49	0.99	1.99	3.72	5.06	5.91	
16	16	0.055	0.55	1.10	2.20	3.99	5.38	6.31	
16	18	0.061	0.61	1.23	2.47	4.49	6.05	7.10	
16	28	0.096	0.96	1.93	3.85	7.00	9.42	11.06	
18	16	0.066	0.66	1.32	2.64	4.67	6.23	7.48	
18	18	0.074	0.74	1.48	2.97	5.25	7.01	8.41	
20	16	0.077	0.78	1.55	3.09	5.34	7.13	8.66	
20	18	0.087	0.87	1.75	3.47	6.01	8.03	9.74	
20	25	0.122	1.220	2.450	4.860	8.400	11.230	13.620	
20	28	0.136	1.36	2.72	5.40	9.34	12.48	15.15	
24	16	0.101	1.01	2.03	3.90	6.60	9.08	10.97	
24	18	0.114	1.14	2.28	4.39	7.43	10.22	12.34	
24	25	0.158	1.58	3.17	6.10	10.32	14.19	17.13	
24	28	0.177	1.77	3.55	6.83	11.56	15.89	19.19	
25	18	0.121	1.21	2.41	4.62	7.77	10.76	12.98	
28	16	0.13	1.26	2.51	4.70	7.79	11.01	13.30	
28	18	0.14	1.41	2.83	5.28	8.77	12.38	14.97	
30	18	0.16	1.55	3.10	5.72	9.50	13.44	16.28	
30	25	0.220	2.160	4.320	7.950	13.210	18.690	22.640	
30	28	0.24	2.41	4.82	8.89	14.77	20.91	25.33	L

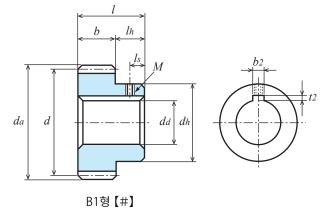
허용 토크(단위: N • m)
100rpm
61.11
56.34
42.01
46.79
52.52
58.25
91.67
63.02
70.66
74.48
83.08
116.51
129.87
96.45
108.86
150.88
169.02
115.55
120.32
134.65
148.02
206.27
230.14

A1형【一】

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.1~0.25

- ★표면처리는 하지 않았습니다. 【#】에는 키 홈, 키 재료 및 나사구멍, 세트 스크류 포함.
- ★보 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	림 내경	웹 두께	중량
	z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	М	ls	di	b_{w}	W(kg)
S2.5S 32A — 1616F	32	ø 80	φ 85	A1	16	ø 16	-	-	16	-	-	-	-	-	0.61
S2.5S 32A — 2518F	32	ø 80	φ 85	A1	25	φ18	-	-	25	-	-	-	-	-	0.94
S2.5S 32B — 1616	32	ø 80	φ 85	В1	16	ø 16	φ 50	12	28	-	-	-	-	-	0.77
S2.5S 32B — 2516	32	ø 80	φ 85	В1	25	ø 16	φ 60	12	37	-	-	-	-	-	1.20
S2.5S 36A — 1616F	36	ø 90	φ 95	A1	16	ø 16	-	-	16	-	-	-	-	-	0.77
S2.5S 36A — 2518F	36	ø 90	φ 95	A1	25	φ18	-	-	25	-	-	-	-	-	1.20
S2.5S 36B — 1616	36	ø 90	φ 95	В1	16	ø 16	φ 50	12	28	-	-	-	-	-	0.94
S2.5S 36B — 2518	36	ø 90	φ 95	В1	25	φ18	φ 60	12	37	-	-	-	-	-	1.44
S2.5S 40A — 1616F	40	φ100	φ105	A1	16	<i>φ</i> 16	-	-	16	-	-	-	-	-	0.96
S2.5S 40A — 2518F	40	φ100	φ105	A1	25	φ18	-	-	25	-	-	-	-	-	1.49
S2.5S 40B — 1616	40	φ100	φ105	В1	16	φ16	φ 50	12	28	-	-	-	-	-	1.13
S2.5S 40B # 1620	40	φ100	φ105	В1	16	<i>φ</i> 20	φ 50	12	28	6 × 2.8	M5	6	-	-	1.10
S2.5S 40B # 1625	40	φ100	φ105	B1	16	φ 25	φ 50	12	28	8 × 3.3	M6	6	-	-	1.06
S2.5S 40BF — 2512	40	φ100	φ105	B1	25	φ12(H8)	φ 70	20	45	-	-	-	-	-	2.1
S2.5S 40B — 2518	40	φ100	φ105	B1	25	φ18	φ 60	12	37	-	-	-	-	-	1.73
S2.5S 40B # 2525	40	φ100	φ105	B1	25	φ25	φ 60	12	37	8 × 3.3	M6	6	-	-	1.66
S2.5S 48A — 1616F	48	φ120	φ125	A1	16	φ16	-	-	16	-	-	-	-	-	1.40
S2.5S 48A — 2518F	48	φ120	φ125	A1	25	φ18	-	-	25	-	-	-	-	-	2.17
S2.5S 48B — 1616	48	φ120	φ125	B1	16	φ16	φ 50	12	28	-	-	-	-	-	1.56
S2.5S 48B — 2518	48	φ120	φ125	B1	25	<i>φ</i> 18	φ 60	12	37	-	-	-	-	-	2.41
S2.5S 50A — 1616F	50	φ125	φ130	A1	16	φ16	-	-	16	-	-	-	-	-	1.52
S2.5S 50A — 2518F	50	φ125	φ130	A1	25	φ18	-	-	25	-	-	-	-	-	2.36
S2.5S 50B — 2518	50	φ125	φ130	B1	25	φ18	φ 60	12	37	-	-	-	-	-	2.60
S2.5S 56A — 2518F	56	φ140	φ145	A1	25	φ18	-	-	25	-	-	-	-	-	2.97
S2.5S 56B — 1618	56	φ140	φ145	B1	16	φ18	φ 60	12	28	-	-	-	-	-	2.15
S2.5S 60A — 1616F	60	φ150	φ155	A1	16	<i>φ</i> 16	-	-	16	-	-	-	-	-	2.19
S2.5S 60A — 2518F	60	φ 150	φ155	A1	25	<i>φ</i> 18	-	-	25	-	-	-	-	-	3.42
S2.5S 60B — 1618	60	φ150	φ155	B1	16	<i>φ</i> 18	φ 60	12	28	-	-	-	-	-	2.43
S2.5S 60B — 2520	60	φ150	φ155	B1	25	<i>φ</i> 20	φ 70	12	37	-	-	-	-	-	3.74
S2.5S 64A — 1616F	64	φ160	φ165	A1	16	φ16	-	-	16	-	-	-	-	-	2.50
S2.5S 64A — 2518F	64	φ160	φ165	A1	25	φ18	-	-	25	-	-	-	-	-	3.90
S2.5S 70BF — 2520	70	φ 175	φ180	B1	25	<i>φ</i> 20	φ125	20	45	-	-	-	-	-	6.52
S2.5S 72A — 1616F	72	φ180	φ185	A1	16	φ16	-	-	16	-	-	-	-	-	3.17
S2.5S 72A — 2518F	72	φ180	φ185	A1	25	<i>φ</i> 18	-	-	25	-	-	-	-	-	4.94

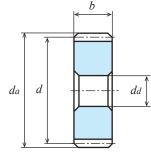

인포메 이 션

기 어 박 스

D CAD

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	나	사	림 내경	웹 두께	중량
	Z	d	da		b	dd(H7)	dh	lh	l	$b_2 \times t_2$	M	ls	di	b_{w}	W(kg)
S2.5S 80A — 1618F	80	φ200	φ205	A1	16	ø 18	-	-	16	-	-	-	-	-	3.91
S2.5S 80A — 2520F	80	φ200	φ205	A1	25	φ 20	-	-	25	-	-	-	-	-	6.10
S2.5S 80B — 2522	80	φ200	φ205	B1	25	φ22	φ 70	12	37	-	-	-	-	-	6.42
S2.5S 80B # 2535	80	φ200	φ205	В3	25	φ35	φ 70	12	37	10 × 3.3	M8	6	φ177	13	4.37

잇수	치폭		회전4	속도별 허용전	달동력표 함	임강도 (단위	l: kW)		
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	
32	16	0.15	1.50	3.01	5.46	9.13	12.89	15.64	iΓ
32	25	0.24	2.35	4.70	8.54	14.27	20.14	24.44	
36	16	0.18	1.76	3.51	6.20	10.50	14.83	17.94	
36	25	0.27	2.75	5.49	9.69	16.41	23.17	28.03	
40	16	0.20	2.01	4.00	6.92	11.85	16.74	20.19	
40	25	0.310	3.140	6.230	10.780	18.470	26.100	31.480	il
48	16	0.25	2.53	4.87	8.25	14.45	20.45	25.30	
48	25	0.40	3.95	7.61	12.89	22.58	31.95	39.53	
50	16	0.27	2.66	5.09	8.56	15.12	21.36	26.61	
50	25	0.410	4.140	7.910	13.330	23.530	33.230	41.400	il
56	16	0.31	3.06	5.71	9.47	17.11	24.44	-	
56	25	0.48	4.77	8.92	14.80	26.73	38.19	-	
60	16	0.33	3.32	6.12	10.16	18.41	26.56	-	
60	25	0.52	5.19	9.56	15.87	28.76	41.50	-	
64	16	0.36	3.59	6.51	10.89	19.69	-	-	
64	25	0.56	5.60	10.17	17.01	30.77	-	-	
70	25	0.620	6.190	11.000	18.560	33.500	-	-	
72	16	0.41	4.12	7.27	12.31	22.20	-	-	
72	25	0.64	6.44	11.37	19.24	34.69	-	-	
80	16	0.47	4.62	8.00	13.70	24.84	-	-	
80	25	0.720	7.170	12.410	21.260	38.530	-	-	L

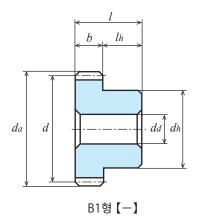

허용 토크(단위: N • m)
100rpm
143.24
224.41
168.07
262.61
191.94
299.86
341.60
377.21
254.02
395.36
292.22
455.52
317.05
495.63
342.83
534.78
591.13
393.44
615.00
441.19
684.71

마 이 터 기 어

베 벨 기 어

A1형【一】

단위:mm


정밀도	재질	압력각	열처리	치면경도	백래시①				
JIS B 1702-1 N8급	S45C	20도	_	_	0.12~0.3				

★표면처리는 하지 않았습니다.

★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭'(경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
COC 144 OF1C	Z	d	da		<i>b</i>	dd(H7)	dh	lh	1	W(kg)
S3S 14A — 3516	14	φ42	φ 48	A1	35	φ16	_	-	35	0.33
S3S 15A — 3016	15	φ45	φ 51	A1	30	φ16	-	-	30	0.33
S3S 16B — 2216N	16	φ48	φ 54	B1	22	φ16	φ40	13	35	0.39
S3S 16B — 3016N	16	φ48	φ 54	B1	30	φ16	<i>φ</i> 40	13	43	0.49
S3S 18A — 2216	18	φ54	φ 60	A1	22	φ16	-	-	22	0.36
S3S 18A — 3016	18	φ54	φ 60	A1	30	φ16	-	-	30	0.49
S3S 18B — 3018N	18	φ54	φ 60	B1	30	φ18	φ46	13	43	0.62
S3S 20A — 2216F	20	<i>φ</i> 60	φ 66	A1	22	φ16	-	-	22	0.45
S3S 20A — 3018F	20	<i>φ</i> 60	φ 66	A1	30	φ18	-	-	30	0.61
S3S 20B — 2218	20	<i>φ</i> 60	φ 66	B1	22	φ 18	<i>φ</i> 40	13	35	0.55
S3S 20B — 3018N	20	φ60	φ 66	B1	30	φ18	φ 52	13	43	0.80
S3S 24A — 2216F	24	<i>φ</i> 72	φ 78	A1	22	φ 16	-	-	22	0.67
S3S 24A — 3018F	24	<i>φ</i> 72	φ 78	A1	30	φ18	-	-	30	0.90
S3S 24A — 3518F	24	φ 72	φ 78	A1	35	φ 18	-	-	35	1.05
S3S 24B — 3020N	24	φ 72	φ 78	B1	30	φ 20	φ60	13	43	1.14
S3S 25A — 2218F	25	φ 75	φ 81	A1	22	φ18	-	-	22	0.72
S3S 25A — 3018F	25	φ 75	φ 81	A1	30	φ 18	-	-	30	0.98
S3S 25A — 3520F	25	φ 75	φ 81	A1	35	φ 20	-	-	35	1.13
S3S 25B — 2220	25	φ 75	φ 81	B1	22	φ 20	φ 50	13	35	0.88
S3S 25B — 3020N	25	φ 75	φ 81	B1	30	<i>φ</i> 20	φ60	13	43	1.22
S3S 28A — 2218F	28	φ84	φ 90	A1	22	φ18	-	-	22	0.91
S3S 28A — 3020F	28	φ84	φ 90	A1	30	φ 20	-	-	30	1.23
S3S 28B — 2220	28	φ84	ø 90	B1	22	φ 20	φ50	13	35	1.07
S3S 28B — 3022N	28	φ84	ø 90	B1	30	φ 22	φ60	13	43	1.47
S3S 30A — 2220F	30	φ90	ø 96	A1	22	φ 20	-	-	22	1.04
S3S 30A — 3022F	30	φ90	ø 96	A1	30	φ22	-	-	30	1.41
S3S 30B — 2218	30	φ 90	φ 96	B1	22	φ18	φ50	13	35	1.23
S3S 30B — 3022N	30	φ 90	φ 96	B1	30	φ22	φ60	13	43	1.66
S3S 32A — 2020F	32	φ 96	φ102	A1	20	φ20	-	-	20	1.09
S3S 32A — 3022F	32	φ96	φ102	A1	30	φ 22	-	-	30	1.62
S3S 32B — 2018	32	φ96	φ102	B1	20	φ18	φ50	13	33	1.27
S3S 32B — 3025N	32	φ96	φ102	B1	30	φ25	φ65	13	43	1.88
S3S 32B — 3220	32	φ96	φ102	B1	32	<i>φ</i> 20	φ60	13	45	2.00

잇수	치폭		회전=	속도별 허용전	달동력표 춤	팀강도 (단위	: kW)		허용 토크(단위: N • m)
Z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	100rpm
14	35	0.139	1.39	2.79	5.58	10.01	13.43	15.91	132.74
15	30	0.134	1.34	2.68	5.36	9.46	12.61	15.14	127.96
16	22	0.11	1.09	2.18	4.36	7.57	10.06	12.22	104.09
16	30	0.15	1.49	2.97	5.94	10.33	13.71	16.66	142.29
18	22	0.13	1.31	2.62	5.14	8.81	11.91	14.43	125.10
18	30	0.18	1.79	3.57	7.01	12.02	16.25	19.68	170.93
20	22	0.15	1.54	3.08	5.93	10.03	13.79	16.65	147.06
20	30	0.210	2.110	4.230	8.140	13.780	18.950	22.880	201.50
24	22	0.20	2.01	4.01	7.45	12.33	17.49	21.16	191.94
24	30	0.27	2.73	5.47	10.17	16.82	23.85	28.85	260.70
24	35	0.32	3.19	6.38	11.86	19.62	27.82	33.66	304.63
25	22	0.21	2.12	4.25	7.83	13.01	18.40	22.29	202.45
25	30	0.290	2.910	5.820	10.710	17.800	25.180	30.510	277.90
25	35	0.34	3.38	6.76	12.46	20.69	29.28	35.47	322.78
28	22	0.25	2.49	4.98	8.93	15.01	21.18	25.68	237.78
28	30	0.34	3.39	6.78	12.18	20.47	28.89	35.02	323.73
30	22	0.27	2.73	5.46	9.65	16.33	23.05	27.89	260.70
30	30	0.370	3.730	7.460	13.170	22.290	31.470	38.070	356.20
32	20	0.27	2.71	5.41	9.41	16.03	22.65	27.36	258.79
32	30	0.41	4.06	8.12	14.11	24.05	33.98	41.04	387.71
32	32	0.43	4.33	8.66	15.05	25.66	36.25	43.78	413.50

노
백
시
기어

기 어 박 스

목 차

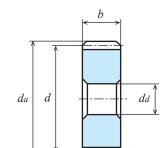
인포메 이 션

> 평 기 어

랙

헬리컬 스크류 기어

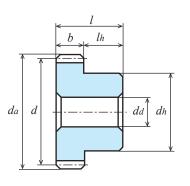
마 이 터 기 어


베 벨 기 어

염, 연 형

참고자료

A1형【一】

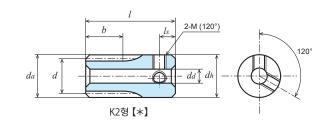

단위:mm

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N8급	S45C	20도	_	_	0.12~0.3

평기어 (S45C)

- ★표면처리는 하지 않았습니다.
- ★보 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★KG 규격품의 치폭은 '보통폭' (경부하용)과 '광폭'(중부하용)에서 전달할 수 있는 힘이 달라집니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

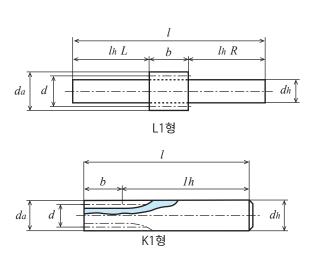
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	Z	d	da		b	dd(H7)	dh	lh	l	W(kg)
S3S 36A — 2020F	36	φ108	φ114	A1	20	φ 20	-	-	20	1.39
S3S 36B — 2020	36	φ108	φ114	B1	20	φ20	φ 50	13	33	1.56
S3S 40A — 2020F	40	φ120	φ126	A1	20	φ20	-	-	20	1.73
S3S 40A — 3222F	40	φ120	φ126	A1	32	φ22	-	-	32	2.75
S3S 40B — 2020	40	φ120	φ126	B1	20	φ20	φ 50	13	33	1.90
S3S 40B — 3025N	40	φ120	φ126	B1	30	φ25	φ70	13	43	2.89
S3S 40B — 3222	40	φ120	φ126	B1	32	φ22	φ 60	13	45	3.00
S3S 48A — 2020F	48	φ144	φ150	A1	20	φ20	-	-	20	2.51
S3S 48A — 3222F	48	φ144	φ 150	A1	32	φ22	-	-	32	4.00
S3S 48B — 2020	48	φ144	φ 150	B1	20	φ20	φ 50	13	33	2.68
S3S 48B — 3025N	48	φ144	φ 150	B1	30	φ 25	φ 80	13	43	4.19
S3S 50A — 2020F	50	φ150	φ156	A1	20	φ20	-	-	20	2.73
S3S 50A — 3222F	50	φ150	φ 156	A1	32	φ 22	-	-	32	4.34
S3S 50B — 2020	50	φ150	φ156	B1	20	φ20	φ 60	13	33	2.98
S3S 50B — 3025N	50	φ150	φ 156	B1	30	φ 25	φ 80	13	43	4.51
S3S 56A — 3222F	56	φ168	φ174	A1	32	φ22	-	-	32	5.47
S3S 60A — 2020F	60	φ180	φ 186	A1	20	φ20	-	-	20	3.95
S3S 60A — 3222F	60	φ180	φ186	A1	32	φ22	-	-	32	6.30
S3S 60B — 2022	60	φ180	φ186	B1	20	φ22	φ 60	13	33	4.19

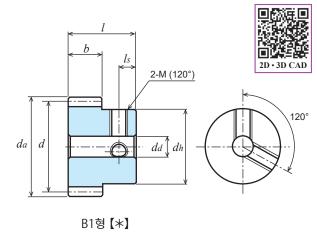

B1형【一】

잇수	치폭		회전4	녹도별 허용전	달동력표 휨	팀강도 (단위	: kW)	
z	b	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
36	20	0.32	3.16	6.20	10.64	18.39	26.00	31.63
40	20	0.36	3.62	6.98	11.81	20.69	29.29	36.23
40	30	0.540	5.420	10.440	17.680	30.970	43.830	54.230
40	32	0.58	5.80	11.16	18.90	33.11	46.86	57.97
48	20	0.46	4.55	8.46	14.00	25.40	36.43	-
48	30	0.68	6.83	12.69	21.01	38.10	54.65	-
48	32	0.73	7.29	13.54	22.41	40.64	58.29	-
50	20	0.48	4.79	8.82	14.66	26.56	38.31	-
50	30	0.720	7.150	13.180	21.890	39.670	57.230	-
50	32	0.77	7.66	14.12	23.45	42.49	61.30	-
56	32	0.88	8.80	15.80	26.54	47.95	-	-
60	20	0.60	5.98	10.55	17.86	32.20	-	-
60	32	0.96	9.56	16.88	28.57	51.52	-	-

허용 토크(단위: N·m)									
100rpm									
301.77									
345.69									
517.59									
553.88									
434.51									
652.24									
696.17									
457.43									
682.80									
731.50									
840.37									
571.07									
912.95									

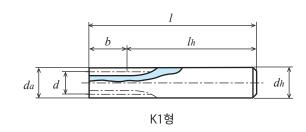
인포메이션



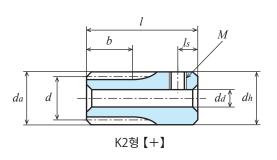


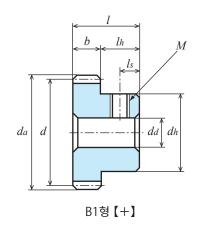
정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	Z	d	da		b	dd(H8)	dh	lh	l	2-M(120°)	ls	W(g)
S50SU 10K — 1006	10	ø 5	ø 6	K1	10	-	φ 6	45	55	-	-	11.7
S50SU 12K — 1007	12	ø 6	φ 7	K1	10	-	φ 7	45	55	-	-	16.0
S50SU 14K — 1008	14	φ 7	ø 8	K1	10	-	ø 8	45	55	-	-	21.0
S50SU 15K — 1008	15	φ 7.5	φ 8.5	K1	10	-	φ 8.5	45	55	-	-	23.8
S50SU 16K * 0804	16	ø 8	ø 9	K2	8	φ 4	ø 9	10	18	2-M3	3	6.2
S50SU 16L — 0805	16	ø 8	ø 9	L1	8	-	φ 5 (h9)	L22 R50	80	-	-	14.4
S50SU 18K * 0804	18	ø 9	ø 10	K2	8	φ 4	φ 10	10	18	2-M3	3	8.2
S50SU 18L — 0806	18	ø 9	ø 10	L1	8	-	φ 6 (h9)	L22 R50	80	-	-	20.2
S50SU 20K * 0804	20	φ 10	φ11	K2	8	φ 4	φ 11	10	18	2-M3	3	10.4
S50SU 20L — 0806	20	φ10	φ11	L1	8	-	φ 6 (h9)	L22 R50	80	-	-	21.1
S50SU 24K * 0805	24	φ12	φ13	K2	8	ø 5	φ 13	10	18	2-M3	3	14.5
S50SU 25K * 0805	25	φ12.5	φ13.5	K2	8	ø 5	φ13.5	10	18	2-M3	3	15.9
S50SU 28K * 0805	28	φ14	ø 15	K2	8	ø 5	φ 15	10	18	2-M3	3	20.5
S50SU 30K * 0806	30	φ 15	ø 16	K2	8	φ 6	ø 16	10	18	2-M3	3	22.7
S50SU 32B * 0506	32	ø 16	φ17	B1	5	ø 6	φ 12	8	13	2-M3	4	12.0
S50SU 36B * 0506	36	ø 18	ø 19	B1	5	ø 6	φ12	8	13	2-M3	4	14.1
S50SU 40B * 0506	40	φ 20	φ 21	B1	5	ø 6	ø 15	8	13	2-M4	4	20.0
S50SU 45B * 0506	45	φ22.5	φ23.5	B1	5	ø 6	ø 15	8	13	2-M4	4	23.3
S50SU 48B * 0506	48	φ24	ø 25	B1	5	ø 6	ø 15	8	13	2-M4	4	25.5
S50SU 50B * 0506	50	φ 25	φ 26	B1	5	ø 6	ø 15	8	13	2-M4	4	27.0
S50SU 54B * 0506	54	φ27	φ 28	B1	5	ø 6	φ 15	8	13	2-M4	4	30.3
S50SU 56B * 0506	56	φ 28	ø 29	B1	5	ø 6	ø 15	8	13	2-M4	4	32.0
S50SU 60B * 0508	60	φ30	φ 31	B1	5	ø 8	φ 18	8	13	2-M4	4	38.2
S50SU 64B * 0508	64	φ32	φ 33	B1	5	ø 8	ø 18	8	13	2-M4	4	42.0
S50SU 70B * 0508	70	φ 35	ø 36	B1	5	ø 8	φ 18	8	13	2-M4	4	48.3
S50SU 72B * 0508	72	φ36	φ 37	B1	5	φ 8	φ18	8	13	2-M4	4	50.5
S50SU 75B * 0508	75	φ37.5	φ38.5	B1	5	ø 8	ø 18	8	13	2-M4	4	53.9
S50SU 80B * 0510	80	φ40	φ41	B1	5	φ 10	φ 22	8	13	2-M5	4	64.3
S50SU 90B * 0510	90	φ 45	ø 46	B1	5	φ 10	φ 22	8	13	2-M5	4	77.5
S50SU 100B * 0510	100	φ50	φ 51	B1	5	φ 10	φ 25	8	13	2-M5	4	98.9
S50SU 120B * 0510	120	φ60	φ61	B1	5	φ 10	φ 25	8	13	2-M5	4	133.2

상품 기호		회전	속도별 허용전	· 달동력표	휨강도 (단위	임: W)	
성품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S50SU 10K — 1006	0.30	3.03	6.06	12.12	24.24	36.37	45.46
S50SU 12K — 1007	0.42	4.24	8.49	16.98	33.96	50.93	63.67
S50SU 14K — 1008	0.55	5.53	11.07	22.13	44.26	66.39	82.99
S50SU 15K — 1008	0.62	6.20	12.40	24.80	49.60	74.41	93.01
S50SU 16K * 0804	0.55	5.50	11.01	22.02	44.04	66.06	82.57
S50SU 16L — 0805	0.55	5.50	11.01	22.02	44.04	66.06	82.57
S50SU 18K * 0804	0.66	6.62	13.24	26.47	52.94	79.41	99.26
S50SU 18L — 0806	0.66	6.62	13.24	26.47	52.94	79.41	99.26
S50SU 20K * 0804	0.78	7.77	15.54	31.08	62.16	93.24	116.55
S50SU 20L — 0806	0.78	7.77	15.54	31.08	62.16	93.24	116.55
S50SU 24K * 0805	1.01	10.13	20.26	40.52	81.04	121.55	151.94
S50SU 25K * 0805	1.07	10.73	21.46	42.93	85.86	128.79	160.96
S50SU 28K * 0805	1.26	12.56	25.13	50.26	100.52	150.77	185.69
S50SU 30K * 0806	1.38	13.80	27.59	55.18	110.37	165.55	201.56
S50SU 32B * 0506	0.94	9.40	18.81	37.61	75.22	112.74	135.81
S50SU 36B * 0506	1.10	10.98	21.96	43.93	87.85	129.24	155.10
S50SU 40B * 0506	1.26	12.58	25.16	50.32	100.65	145.37	173.83
S50SU 45B * 0506	1.46	14.59	29.18	58.37	116.74	164.87	196.29
S50SU 48B * 0506	1.58	15.81	31.63	63.25	126.40	176.32	209.39
S50SU 50B * 0506	1.66	16.63	33.26	66.52	132.10	183.82	217.95
S50SU 54B * 0506	1.83	18.27	36.54	73.08	143.35	198.52	234.63
S50SU 56B * 0506	1.91	19.10	38.19	76.38	148.90	205.71	242.76
S50SU 60B * 0508	2.07	20.75	41.50	83.00	159.84	219.81	258.63
S50SU 64B * 0508	2.24	22.41	44.82	89.64	170.57	233.52	273.96
S50SU 70B * 0508	2.49	24.91	49.82	99.65	186.27	253.37	296.02
S50SU 72B * 0508	2.57	25.75	51.50	102.99	191.40	259.80	303.14
S50SU 75B * 0508	2.70	27.01	54.01	108.02	199.00	269.28	313.58
S50SU 80B * 0510	2.91	29.11	58.21	116.42	211.43	284.66	334.02
S50SU 90B * 0510	3.33	33.28	66.56	133.13	235.05	313.46	376.29
S50SU 100B * 0510	3.75	37.50	75.01	148.96	257.73	344.32	417.84
S50SU 120B * 0510	4.60	45.99	91.98	177.13	299.84	412.29	497.84

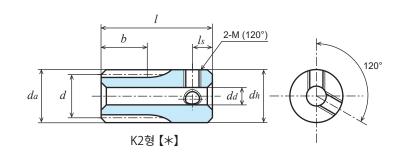



정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다. 【+】에는 나사 구멍이 1곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

· · · · · · · · · · · · · · · · · · ·												
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	M	ls	W(g)
S75SU 10K — 0809	10	φ 7.5	φ 9	K1	8	-	ø 9	47	55	-	-	26.5
S75SU 14K + 0805	14	φ 10.5	φ 12	K2	8	ø 5	φ12	12	20	МЗ	3	13.0
S75SU 15K + 0805	15	φ 11.25	φ 12.75	K2	8	φ 5	φ12.75	12	20	МЗ	3	15.2
S75SU 16B + 0805	16	φ 12	φ 13.5	B1	8	φ 5	φ10	7	15	МЗ	3.5	9.1
S75SU 20B + 0806	20	φ 15	φ 16.5	B1	8	ø 6	φ12	7	15	M4	3.5	13.9
S75SU 22B + 0806	22	φ 16.5	φ 18	B1	8	ø 6	φ12	7	15	M4	3.5	16.3
S75SU 24B + 0806	24	φ 18	φ 19.5	B1	8	ø 6	<i>φ</i> 14	7	15	M4	3.5	21.0
S75SU 25B + 0806	25	φ 18.75	φ 20.25	B1	8	ø 6	<i>φ</i> 14	7	15	M4	3.5	22.4
S75SU 26B + 0806	26	φ 19.5	φ 21	B1	8	ø 6	φ14	7	15	M4	3.5	23.8
S75SU 28B + 0806	28	φ21	φ 22.5	B1	8	ø 6	<i>φ</i> 14	7	15	M4	3.5	26.9
S75SU 48B + 0606	48	φ36	φ37.5	B1	6	ø 6	φ20	9	15	M4	4	67.0

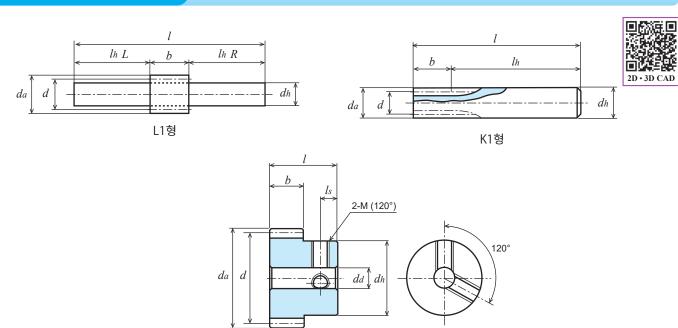
인포메 이션


		1	

베 벨 기 어

슫	ŀ
Ī	
X	
5	Ė

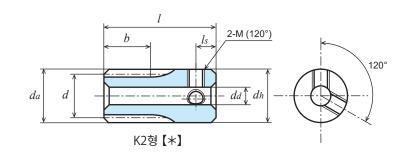
상품 기호		회전	속도별 허용전	선달동력표 -	휨강도(단위	4: W)	
영품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S75SU 10K — 0809	0.55	5.46	10.91	21.82	43.64	65.46	81.83
S75SU 14K + 0805	1.00	9.96	19.92	39.84	79.67	119.51	149.39
S75SU 15K + 0805	1.12	11.16	22.32	44.64	89.29	133.93	167.41
S75SU 16B + 0805	1.24	12.39	24.77	49.54	99.09	148.63	185.79
S75SU 20B + 0806	1.75	17.48	34.97	69.93	139.86	209.79	255.42
S75SU 22B + 0806	2.01	20.12	40.23	80.46	160.93	240.07	288.91
S75SU 24B + 0806	2.28	22.79	45.58	91.17	182.33	268.23	321.89
S75SU 25B + 0806	2.41	24.15	48.30	96.59	193.18	282.23	338.23
S75SU 26B + 0806	2.55	25.51	51.03	102.05	204.11	296.15	354.44
S75SU 28B + 0806	2.83	28.27	56.54	113.08	226.16	323.73	386.41
C75CII 40D 1 0606	1 27	12.60	85.30	170.78	21727	430.70	502.63



정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

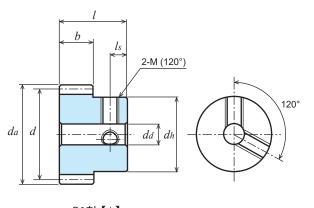
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	2-M(120°)	ls	W(g)
S80SU 10K — 1010	10	φ 8	φ 9.6	K1	10	-	φ10	50	60	-	-	35.1
S80SU 12K — 1012	12	φ 9.6	φ11.2	K1	10	-	φ12	50	60	-	-	50.6
S80SU 14K * 0704	14	φ11.2	φ12.8	K2	7	φ 4	φ12.8	13	20	2-M3	3	16.3
S80SU 15K * 0704	15	φ12	φ13.6	K2	7	φ 4	φ13.6	13	20	2-M3	3	18.8
S80SU 16L — 0706	16	φ12.8	φ14.4	L1	7	-	φ 6 (h9)	L28 R60	95	-	-	26.9
S80SU 16B * 0504	16	φ12.8	φ14.4	B1	5	φ 4	φ 10	7	12	2-M3	3	8.0
S80SU 16B * 0704	16	φ12.8	φ14.4	B1	7	ϕ 4	φ 10	7	14	2-M3	3	9.8
S80SU 18B * 0704	18	φ14.4	φ16	B1	7	ϕ 4	φ 10	7	14	2-M3	3	11.7
S80SU 20L — 0710	20	φ16	φ17.6	L1	7	-	φ10 (h9)	L28 R60	95	-	-	66.0
S80SU 20B * 0504	20	φ16	φ17.6	B1	5	ϕ 4	φ 10	7	12	2-M3	3	10.9
S80SU 20B * 0704	20	φ16	φ17.6	B1	7	ϕ 4	φ 10	7	14	2-M3	3	13.9
S80SU 22B * 0504	22	φ17.6	φ19.2	B1	5	ϕ 4	φ 10	7	12	2-M3	3	12.5
S80SU 22B * 0704	22	φ17.6	φ19.2	B1	7	ϕ 4	φ 10	7	14	2-M3	3	16.2
S80SU 24B * 0505	24	φ19.2	φ20.8	B1	5	φ 5	φ 15	7	12	2-M4	4	18.6
S80SU 24B * 0705	24	φ19.2	φ20.8	B1	7	φ 5	φ 15	7	14	2-M4	4	22.9
S80SU 25B * 0505	25	φ 20	φ21.6	B1	5	φ 5	φ 15	7	12	2-M4	4	19.6
S80SU 25B * 0705	25	φ 20	φ21.6	B1	7	φ 5	φ 15	7	14	2-M4	4	24.2
S80SU 28B * 0505	28	φ22.4	<i>φ</i> 24	B1	5	φ 5	φ 15	7	12	2-M4	4	22.7
S80SU 28B * 0705	28	φ22.4	φ24	B1	7	φ 5	φ 15	7	14	2-M4	4	28.7
S80SU 30B * 0505	30	<i>φ</i> 24	φ25.6	B1	5	φ 5	φ 15	7	12	2-M4	4	25.0
S80SU 30B * 0705	30	<i>φ</i> 24	φ25.6	B1	7	φ 5	φ 15	7	14	2-M4	4	31.9
S80SU 32B * 0505	32	φ25.6	φ27.2	B1	5	φ 5	φ 15	9	14	2-M4	4	30.0
S80SU 36B * 0506	36	φ28.8	φ30.4	B1	5	ø 6	φ 18	9	14	2-M4	4	39.9
S80SU 40B * 0506	40	φ32	φ33.6	B1	5	φ 6	φ18	9	14	2-M4	4	45.9
S80SU 45B * 0506	45	φ36	φ37.6	B1	5	ø 6	φ 18	9	14	2-M4	4	54.4
S80SU 48B * 0506	48	φ38.4	φ40	B1	5	ø 6	φ 18	9	14	2-M4	4	59.9
S80SU 50B * 0506	50	φ40	φ41.6	B1	5	ø 6	φ18	9	14	2-M4	4	63.9
S80SU 54B * 0506	54	φ43.2	φ44.8	B1	5	ø 6	φ 18	9	14	2-M4	4	72.1
S80SU 60B * 0506	60	φ48	φ49.6	B1	5	φ 6	φ18	9	14	2-M4	4	85.8
S80SU 64B * 0506	64	φ51.2	φ52.8	B1	5	φ 6	φ18	9	14	2-M4	4	95.7
S80SU 70B * 0508	70	φ56	φ57.6	B1	5	φ 8	φ28	9	14	2-M4	4	134.4
S80SU 72B * 0508	72	φ57.6	φ59.2	B1	5	φ 8	φ28	9	14	2-M4	4	140.0
S80SU 80B * 0508	80	φ64	φ65.6	B1	5	φ 8	φ28	9	14	2-M4	4	164.3
S80SU 90B * 0508	90	φ72	φ73.6	B1	5	φ 8	φ28	9	14	2-M4	4	198.1
S80SU 100B * 0508	100	φ80	φ81.6	B1	5	φ 8	φ28	9	14	2-M4	4	236.0
S80SU 100B * 0510	100	<i>φ</i> 80	<i>φ</i> 81.6	B1	5	φ 10	φ 28	9	14	2-M4	4	233.0



B1형【*】

사표 기수		회전	속도별 허용전	년달동력표 -	휨강도(단위	위: W)		
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	
S80SU 10K — 1010	0.78	7.76	15.52	31.03	62.07	93.10	116.37	
S80SU 12K — 1012	1.09	10.87	21.73	43.46	86.93	130.39	162.99	
S80SU 14K * 0704	0.99	9.91	19.83	39.66	79.32	118.98	148.72	
S80SU 15K * 0704	1.11	11.11	22.22	44.45	88.89	133.34	166.67	
S80SU 16L - 0706	1.23	12.33	24.66	49.32	98.65	147.97	184.82	
S80SU 16B * 0504	0.88	8.81	17.62	35.23	70.46	105.70	132.01	
S80SU 16B * 0704	1.23	12.33	24.66	49.32	98.65	147.97	184.82	
S80SU 18B * 0704	1.48	14.82	29.65	59.29	118.59	177.88	218.07	
S80SU 20L — 0710	1.74	17.40	34.81	69.62	139.24	208.69	251.40	
S80SU 20B * 0504	1.24	12.43	24.86	49.73	99.46	149.07	179.57	
S80SU 20B * 0704	1.74	17.40	34.81	69.62	139.24	208.69	251.40	
S80SU 22B * 0504	1.43	14.30	28.61	57.22	114.44	168.97	202.93	
S80SU 22B * 0704	2.00	20.03	40.05	80.10	160.21	236.56	284.10	
S80SU 24B * 0505	4B * 0505 1.62		32.41	64.83	129.66	188.65	225.90	
S80SU 24B * 0705	2.27	22.69	45.38 90.76	90.76	181.52	264.10	316.25	
S80SU 25B * 0505	1.72	17.17	34.34	68.69	137.37	198.42	237.26	
S80SU 25B * 0705	2.40	24.04	48.08	96.16	192.32	277.79	332.16	
S80SU 28B * 0505	2.10	20.10	40.21	80.41	160.83	227.34	270.71	
S80SU 28B * 0705	2.81	28.14	56.29	112.58	225.16	318.28	379.00	
S80SU 30B * 0505	2.21	22.07	44.15	88.30	176.45	246.13	292.31	
S80SU 30B * 0705	3.09	30.90	61.81	123.61	247.03	344.58	409.23	
S80SU 32B * 0505	2.41	24.07	48.14	96.28	190.50	264.69	313.54	
S80SU 36B * 0506	2.81	28.11	56.23	112.45	218.15	300.82	354.57	
S80SU 40B * 0506	3.22	32.21	64.41	128.83	245.14	335.60	393.73	
S80SU 45B * 0506	3.74	37.36	74.71	149.42	277.69	376.92	439.78	
S80SU 48B * 0506	4.05	40.48	80.96	161.92	296.75	400.82	466.79	
S80SU 50B * 0506	4.26	42.57	85.14	170.29	309.24	416.36	488.56	
S80SU 54B * 0506	4.68	46.77	93.55	187.10	333.68	446.48	531.67	
S80SU 60B * 0506	5.31	53.12	106.24	212.30	369.00	490.02	595.27	
S80SU 64B * 0506	5.74	57.37	114.74	227.01	391.70	525.18	636.94	
S80SU 70B * 0508	6.38	63.77	127.55	248.65	424.50	577.17	698.30	
S80SU 72B * 0508	6.59	65.92	131.83	255.75	435.12	594.31	718.46	
S80SU 80B * 0508	7.45	74.51	149.02	283.56	476.06	661.79	797.82	
S80SU 90B * 0508	8.52	85.20	170.40	0 316.67	316.67 523	523.99	742.92	898.85
S80SU 100B * 0508	9.60	96.01	192.03	348.72	582.97	822.44	998.20	
S80SU 100B * 0510	9.60	96.01	192.03	348.72	582.97	822.44	998.20	

평기어 (SUS304) (보통이)



정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	_	_	0.06~0.12

- ★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

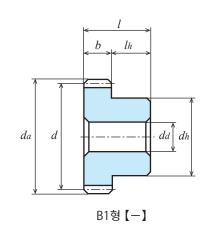
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	2-M(120°)	ls	W(g)
S1SU 14K * 0806	14	φ 14	ø 16	K2	8	φ 6	φ 16	17	25	2-M4	4	30.4
S1SU 15K * 0806	15	φ 15	φ 17	K2	8	φ 6	ø 17	17	25	2-M4	4	35.3
S1SU 16K * 0806	16	φ 16	φ 18	K2	8	φ 6	ø 18	17	25	2-M4	4	40.5
S1SU 17B * 0806	17	φ 17	ø 19	B1	8	φ 6	φ14	8	16	2-M4	4	19.9
S1SU 18B * 0806	18	φ 18	φ 20	B1	8	φ 6	φ14	8	16	2-M4	4	21.7
S1SU 18B * 1006	18	φ 18	φ 20	B1	10	φ 6	φ14	10	20	2-M4	4	27.2
S1SU 20B * 0806	20	φ 20	φ 22	B1	8	φ 6	φ 16	8	16	2-M4	4	28.3
S1SU 20B * 1006	20	φ 20	φ 22	B1	10	φ 6	φ 16	10	20	2-M4	4	35.5
S1SU 22B * 0806	22	φ 22	φ 24	B1	8	φ 6	ø 18	8	16	2-M4	4	35.7
S1SU 24B * 0806	24	φ 24	φ 26	B1	8	φ 6	ø 18	8	16	2-M4	4	40.3
S1SU 24B * 1006	24	φ 24	φ 26	B1	10	φ 6	ø 18	10	20	2-M4	4	50.6
S1SU 25B * 0806	25	φ 25	φ 27	B1	8	φ 6	ø 18	8	16	2-M4	4	42.7
S1SU 25B * 1006	25	φ 25	φ 27	B1	10	φ 6	φ 20	10	20	2-M4	4	58.2
S1SU 26B * 0806	26	φ 26	φ 28	B1	8	φ 6	φ 20	8	16	2-M4	4	48.9
S1SU 28B * 0806	28	φ 28	φ 30	B1	8	φ 6	φ 20	8	16	2-M4	4	54.2
S1SU 28B * 1006	28	φ 28	φ 30	B1	10	φ 6	φ20	10	20	2-M4	4	68.1
S1SU 30B * 0806	30	φ 30	φ 32	B1	8	φ 6	φ 24	8	16	2-M4	4	68.5
S1SU 30B * 1006	30	φ 30	φ 32	B1	10	φ 6	<i>φ</i> 24	10	20	2-M4	4	86.0
S1SU 32B * 0606	32	φ 32	φ 34	B1	6	φ 6	<i>φ</i> 24	10	16	2-M4	4	69.1
S1SU 34B * 0606	34	φ 34	φ 36	B1	6	φ 6	<i>φ</i> 24	10	16	2-M4	4	74.0
S1SU 35B * 0606	35	φ 35	φ 37	B1	6	φ 6	<i>φ</i> 24	10	16	2-M4	4	76.6
S1SU 36B * 0608	36	φ 36	φ 38	B1	6	\$ 8	<i>φ</i> 24	10	16	2-M4	4	76.6
S1SU 40B * 0608	40	φ 40	φ 42	B1	6	\$ 8	φ28	10	16	2-M4	4	100.6
S1SU 44B * 0608	44	φ 44	φ 46	B1	6	φ 8	φ28	10	16	2-M4	4	113.1
S1SU 50B * 0608	50	φ 50	φ 52	B1	6	φ 8	φ28	10	16	2-M4	4	134.2
S1SU 54B * 0608	54	φ 54	φ 56	B1	6	φ 8	φ 28	10	16	2-M5	5	148.8
S1SU 60B * 0610	60	φ 60	φ 62	B1	6	φ10	φ 30	10	16	2-M5	5	178.0
S1SU 64B * 0610	64	φ 64	φ 66	B1	6	φ10	φ 30	10	16	2-M5	5	196.5
S1SU 70B * 0610	70	φ 70	φ 72	B1	6	φ10	φ30	10	16	2-M5	5	226.6
S1SU 72B * 0610	72	φ 72	φ 74	B1	6	φ10	φ30	10	16	2-M5	5	237.2
S1SU 80B * 0610	80	φ 80	φ 82	B1	6	φ10	φ 30	10	16	2-M5	5	282.6
S1SU 90B * 0610	90	φ 90	φ 92	B1	6	φ10	φ30	10	16	2-M5	5	346.1
S1SU 100B * 0610	100	<i>φ</i> 100	φ102	B1	6	φ10	φ30	10	16	2-M5	5	417.1
S1SU 120B * 0610	120	φ120	φ122	B1	6	 ø 10	φ 30	10	16	2-M5	5	581.6

상품 기호	회전속도별 허용전달동력표 휨강도 (단위: W)						
	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S1SU 14K * 0806	1.77	17.71	35.41	70.82	141.64	212.46	261.67
S1SU 15K * 0806	1.98	19.84	39.68	79.37	158.73	238.10	289.88
S1SU 16K * 0806	2.20	22.02	44.04	88.08	176.16	264.03	318.05
S1SU 17B * 0806	2.42	24.23	48.46	96.92	193.84	287.82	346.06
S1SU 18B * 0806	2.65	26.47	52.94	105.88	211.76	311.52	373.85
S1SU 18B * 1006	3.31	33.09	66.18	132.35	264.70	389.40	467.32
S1SU 20B * 0806	3.11	31.08	62.16	124.32	248.64	359.14	429.43
S1SU 20B * 1006	3.89	38.85	77.70	155.40	310.80	448.92	536.79
S1SU 22B * 0806	3.58	35.76	71.52	143.04	286.09	405.86	483.62
S1SU 24B * 0806	4.05	40.52	81.04	162.07	323.88	451.79	536.54
S1SU 24B * 1006	5.06	50.65	101.29	202.59	404.85	564.74	670.68
S1SU 25B * 0806	4.29	42.93	85.86	171.72	341.02	474.52	562.62
S1SU 25B * 1006	5.37	53.66	107.32	214.65	426.27	593.15	703.28
S1SU 26B * 0806	4.54	45.36	90.71	181.43	358.07	497.04	588.38
S1SU 28B * 0806	5.03	50.26	100.52	201.03	391.90	541.43	638.95
S1SU 28B * 1006	6.28	62.82	125.65	251.29	489.88	676.79	798.68
S1SU 30B * 0806	5.52	55.18	110.37	220.74	425.11	584.61	687.84
S1SU 30B * 1006	6.90	68.98	137.96	275.92	531.39	730.76	859.80
S1SU 32B * 0606	4.51	45.13	90.27	180.53	343.53	470.31	551.76
S1SU 34B * 0606	4.89	48.91	97.82	195.64	367.87	501.44	586.65
S1SU 35B * 0606	5.08	50.81	101.61	203.23	379.90	516.74	603.73
S1SU 36B * 0608	5.27	52.71	105.42	210.85	391.84	531.86	620.57
S1SU 40B * 0608	6.04	60.39	120.78	241.55	438.65	590.59	693.00
S1SU 44B * 0608	6.81	68.10	136.19	272.39	483.61	646.13	772.19
S1SU 50B * 0608	7.98	79.82	159.65	317.05	548.54	732.84	889.33
S1SU 54B * 0608	8.77	87.70	175.40	344.05	589.94	797.50	965.84
S1SU 60B * 0610	9.96	99.60	199.19	383.62	649.37	892.91	1,078.17
S1SU 64B * 0610	10.76	107.57	215.14	409.37	687.26	955.40	1,151.78
S1SU 70B * 0610	11.96	119.58	239.15	447.06	741.67	1,047.46	1,266.18
S1SU 72B * 0610	12.36	123.59	247.19	459.37	760.11	1,077.69	1,303.88
S1SU 80B * 0610	13.97	139.71	279.42	507.42	848.29	1,196.75	1,452.49
S1SU 90B * 0610	15.98	159.75	319.50	564.12	954.81	1,348.27	1,631.26
S1SU 100B * 0610	18.00	180.02	357.51	618.54	1,059.38	1,497.28	1,806.04
S1SU 120B * 0610	22.07	220.74	425.12	719.62	1,260.58	1,784.16	2,207.42

마 이 터 기 어

베 벨 기 어

웜 , 웜 휠


단위:mm

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	_	_	0.09~0.18

 ★표면처리는 하지 않았습니다.

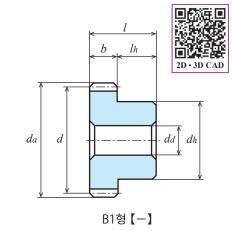
 ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

 ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다

₹돈 여용선물용력표의 테이들는 JGN D동종품, 동재질, 한 쌍의 맞물림 시의			변선 링립는 1	일고사표 20파	이시글 확인	아업지오.
	잇수	기준원	이끝원	형	치폭	구멍

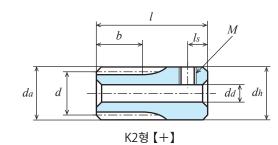
() 등등점, 등세일, 한 등의 콧물림 시의		1-								ì
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	Z	d	da		b	dd(H8)	dh	lh	l	W(g)
S1.5SU 15B — 1208	15	φ22.5	φ25.5	B1	12	φ 8	ø 18	10	22	49.3
S1.5SU 16B — 1208	16	φ 24	φ 27	B1	12	φ 8	ø 20	10	22	59.2
S1.5SU 16B — 1608N	16	φ 24	φ 27	B1	16	ø 8	\$\phi 20	10	26	72.0
S1.5SU 18B — 1210	18	ø 27	ø 30	B1	12	φ 10	φ 22	10	22	70.9
S1.5SU 20B — 1210	20	ø 30	φ 33	B1	12	φ 10	φ 25	10	22	92.5
S1.5SU 20B — 1610N	20	ø 30	φ33	B1	16	φ 10	ø 25	10	26	112.4
S1.5SU 24B — 1210	24	ø 36	ø 39	B1	12	φ 10	φ 30	10	22	139.2
S1.5SU 25B — 1610N	25	φ37.5	φ40.5	B1	16	φ 10	φ 30	10	26	180.0
S1.5SU 28B — 1210	28	φ42	ø 45	B1	12	φ 10	φ 30	10	22	174.2
S1.5SU 30B — 1210	30	φ 45	 \$\phi 48	B1	12	φ 10	φ 30	10	22	193.7
S1.5SU 30B — 1610N	30	φ 45	ø 48	B1	16	φ 10	ø 30	10	26	241.7
S1.5SU 32B — 1010	32	<i>ф</i> 48	φ 51	B1	10	φ 10	ø 30	10	20	187.1
S1.5SU 36B — 1010	36	ø 54	φ 57	B1	10	 \$\phi 10\$	φ 30	10	20	225.2
S1.5SU 40B — 1012	40	ø 60	φ63	B1	10	φ 12	ø 36	10	20	287.0
S1.5SU 48B — 1012	48	φ72	φ 75	B1	10	φ 12	φ 36	10	20	385.7
S1.5SU 50B — 1012	50	φ 75	ø 78	B1	10	φ 12	φ42	10	20	442.3
S1.5SU 60B — 1014	60	φ 90	φ 93	B1	10	<i>φ</i> 14	φ 50	10	20	635.8
S1.5SU 80B — 1016	80	φ120	φ123	B1	10	φ 16	φ 60	10	20	1,089.0
S1.5SU 100B — 1016	100	φ150	φ153	B1	10	ø 16	φ60	10	20	1,594.0

상품 기호		회전	속도별 허용전	년달동력표 -	휨강도 (단위	4: W)	
영품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S1.5SU 15B — 1208	6.70	66.97	133.93	267.86	535.73	756.63	900.82
S1.5SU 16B — 1208	7.43	74.32	148.63	297.27	594.06	828.66	984.12
S1.5SU 16B — 1608N	9.91	99.09	198.18	396.36	792.08	1,104.88	1,312.16
S1.5SU 18B — 1210	8.93	89.34	178.67	357.35	700.93	970.64	1,147.22
S1.5SU 20B — 1210	10.49	104.90	209.79	419.58	808.06	1,111.24	1,307.46
S1.5SU 20B — 1610N	13.99	139.86	279.72	559.44	1,077.41	1,481.65	1,743.28
S1.5SU 24B - 1210	13.67	136.75	273.50	546.99	1,016.53	1,379.79	1,609.91
S1.5SU 25B — 1610N	19.32	193.18	386.36	772.72	1,423.55	1,926.29	2,243.17
S1.5SU 28B - 1210	16.96	169.62	339.24	678.48	1,218.22	1,633.80	1,934.94
S1.5SU 30B — 1210	18.62	186.25	372.50	744.99	1,315.37	1,754.13	2,105.74
S1.5SU 30B — 1610N	24.83	248.33	496.66	993.32	1,753.83	2,338.85	2,807.65
S1.5SU 32B — 1010	16.93	169.25	338.50	676.46	1,175.77	1,561.35	1,896.72
S1.5SU 36B — 1010	19.77	197.67	395.34	775.44	1,329.66	1,797.47	2,176.88
S1.5SU 40B — 1012	22.65	226.45	452.91	872.24	1,476.48	2,030.22	2,451.46
S1.5SU 48B - 1012	28.46	284.63	569.25	1,057.90	1,750.48	2,481.86	3,002.75
S1.5SU 50B — 1012	29.93	299.34	598.67	1,102.91	1,832.09	2,592.36	3,140.56
S1.5SU 60B — 1014	37.35	373.48	746.97	1,318.86	2,232.26	3,152.13	3,813.74
S1.5SU 80B — 1016	52.39	523.90	1,008.96	1,707.93	2,991.84	4,234.47	5,239.02
S1.5SU 100B — 1016	67.51	675.07	1,243.66	2,065.89	3,743.17	5,400.57	-

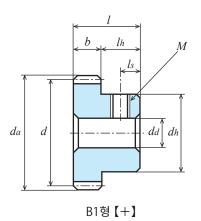

정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	_	_	0.12~0.24

★표면처리는 하지 않았습니다.

★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


①농송품, 동새질, 한 쌍의 맞물림 시의	이근지답니	-1.								
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	z	d	da		b	dd(H8)	dh	lh	l	W(g)
S2SU 15B — 1410N	15	φ 30	φ 34	B1	14	φ10	φ22	10	24	93.7
S2SU 20B — 1412N	20	φ 40	φ 44	B1	14	φ12	φ 30	10	24	174.0
S2SU 30B — 1414N	30	φ 60	φ 64	B1	14	φ14	φ40	10	24	384.3
S2SU 32B — 1214N	32	φ 64	φ 68	B1	12	φ14	φ45	10	22	405.4
S2SU 40B — 1214N	40	φ 80	φ 84	B1	12	φ14	φ 50	10	22	607.2
S2SU 45B — 1214N	45	φ 90	φ 94	B1	12	φ14	φ 60	10	22	802.7
S2SU 50B — 1215N	50	φ100	φ104	B1	12	φ 15	φ 60	10	22	0.94(kg)
S2SU 55B — 1215N	55	φ110	φ114	B1	12	φ 15	φ60	10	22	1.10(kg)
S2SU 60B — 1215N	60	φ120	φ124	B1	12	ø 15	φ 60	10	22	1.27(kg)

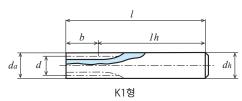
상품 기호		회전4	녹도별 허용전	달동력표 춤	팀강도 (단위	l: kW)	
	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S2SU 15B — 1410N	0.014	0.139	0.278	0.556	1.070	1.471	1.731
S2SU 20B — 1412N	0.022	0.218	0.435	0.870	1.580	2.128	2.497
S2SU 30B — 1414N	0.039	0.386	0.773	1.488	2.519	3.463	4.182
S2SU 32B — 1214N	0.036	0.361	0.722	1.374	2.307	3.207	3.866
S2SU 40B — 1214N	0.048	0.483	0.966	1.754	2.933	4.138	5.023
S2SU 45B — 1214N	0.056	0.560	1.121	1.979	3.349	4.729	5.722
S2SU 50B — 1215N	0.063	0.64	1.27	2.19	3.76	5.31	6.41
S2SU 55B — 1215N	0.071	0.72	1.40	2.40	4.16	5.88	7.17
S2SU 60B — 1215N	0.079	0.80	1.53	2.60	4.55	6.44	7.97



정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	C3604B	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다.【+】에는 나사구멍이 1곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

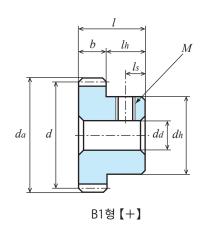
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	M	ls	W(g)
S30B 14K + 0402	14	φ 4.2	φ 4.8	K2	4	φ2	φ 5	8	12	M1.6	2.5	1.5
S30B 15K + 0402	15	φ 4.5	φ 5.1	K2	4	φ 2	φ 5.5	8	12	M1.6	2.5	1.8
S30B 16K + 0402	16	φ 4.8	φ 5.4	K2	4	φ 2	φ 5.5	8	12	M1.6	2.5	1.9
S30B 18K + 0402	18	φ 5.4	φ 6	K2	4	φ 2	ø 6	8	12	M2	2.5	2.3
S30B 20B + 0302	20	φ 6	φ 6.6	B1	3.2	φ 2	φ 5	4.8	8	M1.6	2.5	1.3
S30B 24B + 0302	24	φ 7.2	φ 7.8	B1	3.2	φ 2	ø 6	4.8	8	M2	2.5	2.0
S30B 25B + 0302	25	φ 7.5	φ 8.1	B1	3.2	φ 2	ø 6	4.8	8	M2	2.5	2.1
S30B 28B + 0302	28	φ 8.4	ø 9	B1	3.2	φ 2	φ 7	4.8	8	M2	2.5	2.8
S30B 30B + 0302	30	ø 9	φ 9.6	B1	3.2	φ 2	ø 8	4.8	8	M2	2.5	3.5
S30B 32B + 0202	32	φ 9.6	φ 10.2	B1	2	φ 2	ø 8	6	8	M2	3	3.5
S30B 35B + 0202	35	φ10.5	φ 11.1	B1	2	φ 2	ø 8	6	8	M2	3	3.8
S30B 36B + 0203	36	φ10.8	φ 11.4	B1	2	ø 3	ø 9	6	8	M3	3	4.2
S30B 40B + 0203	40	φ12	φ 12.6	B1	2	ø 3	φ10	6	8	M3	3	5.3
S30B 45B + 0203	45	φ13.5	φ 14.1	B1	2	ø 3	φ10	6	8	M3	3	5.8
S30B 48B + 0203	48	φ14.4	φ 15	B1	2	ø 3	φ10	6	8	M3	3	6.1
S30B 50B + 0203	50	φ 15	φ15.6	B1	2	ø 3	φ 10	6	8	M3	3	6.4
S30B 56B + 0203	56	ø 16.8	φ17.4	B1	2	ø 3	ø 10	6	8	M3	3	7.1
S30B 60B + 0203	60	φ18	φ18.6	B1	2	ø 3	ø 10	6	8	M3	3	7.7
S30B 64B + 0203	64	φ19.2	φ19.8	B1	2	ø 3	ø 10	6	8	M3	3	8.3
S30B 70B + 0203	70	φ 21	φ21.6	B1	2	ø 3	ø 10	6	8	M3	3	9.3
S30B 72B + 0203	72	φ21.6	φ22.2	B1	2	φ 3	φ 10	6	8	M3	3	9.6
S30B 75B + 0203	75	φ22.5	φ23.1	B1	2	ø 3	ø 10	6	8	M3	3	10.1
S30B 80B + 0203	80	φ24	φ24.6	B1	2	ø 3	φ 10	6	8	M3	3	11.1
S30B 90B + 0203	90	φ 27	φ27.6	B1	2	ø 3	ø 10	6	8	M3	3	13.1
S30B 96B + 0203	96	φ28.8	φ29.4	B1	2	ø 3	φ 10	6	8	M3	3	14.4
S30B 100B + 0203	100	φ30	φ30.6	B1	2	φ 3	φ10	6	8	M3	3	15.4
S30B 108B + 0203	108	φ32.4	φ 33	B1	2	ø 3	φ 10	6	8	M3	3	17.4
S30B 120B + 0203	120	ø 36	φ36.6	B1	2	ø 3	ø 10	6	8	M3	3	20.7

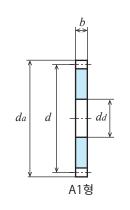


상품 기호		회전	속도별 허용전	· 달동력표 ·	휨강도 (단위	4: W)	
영품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S30B 14K + 0402	0.03	0.32	0.64	1.27	2.55	3.82	4.78
S30B 15K + 0402	0.04	0.36	0.71	1.43	2.86	4.29	5.36
S30B 16K + 0402	0.04	0.40	0.79	1.59	3.17	4.76	5.95
S30B 18K + 0402	0.05	0.48	0.95	1.91	3.81	5.72	7.15
S30B 20B + 0302	0.04	0.45	0.90	1.79	3.58	5.37	6.71
S30B 24B + 0302	0.06	0.58	1.17	2.33	4.67	7.00	8.75
S30B 25B + 0302	0.06	0.62	1.24	2.47	4.95	7.42	9.27
S30B 28B + 0302	0.07	0.72	1.45	2.89	5.79	8.68	10.86
S30B 30B + 0302	0.08	0.79	1.59	3.18	6.36	9.54	11.92
S30B 32B + 0202	0.05	0.54	1.08	2.17	4.33	6.50	8.12
S30B 35B + 0202	0.06	0.61	1.22	2.44	4.88	7.32	9.15
S30B 36B + 0203	0.06	0.63	1.27	2.53	5.06	7.59	9.49
S30B 40B + 0203	0.07	0.72	1.45	2.90	5.80	8.70	10.87
S30B 45B + 0203	0.08	0.84	1.68	3.36	6.72	10.09	12.49
S30B 48B + 0203	0.09	0.91	1.82	3.64	7.29	10.93	13.40
S30B 50B + 0203	0.10	0.96	1.92	3.83	7.66	11.49	13.99
S30B 56B + 0203	0.11	1.10	2.20	4.40	8.80	13.09	15.74
S30B 60B + 0203	0.12	1.20	2.39	4.78	9.56	14.07	16.88
S30B 64B + 0203	0.13	1.29	2.58	5.16	10.33	15.02	17.99
S30B 70B + 0203	0.14	1.43	2.87	5.74	11.48	16.43	19.61
S30B 72B + 0203	0.15	1.48	2.97	5.93	11.87	16.89	20.14
S30B 75B + 0203	0.16	1.56	3.11	6.22	12.44	17.58	20.92
S30B 80B + 0203	0.17	1.68	3.35	6.71	13.40	18.69	22.20
S30B 90B + 0203	0.19	1.92	3.83	7.67	15.04	20.83	24.62
S30B 96B + 0203	0.21	2.06	4.13	8.25	16.01	22.07	26.02
S30B 100B + 0203	0.22	2.16	4.32	8.64	16.64	22.89	26.93
S30B 108B + 0203	0.24	2.36	4.71	9.42	17.88	24.46	28.68
S30B 120B + 0203	0.26	2.65	5.30	10.60	19.69	26.73	31.19

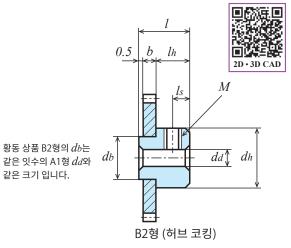
목 차

인포메이션



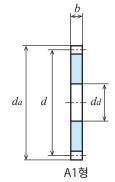

정밀도②	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급~관리범위 외	C3713P, C3604B	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다. 【+】에는 나사구멍이 1곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②B1, K1, K2형은 JIS N9급; A1, B2형은 정밀도 관리범위 외입니다. ③A1형의 구멍 직경 dd의 공차는 0~+0.1mm입니다.

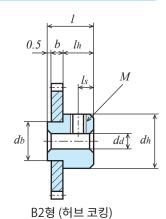

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경③	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	М	ls	W(g)
S50B 10K — 1006	10	φ 5	ø 6	K1	10	-	φ 6	45	55	-	-	12.5
S50B 12K — 1007	12	φ 6	φ 7	K1	10	-	φ 7	45	55	-	-	17.1
S50B 14K — 1008	14	φ 7	ø 8	K1	10	-	ø 8	45	55	-	-	22.5
S50B 15K + 0803	15	φ 7.5	φ 8.5	K2	8	ø 3	ø 9	10	18	M3	3	7.2
S50B 16K + 0803	16	ø 8	ø 9	K2	8	ø 3	ø 9	10	18	M3	3	7.6
S50B 18K + 0803	18	φ 9	φ10	K2	8	ø 3	φ10	10	18	M3	3	9.7
S50B 20K + 0803	20	φ10	φ11	K2	8	ø 3	φ 11	10	18	M3	3	12.2
S50B 20B + 0303	20	φ10	φ11	B1	3	φ 3	φ 8.2	5	8	M3	2.5	3.8
S50B 24B + 0303	24	φ12	φ13	B1	3	ø 3	φ10	5	8	M3	2.5	5.6
S50B 25B + 0303	25	φ12.5	φ13.5	B1	3	ø 3	φ10	5	8	M3	2.5	5.8
S50B 26B + 0303	26	φ13	φ14	B1	3	ø 3	φ10	5	8	M3	2.5	6.1
S50B 28B + 0303	28	φ14	φ 15	B1	3	ø 3	φ10	5	8	M3	2.5	6.6
S50B 30B + 0303	30	φ15	ø 16	B1	3	φ 3	φ10	5	8	M3	2.5	7.2
S50B 32B + 0303	32	φ16	φ 17	B1	3	ø 3	φ10	5	8	M3	2.5	7.8
S50B 35B + 0303	35	φ17.5	φ18.5	B1	3	φ 3	φ10	5	8	M3	2.5	8.8
S50B 36B + 0303	36	φ18	ø 19	B1	3	ø 3	φ10	5	8	M3	2.5	9.2
S50B 40A — 0208	40	φ 20	φ 21	A1	2	ø 8	-	-	2	-	-	4.5
S50B 40B + 0203	40	φ 20	φ 21	B2	2	φ 3	φ 10	5	7.5	M3	2.5	8.1
S50B 42A — 0208	42	φ 21	φ 22	A1	2	ø 8	-	-	2	-	-	5.0
S50B 42B + 0203	42	φ 21	φ 22	B2	2	φ 3	φ 10	5	7.5	M3	2.5	8.6
S50B 45A — 0208	45	φ22.5	φ23.5	A1	2	φ 8	-	-	2	-	-	5.9
S50B 45B + 0203	45	ϕ 22.5	φ23.5	B2	2	φ 3	φ 10	5	7.5	M3	2.5	9.5
S50B 48A — 0208	48	φ24	φ 25	A1	2	ø 8	-	-	2	-	-	6.8
S50B 48B + 0203	48	φ24	φ 25	B2	2	φ 3	φ 10	5	7.5	M3	2.5	10.4
S50B 50A — 0208	50	φ 25	φ 26	A1	2	φ 8	-	-	2	-	-	7.5
S50B 50B + 0203	50	φ 25	φ 26	B2	2	φ 3	φ 10	5	7.5	M3	2.5	11.1
S50B 55A — 0208	55	ϕ 27.5	φ28.5	A1	2	φ 8	-	-	2	-	-	9.2
S50B 55B + 0203	55	ϕ 27.5	φ28.5	B2	2	φ 3	φ 10	5	7.5	M3	2.5	12.8
S50B 56A — 0208	56	φ28	\$\phi 29	A1	2	φ 8	-	-	2	-	-	9.6
S50B 56B + 0203	56	φ28	φ 29	B2	2	φ3	φ 10	5	7.5	M3	2.5	13.2
S50B 58A — 0208	58	φ29	φ30	A1	2	φ8	-	-	2	-	-	10.4
S50B 58B + 0203	58	φ29	φ30	B2	2	φ3	φ10	5	7.5	M3	2.5	14.0
S50B 60A — 0208	60	φ30	φ31	A1	2	φ8	-	-	2	-	-	11.2
S50B 60B + 0203	60	φ30	φ31	B2	2	φ3	φ10	5	7.5	M3	2.5	14.8
S50B 64A — 0208	64	φ32	φ33	A1	2	φ8	-	-	2	-	-	12.8
S50B 64B + 0203	64	φ32	φ33	B2	2	φ3	φ10	5	7.5	M3	2.5	16.4
S50B 65A — 0208	65	φ32.5	φ33.5	A1	2	φ8	-	-	2	-	-	12.3
S50B 65B + 0203	65	φ32.5	φ33.5	B2	2	φ3	φ 10	5	7.5	M3	2.5	16.8
S50B 68A — 0208	68	φ34	φ35	A1	2	φ8	-	-	2	-	-	14.6
S50B 68B + 0203	68	φ34	φ35	B2	2	φ3	φ 10	5	7.5	M3	2.5	18.2
S50B 70A — 0208	70	φ35	φ36	A1	2	φ8	-	-	2	-	-	15.5
S50B 70B + 0203	70	φ35	ø 36	B2	2	φ 3	φ10	5	7.5	M3	2.5	19.1

(보통이)

같은 크기 입니다.

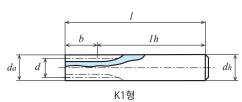


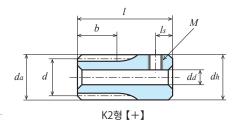
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경③	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	М	ls	W(g)
S50B 72A — 0208	72	ø 36	φ37	A1	2	ø 8	-	-	2	-	-	16.5
S50B 72B + 0203	72	ø 36	φ37	B2	2	φ 3	φ10	5	7.5	M3	2.5	20.0
S50B 75A — 0208	75	φ37.5	φ38.5	A1	2	ø 8	-	-	2	-	-	17.9
S50B 75B + 0203	75	φ37.5	φ38.5	B2	2	φ 3	φ 10	5	7.5	M3	2.5	21.5
S50B 80A — 0208	80	 \$\phi 40	φ41	A1	2	ø 8	-	-	2	-	-	20.5
S50B 80B + 0203	80	φ40	φ41	B2	2	φ 3	φ 10	5	7.5	M3	2.5	24.1
S50B 84A — 0208	84	φ42	φ43	A1	2	ø 8	-	-	2	-	-	22.7
S50B 84B + 0203	84	φ42	φ43	B2	2	ø 3	φ 10	5	7.5	M3	2.5	26.3


상품 기호		회전	속도별 허용전	· 달동력표	휨강도 (단위	P : W)	
8년 시 <u>조</u>	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S50B 10K — 1006	0.12	1.21	2.42	4.85	9.70	14.55	18.18
S50B 12K — 1007	0.17	1.70	3.40	6.79	13.58	20.37	25.47
S50B 14K — 1008	0.22	2.21	4.43	8.85	17.71	26.56	33.20
S50B 15K + 0803	0.20	1.98	3.97	7.94	15.87	23.81	29.76
S50B 16K + 0803	0.22	2.20	4.40	8.81	17.62	26.42	33.03
S50B 18K + 0803	0.26	2.65	5.29	10.59	21.18	31.76	39.71
S50B 20K + 0803	0.31	3.11	6.22	12.43	24.86	37.30	46.62
S50B 20B + 0303	0.12	1.17	2.33	4.66	9.32	13.99	17.48
S50B 24B + 0303	0.15	1.52	3.04	6.08	12.16	18.23	22.79
S50B 25B + 0303	0.16	1.61	3.22	6.44	12.88	19.32	24.15
S50B 26B + 0303	0.17	1.70	3.40	6.80	13.61	20.41	25.43
S50B 28B + 0303	0.19	1.88	3.77	7.54	15.08	22.62	27.85
S50B 30B + 0303	0.21	2.07	4.14	8.28	16.56	24.83	30.23
S50B 32B + 0303	0.23	2.26	4.51	9.03	18.05	27.06	32.60
S50B 35B + 0303	0.25	2.54	5.08	10.16	20.32	30.04	36.08
S50B 36B + 0303	0.26	2.64	5.27	10.54	21.08	31.02	37.22
S50B 40A — 0208	0.20	2.01	4.03	8.05	16.10	23.26	27.81
S50B 42A — 0208	0.21	2.14	4.28	8.57	17.13	24.53	29.28
S50B 45A — 0208	0.23	2.33	4.67	9.34	18.68	26.38	31.41
S50B 48A — 0208	0.25	2.53	5.06	10.12	20.22	28.21	33.50
S50B 50A — 0208	0.27	2.66	5.32	10.64	21.14	29.41	34.87
S50B 55A — 0208	0.30	2.99	5.98	11.96	23.38	32.34	38.19
S50B 56A — 0208	0.31	3.06	6.11	12.22	23.82	32.91	38.84
S50B 58A — 0208	0.32	3.19	6.37	12.75	24.70	34.05	40.12
S50B 60A — 0208	0.33	3.32	6.64	13.28	25.57	35.17	41.38
S50B 64A — 0208	0.36	3.59	7.17	14.34	27.29	37.36	43.83
S50B 65A — 0208	0.37	3.65	7.30	14.61	27.72	37.90	44.43
S50B 68A — 0208	0.39	3.85	7.70	15.41	28.97	39.50	46.21
S50B 70A — 0208	0.40	3.99	7.97	15.94	29.80	40.54	47.36
S50B 72A — 0208	0.41	4.12	8.24	16.48	30.62	41.57	48.50
S50B 75A — 0208	0.43	4.32	8.64	17.28	31.84	43.09	50.17
S50B 80A — 0208	0.47	4.66	9.31	18.63	33.83	45.55	53.44
S50B 84A — 0208	0.49	4.92	9.84	19.68	35.34	47.40	56.14

평기어 (C3604B) 황동 모듈 0.5

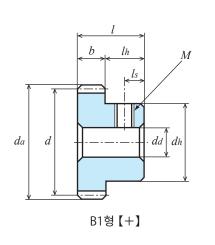
황동 상품 B2형의 db는 같은 잇수의 A1형 *dd*와 같은 크기 입니다.

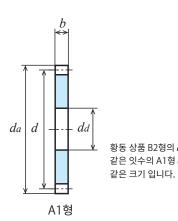

정밀도②	재질	압력각	열처리	치면경도	백래시①
관리범위 외	C3713P, C3604B	20도	_	_	0.02~0.06

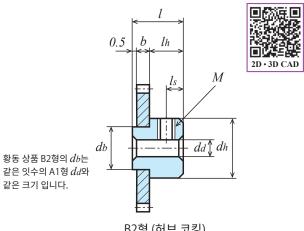

- ★표면처리는 하지 않았습니다.【+】에는 나사구멍이 1곳 있지만 세트 스크류는 포함되어있지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ② A1, B2형은 정밀도 관리범위 외입니다. ③A1형의 구멍 직경 dd의 공차는 0~+0.1mm입니다.

③AT영의 구당 직경 QQ의 공사는 U~~	잇수	기준원	이끝원	형	치폭	구멍 직경③	허브	허브	전장	나	사	중량
상품 기호	~ '	직경	직경			10 100	외경	道이 길이			·	
	Z	d	da		b	dd(H8)	dh	lh	l	M	ls	W(g)
S50B 85A — 0208	85	φ42.5	φ43.5	A1	2	ø 8	-	-	2	-	-	23.3
S50B 85B + 0203	85	φ42.5	φ43.5	B2	2	φ 3	φ10	5	7.5	M3	2.5	26.9
S50B 90A — 0208	90	ø 45	φ46	A1	2	ø 8	-	-	2	-	-	26.2
S50B 90B + 0203	90	φ45	φ46	B2	2	φ 3	φ10	5	7.5	МЗ	2.5	29.8
S50B 95A — 0208	95	φ47.5	φ48.5	A1	2	ø 8	-	-	2	-	-	29.3
S50B 95B + 0203	95	φ47.5	φ48.5	B2	2	φ 3	φ10	5	7.5	M3	2.5	32.9
S50B 100A — 0212	100	φ 50	φ 51	A1	2	φ12	-	-	2	-	-	32.5
S50B 100B + 0203	100	φ 50	φ 51	B2	2	φ 3	φ 15	7	9.5	МЗ	3.5	36.1
S50B 105A — 0212	105	φ52.5	φ53.5	A1	2	φ12	-	-	2	-	-	36.0
S50B 105B + 0203	105	φ52.5	φ53.5	B2	2	φ 3	φ 15	7	9.5	МЗ	3.5	39.5
S50B 110A — 0212	110	ø 55	φ 56	A1	2	φ12	-	-	2	-	-	39.5
S50B 110B + 0203	110	φ 55	φ 56	B2	2	φ 3	φ 15	7	9.5	МЗ	3.5	43.1

상품 기호		회전속도별 허용전달동력표 휨강도 (단위: W)									
영품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm				
S50B 85A — 0208	0.50	4.99	9.98	19.95	35.72	47.87	56.82				
S50B 90A — 0208	0.53	5.33	10.65	21.30	37.61	50.15	60.21				
S50B 95A — 0208	0.57	5.66	11.33	22.65	39.44	52.36	63.55				
S50B 100A — 0212	0.60	6.00	12.00	23.83	41.24	55.09	66.86				
S50B 105A — 0212	0.63	6.34	12.68	24.98	42.98	57.85	70.12				
S50B 110A — 0212	0.67	6.68	13.36	26.12	44.69	60.59	73.34				

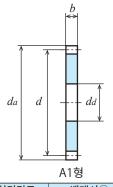




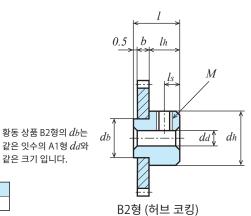

정밀도②	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급~관리범위 외	C3713P, C3604B	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다.【+】에는 나사구멍이 1곳, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②B1, K1, K2형은 JIS N9급; A1, B2형은 정밀도 관리범위 외입니다. ③A1형의 구멍 직경 dd의 공차는 0~+0.1mm입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경③	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd(H8)	dh	lh	l	М	ls	W(g)
S75B 10K — 0809	10	φ 7.5	ø 9	K1	8	-	ø 9	47	55	-	-	28.4
S75B 12K — 0811	12	ø 9	φ10.5	K1	8	-	φ11	47	55	-	-	42.3
S75B 14K + 0805	14	φ10.5	φ12	K2	8	φ 5	φ12	12	20	M3	3	13.9
S75B 15K + 0805	15	φ11.25	φ12.75	K2	8	φ 5	φ12.75	12	20	M3	3	16.3
S75B 16K + 0805	16	φ12	φ13.5	K2	8	φ 5	φ13.5	12	20	M3	3	18.8
S75B 16B + 0305	16	φ12	φ13.5	B1	3	\$ 5	φ10	7	10	M3	3.5	5.8
S75B 18B + 0305	18	φ13.5	φ15	B1	3	φ 5	φ11	7	10	M3	3.5	7.5
S75B 20K + 0805	20	φ 15	φ16.5	K2	8	\$ 5	φ16.5	12	20	M3	3	30.2
S75B 20B + 0306	20	φ 15	φ16.5	B1	3	ø 6	φ12	7	10	M4	3.5	8.6
S75B 24B + 0306	24	φ18	φ19.5	B1	3	ø 6	φ14	7	10	M4	3.5	11.7
S75B 25B + 0306	25	φ18.75	φ20.25	B1	3	φ 6	φ14	7	10	M4	3.5	12.3
S75B 26B + 0306	26	φ19.5	φ21	B1	3	φ 6	φ14	7	10	M4	3.5	12.9
S75B 28B + 0306	28	φ21	φ22.5	B1	3	φ 6	φ14	7	10	M4	3.5	14.1
S75B 30B + 0306	30	φ22.5	φ24	B1	3	φ 6	φ 15	7	10	M4	3.5	16.7
S75B 32B + 0306	32	φ24	ϕ 25.5	B1	3	φ 6	φ 15	7	10	M4	3.5	18.1
S75B 35B + 0306	35	φ26.25	φ27.75	B1	3	φ 6	ø 18	7	10	M4	3.5	24.9
S75B 36B + 0306	36	φ 27	φ28.5	B1	3	φ 6	ø 18	7	10	M4	3.5	25.7
S75B 40B + 0306	40	ø 30	φ31.5	B1	3	φ 6	φ 20	7	10	M4	3.5	33.8
S75B 42B + 0306	42	φ 31.5	φ33	B1	3	φ 6	φ 20	7	10	M4	3.5	35.6
S75B 45B + 0306	45	φ33.75	φ35.25	B1	3	φ 6	φ 20	7	10	M4	3.5	38.6
S75B 48B + 0306	48	ø 36	φ37.5	B1	3	φ 6	φ 20	7	10	M4	3.5	41.7
S75B 50A — 0315	50	ϕ 37.5	ø 39	A1	3	φ 15	-	-	3	-	-	23.7
S75B 50B + 0306	50	ϕ 37.5	ø 39	B2	3	φ 6	φ 20	7	10.5	M4	3.5	43.8
S75B 55A — 0315	55	φ41.25	φ42.75	A1	3	φ 15	-	-	3	-	-	29.6
S75B 55B + 0306	55	φ41.25	φ42.75	B2	3	\$ 6	φ 20	7	10.5	M4	3.5	49.7
S75B 56A — 0315	56	φ42	φ43.5	A1	3	φ 15	-	-	3	-	-	30.8
S75B 56B + 0306	56	φ42	φ43.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	50.9
S75B 58A — 0315	58	φ43.5	φ45	A1	3	φ 15	-	-	3	-	-	33.4
S75B 58B + 0306	58	φ43.5	φ45	B2	3	φ 6	φ 20	7	10.5	M4	3.5	53.5
S75B 60A — 0315	60	\$45	φ46.5	A1	3	φ 15	-	-	3	-	-	36.1
S75B 60B + 0306	60	φ45	φ46.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	56.2
S75B 62A — 0315	62	φ46.5	φ48	A1	3	φ 15	-	-	3	-	-	38.8
S75B 62B + 0306	62	φ46.5	φ48	B2	3	φ 6	φ 20	7	10.5	M4	3.5	58.9
S75B 64A — 0315	64	φ48	φ49.5	A1	3	φ 15	-	-	3	-	-	41.6
S75B 64B + 0306	64	φ48	φ49.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	61.8
S75B 66A — 0315	66	φ49.5	φ51	A1	3	φ15	-	-	3	-	-	44.6
S75B 66B + 0306	66	φ49.5	φ51	B2	3	φ 6	φ 20	7	10.5	M4	3.5	64.7
S75B 68A — 0315	68	φ51	φ52.5	A1	3	φ15	-	-	3	-	-	47.6
S75B 68B + 0306	68	φ51	φ52.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	67.7
S75B 70A — 0315	70	φ52.5	φ54	A1	3	φ15	-	-	3	-	-	50.7
S75B 70B + 0306	70	φ52.5	φ54	B2	3	φ 6	φ 20	7	10.5	M4	3.5	70.8


02명 (역	르 고성)	
전장	나사	

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경③	허브 외경	허브 길이	전장	나	사	중량
	Z	d	da		b	dd(H8)	dh	lh	l	M	ls	W(g)
S75B 72A — 0315	72	φ54	φ55.5	A1	3	φ 15	-	-	3	-	-	53.9
S75B 72B + 0306	72	φ54	φ55.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	74.0
S75B 75A — 0315	75	φ56.25	φ57.75	A1	3	φ 15	-	-	3	-	-	58.9
S75B 75B + 0306	75	φ56.25	φ57.75	B2	3	φ 6	φ 20	7	10.5	M4	3.5	79.0
5755755 . 6566	- , ,	750.25	7373			7 0	720	· ·	. 0.5		5.5	7 7 10


		회전	속도별 허용전	[달동력표 -	휨강도 (단위	님: W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S75B 10K — 0809	0.22	2.18	4.36	8.73	17.46	26.18	32.73
S75B 12K — 0811	0.31	3.06	6.11	12.22	24.45	36.67	45.84
S75B 14K + 0805	0.40	3.98	7.97	15.93	31.87	47.80	59.75
S75B 15K + 0805	0.45	4.46	8.93	17.86	35.72	53.57	66.97
S75B 16K + 0805	0.50	4.95	9.91	19.82	39.64	59.45	74.32
S75B 16B + 0305	0.19	1.86	3.72	7.43	14.86	22.30	27.87
S75B 18B + 0305	0.22	2.23	4.47	8.93	17.87	26.80	33.20
S75B 20K + 0805	0.70	6.99	13.99	27.97	55.94	83.92	102.17
S75B 20B + 0306	0.26	2.62	5.24	10.49	20.98	31.47	38.31
S75B 24B + 0306	0.34	3.42	6.84	13.67	27.35	40.23	48.28
S75B 25B + 0306	0.36	3.62	7.24	14.49	28.98	42.33	50.74
S75B 26B + 0306	0.38	3.83	7.65	15.31	30.62	44.42	53.17
S75B 28B + 0306	0.42	4.24	8.48	16.96	33.92	48.56	57.96
S75B 30B + 0306	0.47	4.66	9.31	18.62	37.25	52.61	62.64
S75B 32B + 0306	0.51	5.08	10.16	20.31	40.59	56.62	67.24
S75B 35B + 0306	0.57	5.72	11.43	22.86	45.05	62.50	73.96
S75B 36B + 0306	0.59	5.93	11.86	23.72	46.53	64.43	76.15
S75B 40B + 0306	0.68	6.79	13.59	27.17	52.33	71.97	84.68
S75B 42B + 0306	0.72	7.23	14.46	28.92	55.19	75.64	88.80
S75B 45B + 0306	0.79	7.88	15.76	31.52	59.35	80.95	94.74
S75B 48B + 0306	0.85	8.54	17.08	34.16	63.47	86.16	100.53
S75B 50A — 0315	0.90	8.98	17.96	35.92	66.17	89.54	104.28
S75B 55A — 0315	1.01	10.09	20.18	40.36	72.77	97.73	115.35
S75B 56A — 0315	1.03	10.31	20.62	41.25	74.06	99.32	117.63
S75B 58A — 0315	1.08	10.76	21.52	43.03	76.61	102.45	122.17
S75B 60A — 0315	1.12	11.20	22.41	44.82	79.13	105.53	126.68
S75B 62A — 0315	1.17	11.65	23.30	46.61	81.62	108.54	131.16
S75B 64A — 0315	1.21	12.10	24.20	48.37	84.07	111.64	135.62
S75B 66A — 0315	1.26	12.55	25.10	49.93	86.48	115.37	140.04
S75B 68A — 0315	1.30	13.00	26.00	51.48	88.86	119.08	144.43
S75B 70A — 0315	1.35	13.45	26.90	53.02	91.21	122.77	148.79
S75B 72A — 0315	1.39	13.90	27.81	54.55	93.53	126.44	153.12
S75B 75A — 0315	1.46	14.58	29.17	56.81	96.94	131.90	159.56

평기어 (C3604B) 황동 모듈 0.75

같은 크기 입니다.

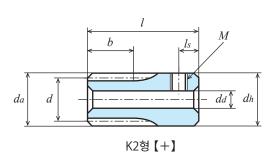
정밀도②	재질	압력각	열처리	치면경도	백래시①
관리범위 외	C3713P, C3604B	20도	_	_	0.02~0.06

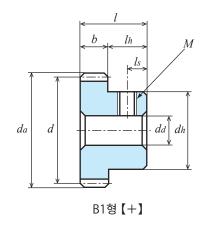
- ★표면처리는 하지 않았습니다.【+】에는 나사구멍이 1곳, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ② A1, B2형은 정밀도 관리범위 외입니다. ③A1형의 구멍 직경 dd의 공차는 0~+0.1mm입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경③	허브 외경	허브 길이	전장	나	사	중량
	Z	d	da		b	dd(H8)	dh	lh	l	М	ls	W(g)
S75B 80A — 0315	80	ø 60	φ61.5	A1	3	φ15	-	-	3	-	-	67.6
S75B 80B + 0306	80	φ60	φ61.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	87.7
S75B 85A — 0315	85	φ63.75	φ65.25	A1	3	φ15	-	-	3	-	-	76.9
S75B 85B + 0306	85	φ63.75	φ65.25	B2	3	φ 6	φ 20	7	10.5	M4	3.5	97.0
S75B 90A — 0315	90	φ67.5	ø 69	A1	3	φ15	-	-	3	-	-	86.7
S75B 90B + 0306	90	φ67.5	ø 69	B2	3	φ 6	φ 20	7	10.5	M4	3.5	106.9
S75B 95A — 0315	95	φ71.25	φ72.75	A1	3	φ15	-	-	3	-	-	97.2
S75B 95B + 0306	95	φ71.25	φ72.75	B2	3	ø 6	φ20	7	10.5	M4	3.5	117.3
S75B 100A — 0315	100	φ 75	φ76.5	A1	3	φ15	-	-	3	-	-	108.1
S75B 100B + 0306	100	φ 75	φ76.5	B2	3	φ 6	φ 20	7	10.5	M4	3.5	128.3
S75B 105A — 0315	105	φ78.75	φ80.25	A1	3	φ 15	-	-	3	-	-	119.7
S75B 105B + 0306	105	φ78.75	φ80.25	B2	3	ø 6	φ20	7	10.5	M4	3.5	139.8
S75B 110A — 0315	110	φ82.5	φ84	A1	3	φ 15	-	-	3	-	-	131.8
S75B 110B + 0306	110	φ82.5	φ84	B2	3	φ 6	φ 20	7	10.5	M4	3.5	151.9
S75B 115A — 0315	115	φ86.25	φ87.75	A1	3	φ15	-	-	3	-	-	144.5
S75B 115B + 0306	115	φ86.25	φ87.75	B2	3	ø 6	φ 20	7	10.5	M4	3.5	164.6
S75B 120A — 0315	120	φ 90	φ91.5	A1	3	ø 15	-	-	3	-	-	157.7
S75B 120B + 0306	120	φ 90	φ 91.5	B2	3	φ 6	ø 20	7	10.5	M4	3.5	177.8

상품 기호		회전	속도별 허용전	[달동력표 -	휨강도 (단위	임: W)	
요문 시호 	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S75B 80A — 0315	1.57	15.72	31.43	60.54	102.48	140.91	170.15
S75B 85A — 0315	1.68	16.84	33.67	64.12	107.70	149.62	180.35
S75B 90A — 0315	1.80	17.97	35.94	67.69	112.84	158.34	191.18
S75B 95A — 0315	1.91	19.11	38.22	71.19	117.82	166.93	201.90
S75B 100A — 0315	2.03	20.25	40.50	74.62	123.95	175.39	212.48
S75B 105A — 0315	2.14	21.39	42.79	77.98	130.17	183.73	222.94
S75B 110A - 0315	2.25	22.54	45.08	81.28	136.32	192.36	233.28
S75B 115A — 0315	2.37	23.69	47.37	84.52	142.40	201.01	243.49
S75B 120A — 0315	2.48	24.83	49.67	87.69	148.43	209.59	253.58

평기어 (C3604B) 황동 모듈 0.8




정밀도	재질	압력각	열처리	치면경도	백래시①
JIS B 1702-1 N9급	C3604B, C3771B	20도	_	_	0.02~0.06

- ★표면처리는 하지 않았습니다. 【+】에는 나사구멍이 1곳, 세트 스크류가 포함되어 있습니다. ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	Z	d	da		b	dd(H8)	dh	lh	l	М	ls	W(g)
S80B 14K + 0704	14	φ11.2	φ12.8	K2	7	φ 4	φ12.8	13	20	МЗ	3	17.8
S80B 15K + 0704	15	φ12	φ13.6	K2	7	ϕ 4	φ13.6	13	20	МЗ	3	20.4
S80B 16B + 0504	16	φ12.8	φ14.4	B1	5	ϕ 4	φ10	9	14	МЗ	3	9.8
S80B 16B + 0704	16	φ12.8	φ14.4	B1	7	ϕ 4	φ10	7	14	МЗ	3	10.7
S80B 18B + 0504	18	φ14.4	φ16	B1	5	ϕ 4	φ 10	9	14	M3	3	11.3
S80B 18B + 0704	18	φ14.4	φ16	B1	7	ϕ 4	φ 10	7	14	МЗ	3	12.7
S80B 20B + 0504	20	ø 16	φ17.6	B1	5	ϕ 4	φ 10	9	14	M3	3	12.9
S80B 20B + 0704	20	φ16	φ17.6	B1	7	φ 4	φ 10	7	14	M3	3	15.0
S80B 24B + 0505	24	φ19.2	φ20.8	B1	5	φ 5	φ12.5	9	14	M3	3	19.2
S80B 24B + 0705	24	φ19.2	φ20.8	B1	7	φ 5	φ12.5	7	14	M3	3	22.0
S80B 25B + 0505	25	φ 20	φ21.6	B1	5	φ 5	φ12.5	9	14	M3	3	20.2
S80B 25B + 0705	25	<i>φ</i> 20	φ21.6	B1	7	φ 5	φ12.5	7	14	M3	3	23.5
S80B 28B + 0505	28	φ22.4	<i>φ</i> 24	B1	5	φ 5	φ12.5	9	14	M3	3	23.6
S80B 28B + 0705	28	φ22.4	<i>φ</i> 24	B1	7	φ 5	φ12.5	7	14	M3	3	28.2
S80B 30B + 0505	30	<i>φ</i> 24	φ25.6	B1	5	φ 5	φ12.5	9	14	M3	3	26.1
S80B 30B + 0705	30	<i>φ</i> 24	φ25.6	B1	7	φ 5	φ12.5	7	14	M3	3	31.7
S80B 32B + 0505	32	φ25.6	φ27.2	B1	5	φ 5	φ12.5	9	14	M3	4	28.8
S80B 36B + 0506	36	φ28.8	φ30.4	B1	5	ø 6	φ14	9	14	M4	4	35.8
S80B 40B + 0506	40	φ32	φ33.6	B1	5	ø 6	φ14	9	14	M4	4	42.3
S80B 45B + 0506	45	φ36	φ37.6	B1	5	ø 6	φ14	9	14	M4	4	51.4
S80B 48B + 0506	48	φ38.4	φ40	B1	5	ø 6	φ14	9	14	M4	4	57.3
S80B 50B + 0506	50	φ40	φ41.6	B1	5	ø 6	φ14	9	14	M4	4	61.5
S80B 56B + 0506	56	φ44.8	φ46.4	B1	5	ø 6	φ14	9	14	M4	4	75.1
S80B 60B + 0506	60	<i>ф</i> 48	φ49.6	B1	5	ø 6	φ14	9	14	M4	4	85.0
S80B 64B + 0506	64	φ51.2	φ52.8	B1	5	ø 6	φ 16	9	14	M4	4	99.1
S80B 70B + 0508	70	φ56	φ57.6	B1	5	ø 8	φ 16	9	14	M4	4	113.8
S80B 72B + 0508	72	φ57.6	φ59.2	B1	5	ø 8	φ 16	9	14	M4	4	119.8
S80B 80B + 0508	80	φ64	φ65.6	B1	5	ø 8	φ 16	9	14	M4	4	145.8

	I						
상품 기호		회전	속도별 허용전	년달동력표 -	휨강도 (단위	임: W)	
영품 기호 -	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S80B 14K + 0704	0.40	3.97	7.93	15.86	31.73	47.59	59.49
S80B 15K + 0704	0.44	4.44	8.89	17.78	35.56	53.33	66.67
S80B 16B + 0504	0.35	3.52	7.05	14.09	28.19	42.28	52.81
S80B 16B + 0704	0.49	4.93	9.86	19.73	39.46	59.19	73.93
S80B 18B + 0504	0.42	4.24	8.47	16.94	33.88	50.82	62.30
S80B 18B + 0704	0.59	5.93	11.86	23.72	47.43	71.15	87.23
S80B 20B + 0504	0.50	4.97	9.95	19.89	39.78	59.63	71.83
S80B 20B + 0704	0.70	6.96	13.92	27.85	55.70	83.48	100.56
S80B 24B + 0505	0.65	6.48	12.97	25.93	51.86	75.46	90.36
S80B 24B + 0705	0.91	9.08	18.15	36.30	72.61	105.64	126.50
S80B 25B + 0505	0.69	6.87	13.74	27.47	54.95	79.37	94.90
S80B 25B + 0705	0.96	9.62	19.23	38.46	76.93	111.12	132.87
S80B 28B + 0505	0.80	8.04	16.08	32.17	64.33	90.94	108.29
S80B 28B + 0705	1.13	11.26	22.52	45.03	90.06	127.31	151.60
S80B 30B + 0505	0.88	8.83	17.66	35.32	70.58	98.45	116.92
S80B 30B + 0705	1.24	12.36	24.72	49.45	98.81	137.88	163.69
S80B 32B + 0505	0.96	9.63	19.26	38.51	76.20	105.88	125.42
S80B 36B + 0506	1.12	11.25	22.49	44.98	87.26	120.33	141.83
S80B 40B + 0506	1.28	12.88	25.77	51.53	98.05	134.24	157.49
S80B 45B + 0506	1.49	14.94	29.88	59.77	111.08	150.77	175.91
S80B 48B + 0506	1.61	16.19	32.38	64.77	118.70	160.33	186.72
S80B 50B + 0506	1.70	17.03	34.06	68.12	123.70	166.54	195.42
S80B 56B + 0506	1.96	19.55	39.11	78.21	138.25	184.44	221.21
S80B 60B + 0506	2.12	21.25	42.49	84.92	147.60	196.01	238.11
S80B 64B + 0506	2.29	22.95	45.90	90.81	156.68	210.07	254.77
S80B 70B + 0508	2.55	25.51	51.02	99.46	169.80	230.87	297.32
S80B 72B + 0508	2.64	26.37	52.73	102.30	174.05	237.72	287.38
S80B 80B + 0508	2.98	29.80	59.61	113.43	190.42	264.72	319.13

인포메이션

목 차

마 이 터 기 어

베 벨 기 어

모듈

(보통이)

폴리아세탈 b lh M da da db dh dh C3604B Bm형

단위:mm

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM • C3604B	20도	절삭	_	0.06~0.12

- ★구멍 직경 부분에 황동 부시가 들어 있습니다. 【+】에는 나사구멍이 1곳, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	부시 외경	중량
	z	d	da		b	dd(H8)	dh	lh	l	М	ls	db	W(g)
S1DB 20B + 1008	20	φ 20	φ 22	Bm	10	ø 8	ø 16	10	20	M4	4	φ12	16.8
S1DB 24B + 1008	24	φ 24	ø 26	Bm	10	ø 8	<i>φ</i> 20	10	20	M4	4	φ12	17.5
S1DB 25B + 1008	25	φ 25	φ 27	Bm	10	ø 8	φ 20	10	20	M4	4	φ 12	18.0
S1DB 28B + 1010	28	φ 28	ø 30	Bm	10	ø 10	<i>φ</i> 24	10	20	M4	4	ø 16	35.0
S1DB 30B + 1010	30	φ 30	φ 32	Bm	10	ø 10	<i>φ</i> 24	10	20	M4	4	ø 16	36.4
S1DB 32B + 1010	32	φ 32	φ 34	Bm	10	ø 10	<i>φ</i> 24	10	20	M4	4	ø 16	37.8
S1DB 36B + 1010	36	φ 36	φ 38	Bm	10	φ 10	ø 30	10	20	M4	4	ø 16	38.0
S1DB 40B + 1010	40	φ 40	φ 42	Bm	10	φ 10	φ 30	10	20	M4	4	φ16	41.4
S1DB 45B + 1010	45	φ 45	φ 47	Bm	10	ø 10	ø 30	10	20	M4	4	ø 16	46.1
S1DB 48B + 1010	48	φ 48	ø 50	Bm	10	ø 10	ø 30	10	20	M4	4	ø 16	49.2
S1DB 50B + 1010	50	φ 50	φ 52	Bm	10	ø 10	ø 30	10	20	M4	4	ø 16	51.4
S1DB 60B + 1010	60	ø 60	φ 62	Bm	10	ø 10	ø 30	10	20	M4	4	ø 16	63.7
S1DB 70B + 1010	70	φ 70	φ 72	Bm	10	φ 10	φ30	10	20	M4	4	ø 16	78.2
S1DB 80B + 1010	80	ø 80	φ 82	Bm	10	ø 10	ø 30	10	20	M4	4	ø 16	94.9
S1DB 90B + 1010	90	ø 90	ø 92	Bm	10	ø 10	φ 30	10	20	M4	4	ø 16	113.9
S1DB 100B + 1010	100	φ100	φ102	Bm	10	ø 10	ø 30	10	20	M4	4	ø 16	135.1
S1DB 120B + 1010	120	φ120	φ122	Bm	10	φ10	φ30	10	20	M4	4	ø 16	184.1

상품 기호		회전	속도별 허용전	년달동력표 -	휨강도 (단위	임: W)	
요물 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S1DB 20B + 1008	1.61	16.08	32.14	64.20	128.08	191.66	239.15
S1DB 24B + 1008	1.93	19.29	38.55	77.00	153.55	229.66	286.46
S1DB 25B + 1008	2.01	20.09	40.16	80.20	159.91	239.15	298.26
S1DB 28B + 1010	2.25	22.50	44.97	89.79	178.97	267.55	333.59
S1DB 30B + 1010	2.41	24.11	48.18	96.18	191.66	286.46	357.10
S1DB 32B + 1010	2.57	25.72	51.38	102.57	204.34	305.33	380.51
S1DB 36B + 1010	2.90	28.93	57.79	115.33	229.66	343.00	426.13
S1DB 40B + 1010	3.22	32.14	64.20	128.08	254.94	380.51	471.31
S1DB 45B + 1010	3.62	36.15	72.20	144.01	286.46	426.13	527.17
S1DB 48B + 1010	3.86	38.55	77.00	153.55	305.33	453.29	560.37
S1DB 50B + 1010	4.02	40.16	80.20	159.91	317.90	471.31	582.37
S1DB 60B + 1010	4.83	48.18	96.18	191.66	380.51	560.37	690.72
S1DB 70B + 1010	5.63	56.19	112.14	223.34	441.23	647.70	793.96
S1DB 80B + 1010	6.43	64.20	128.08	254.94	501.19	733.18	892.22
S1DB 90B + 1010	7.24	72.20	144.01	286.46	560.37	813.91	986.69
S1DB 100B + 1010	8.04	80.20	159.91	317.90	618.78	892.22	1,073.70
S1DB 120B + 1010	9.65	96.18	191.66	380.51	733.18	1,041.15	1,223.46

인포메이션

기어박스

노백래시 기어

평 기 어

랙

헬리컬 스크류기

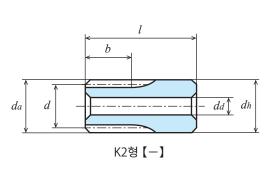
마 이 터 기 어

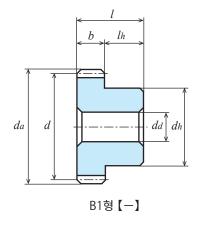
> 베 벨 기 어

> 원 원 휟

참고자

평기어 (청색 POM) 모듈 0.5


정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	청색 POM	20도	절삭	_	0.02~0.06


- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ★청색 POM에 상세 내용은 22페이지를 참조하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

①동종품, 동재질, 한 쌍의 맞물림 시의	이근시합니	기. 실제력 제		14.						
사표 기술	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
상품 기호	Z	d	da		b	dd	±10 dh	lh	l	W(g)
S50BP 14K — 0803	14	φ 7	φ 8	K2	8	ø 3	ø 9	10	18	1.1
S50BP 15K — 0803	15	φ 7.5	φ 8.5	K2	8	ø 3	ø 9	10	18	1.2
S50BP 16K — 0803	16	φ 8	φ 9	K2	8	ø 3	ø 9	10	18	1.3
S50BP 18K — 0803	18	φ 9	φ10	K2	8	ø 3	φ10	10	18	1.6
S50BP 20B — 0503	20	φ10	φ11	B1	5	φ 3	φ 8	5	10	0.8
S50BP 24B — 0503	24	φ12	φ13	B1	5	ø 3	φ 10	5	10	1.2
S50BP 25B — 0503	25	φ12.5	φ13.5	B1	5	φ 3	φ10	5	10	1.3
S50BP 28B — 0503	28	φ14	φ15	B1	5	φ 3	φ12	5	10	1.8
S50BP 30B — 0503	30	φ15	φ16	B1	5	φ 3	φ12	5	10	1.9
S50BP 32B — 0503	32	φ16	φ17	B1	5	ø 3	φ14	5	10	2.4
S50BP 36B — 0503	36	φ18	ø 19	B1	5	φ 3	φ 15	5	10	2.9
S50BP 40B — 0503	40	φ20	φ21	B1	5	ø 3	ø 15	5	10	3.3
S50BP 45B — 0503	45	φ22.5	φ23.5	B1	5	ø 3	φ 18	5	10	4.5
S50BP 50B — 0503	50	φ 25	φ 26	B1	5	ø 3	φ 20	5	10	5.6
S50BP 56B — 0503	56	φ28	φ 29	B1	5	φ 3	φ 22	5	10	6.9
S50BP 60B — 0503	60	φ30	φ31	B1	5	ø 3	<i>φ</i> 24	5	10	8.1
S50BP 64B — 0503	64	φ32	φ33	B1	5	φ 3	φ26	5	10	9.3
S50BP 70B — 0504	70	φ35	φ 36	B1	5	ϕ 4	ø 26	5	10	10.3
S50BP 72B — 0504	72	φ36	φ 37	B1	5	ϕ 4	φ28	5	10	11.3
S50BP 80B — 0504	80	φ40	φ41	B1	5	ϕ 4	φ32	5	10	14.3
S50BP 90B — 0505	90	φ 45	φ46	В1	5	φ 5	φ36	5	10	18.1
S50BP 100B — 0505	100	φ 50	φ 51	B1	5	φ 5	φ40	5	10	22.4
S50BP 120B — 0505	120	φ60	φ61	B1	5	φ 5	φ 50	5	10	33.5

(보통이)

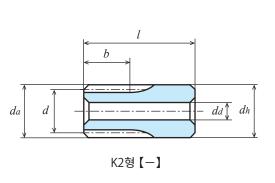
상품 기호		회전	속도별 허용전	[달동력표 ·	휨강도 (단위	임: W)	
요움 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S50BP 14K — 0803	0.22	2.24	4.48	8.95	17.89	26.82	33.50
S50BP 15K — 0803	0.24	2.40	4.80	9.59	19.17	28.73	35.88
S50BP 16K — 0803	0.26	2.56	5.12	10.23	20.44	30.64	38.27
S50BP 18K — 0803	0.29	2.88	5.76	11.51	22.99	34.45	43.03
S50BP 20B — 0503	0.18	1.76	3.52	7.04	14.02	21.02	26.28
S50BP 24B — 0503	0.22	2.22	4.44	8.86	17.71	26.56	33.10
S50BP 25B — 0503	0.23	2.34	4.68	9.32	18.65	27.88	34.85
S50BP 28B — 0503	0.27	2.68	5.37	10.73	21.40	32.11	40.02
S50BP 30B — 0503	0.30	3.01	6.03	12.05	24.04	35.98	44.97
S50BP 32B — 0503	0.33	3.25	6.51	13.02	25.98	38.88	48.60
S50BP 36B — 0503	0.37	3.75	7.49	14.95	29.85	44.77	55.75
S50BP 40B — 0503	0.44	4.36	8.71	17.42	34.72	51.98	64.87
S50BP 45B — 0503	0.50	4.98	9.97	19.91	39.70	59.37	74.11
S50BP 50B — 0503	0.56	5.61	11.21	22.40	44.68	66.85	83.34
S50BP 56B — 0503	0.64	6.37	12.74	25.42	50.67	75.73	94.45
S50BP 60B — 0503	0.70	7.01	14.02	27.97	55.71	83.30	103.79
S50BP 64B — 0503	0.75	7.53	15.04	30.02	59.81	89.37	111.38
S50BP 70B — 0504	0.83	8.30	16.58	33.10	65.91	98.43	122.38
S50BP 72B — 0504	0.86	8.56	17.11	34.13	67.96	101.51	126.11
S50BP 80B — 0504	0.96	9.59	19.16	38.23	76.12	113.65	140.74
S50BP 90B — 0505	1.09	10.88	21.73	43.34	86.20	128.25	158.66
S50BP 100B — 0505	1.24	12.35	24.67	49.20	97.81	144.96	179.11
S50BP 120B — 0505	1.50	14.98	29.91	59.61	118.34	174.25	214.73

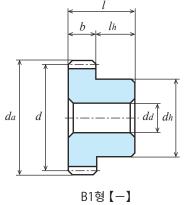
목 차

인포메 이션

노백래시 기어

평기어 (청색 POM) 모듈 0.8


정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	청색 POM	20도	절삭	_	0.02~0.06


- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다.
- ★청색 POM에 상세 내용은 22페이지를 참조하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

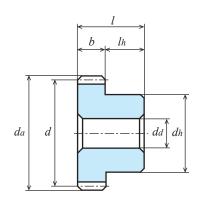
①동종품, 동재질, 한 쌍의 맞물림 시의				Ì			411.1	411.1		
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
88712	Z	d	da		b	dd	dh	lh	l	W(g)
S80BP 14K — 0703	14	φ11.2	φ12.8	K2	7	ø 3	φ12.8	13	20	3.1
S80BP 15K — 0703	15	φ12	φ13.6	K2	7	ø 3	φ13.6	13	20	3.6
S80BP 16B — 0503	16	φ12.8	φ14.4	B1	5	ø 3	φ10	7	12	1.5
S80BP 18B — 0503	18	φ14.4	φ 16	B1	5	ø 3	φ12	7	12	2.1
S80BP 20B — 0503	20	ø 16	φ17.6	B1	5	ø 3	φ12	7	12	2.4
S80BP 22B — 0503	22	φ17.6	φ19.2	B1	5	ø 3	φ 15	7	12	3.3
S80BP 24B — 0503	24	φ19.2	φ20.8	B1	5	ø 3	ø 16	7	12	3.9
S80BP 25B — 0503	25	φ20	φ21.6	B1	5	ø 3	φ 16	7	12	4.1
S80BP 28B — 0503	28	φ22.4	<i>φ</i> 24	B1	5	φ 3	φ 20	7	12	5.7
S80BP 30B — 0503	30	<i>φ</i> 24	φ25.6	B1	5	φ 3	φ 20	7	12	6.1
S80BP 32B — 0503	32	φ25.6	φ27.2	B1	5	ø 3	φ 20	7	12	6.6
S80BP 36B — 0504	36	φ28.8	φ30.4	B1	5	ϕ 4	<i>φ</i> 22	7	12	8.1
S80BP 40B — 0504	40	φ32	φ33.6	B1	5	ϕ 4	φ 22	7	12	9.2
S80BP 45B — 0504	45	φ36	φ37.6	B1	5	ϕ 4	φ 28	7	12	13.0
S80BP 48B — 0504	48	φ38.4	<i>φ</i> 40	B1	5	ϕ 4	φ30	7	12	14.9
S80BP 50B — 0504	50	<i>φ</i> 40	φ41.6	B1	5	ϕ 4	φ30	7	12	15.6
S80BP 56B — 0504	56	φ44.8	φ46.4	B1	5	ϕ 4	φ 35	7	12	20.4
S80BP 60B — 0504	60	φ48	φ49.6	B1	5	ϕ 4	φ38	7	12	23.7
S80BP 64B — 0504	64	φ51.2	φ52.8	B1	5	ϕ 4	φ38	7	12	25.4
S80BP 70B — 0505	70	ø 56	φ57.6	B1	5	φ 5	φ42	7	12	30.6
S80BP 72B — 0505	72	φ57.6	φ59.2	B1	5	φ 5	φ45	7	12	33.7
S80BP 80B — 0505	80	φ64	φ65.6	B1	5	φ 5	φ50	7	12	41.7
S80BP 90B — 0505	90	φ72	φ73.6	B1	5	φ 5	φ54	7	12	50.9
S80BP 100B — 0505	100	φ 80	φ81.6	B1	5	φ 5	φ58	7	12	61.1
S80BP 120B — 0505	120	φ 96	φ97.6	B1	5	φ 5	φ68	7	12	86.4

(보통이)

사표 기술		회전	속도별 허용전	년달동력표 -	휨강도 (단위	님: W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S80BP 14K - 0703	0.50	5.02	10.03	20.05	40.04	59.98	74.90
S80BP 15K — 0703	0.54	5.37	10.75	21.48	42.89	64.24	80.22
S80BP 16B — 0503	0.41	4.10	8.19	16.36	32.67	48.93	61.10
S80BP 18B — 0503	0.46	4.61	9.21	18.40	36.74	55.02	68.68
S80BP 20B — 0503	0.51	5.12	10.23	20.44	40.81	61.10	76.26
S80BP 22B — 0503	0.56	5.63	11.25	22.48	44.87	67.17	83.83
S80BP 24B — 0503	0.61	6.14	12.28	24.52	48.93	73.23	91.38
S80BP 25B — 0503	0.64	6.40	12.79	25.54	50.96	76.26	95.15
S80BP 28B — 0503	0.72	7.16	14.32	28.60	57.05	85.34	106.46
S80BP 30B — 0503	0.77	7.68	15.34	30.64	61.10	91.38	113.98
S80BP 32B — 0503	0.82	8.19	16.36	32.67	65.14	97.41	121.49
S80BP 36B — 0504	0.92	9.21	18.40	36.74	73.23	109.47	136.47
S80BP 40B — 0504	1.02	10.23	20.44	40.81	81.30	121.49	151.40
S80BP 45B — 0504	1.15	11.51	22.99	45.89	91.38	136.47	169.55
S80BP 48B — 0504	1.23	12.28	24.52	48.93	97.41	145.44	180.36
S80BP 50B — 0504	1.28	12.79	25.54	50.96	101.44	151.40	187.53
S80BP 56B — 0504	1.43	14.32	28.60	57.05	113.48	168.83	208.87
S80BP 60B — 0504	1.54	15.34	30.64	61.10	121.49	180.36	222.96
S80BP 64B — 0504	1.64	16.36	32.67	65.14	129.49	191.81	236.94
S80BP 70B — 0505	1.79	17.89	35.73	71.21	141.46	208.87	257.71
S80BP 72B — 0505	1.84	18.40	36.74	73.23	145.44	214.52	264.58
S80BP 80B — 0505	2.05	20.44	40.81	81.30	161.10	236.94	291.72
S80BP 90B — 0505	2.30	22.99	45.89	91.38	180.36	264.58	323.84
S80BP 100B — 0505	2.56	25.54	50.96	101.44	199.41	291.72	355.00
S80BP 120B — 0505	3.07	30.64	61.10	121.49	236.94	342.65	414.26

목 차

인포메 이션


평기어 (청색 POM)

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	청색 POM	20도	절삭	_	0.06~0.12

- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다.
- ★청색 POM에 상세 내용은 22페이지를 참조하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

B1형【一】

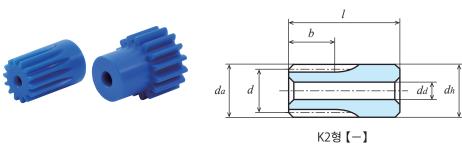
①농송품, 농재실, 한 쌍의 맞물림 시의	Ì				+1 =	그대	÷IН	÷IН	TJTL	ᄌ라
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
08/12	z	d	da		b	dd	dh	lh	l	W(g)
S1BP 12B — 1004	12	φ 12	φ 14	B1	10	φ4	φ 8	10	20	1.9
S1BP 14B — 1004	14	φ 14	φ 16	B1	10	φ4	φ10	10	20	2.9
S1BP 15B — 1004	15	φ 15	φ 17	B1	10	φ4	φ 10	10	20	3.2
S1BP 16B — 1004	16	φ 16	φ 18	B1	10	φ4	φ12	10	20	4.0
S1BP 17B — 1004	17	φ 17	φ 19	B1	10	φ4	φ14	10	20	5.0
S1BP 18B — 1004	18	ø 18	φ 20	B1	10	φ4	φ 15	10	20	5.7
S1BP 20B — 1005	20	φ 20	φ 22	B1	10	φ 5	ø 16	10	20	6.6
S1BP 22B — 1005	22	φ 22	φ 24	B1	10	φ 5	φ 18	10	20	8.3
S1BP 23B — 1005	23	φ 23	φ 25	B1	10	φ 5	φ 20	10	20	9.7
S1BP 24B — 1005	24	φ 24	φ 26	B1	10	φ 5	φ 20	10	20	10.2
S1BP 25B — 1005	25	φ 25	φ 27	B1	10	φ 5	φ 22	10	20	11.6
S1BP 26B — 1005	26	φ 26	φ 28	B1	10	φ 5	φ 22	10	20	12.2
S1BP 28B — 1005	28	φ 28	φ 30	B1	10	φ 5	<i>φ</i> 24	10	20	14.4
S1BP 30B — 1005	30	φ 30	φ 32	B1	10	φ 5	φ24	10	20	15.7
S1BP 32B — 1005	32	φ 32	φ 34	B1	10	φ 5	φ 24	10	20	17.1
S1BP 34B — 1005	34	φ 34	φ 36	B1	10	φ 5	φ24	10	20	18.5
S1BP 35B — 1005	35	φ 35	φ 37	B1	10	φ 5	φ 24	10	20	19.3
S1BP 36B — 1005	36	φ 36	φ 38	B1	10	φ 5	ø 26	10	20	21.2
S1BP 38B — 1005	38	φ 38	φ 40	B1	10	φ 5	φ 28	10	20	24.0
S1BP 40B — 1005	40	φ 40	φ 42	B1	10	φ 5	φ 30	10	20	27.0
S1BP 42B — 1005	42	φ 42	φ 44	B1	10	φ 5	ø 30	10	20	28.8
S1BP 44B — 1005	44	φ 44	φ 46	B1	10	φ 5	φ 32	10	20	32.1
S1BP 45B — 1005	45	φ 45	φ 47	B1	10	φ 5	φ 32	10	20	33.1
S1BP 48B — 1005	48	φ 48	φ 50	B1	10	φ 5	ø 36	10	20	39.2
S1BP 50B — 1005	50	φ 50	φ 52	B1	10	φ 5	φ 36	10	20	41.4
S1BP 52B — 1005	52	φ 52	φ 54	B1	10	φ 5	φ40	10	20	47.0
S1BP 55B — 1005	55	φ 55	φ 57	B1	10	φ5	φ40	10	20	50.5
S1BP 56B — 1005	56	φ 56	φ 58	B1	10	φ5	φ40	10	20	51.7
S1BP 60B — 1005	60	φ 60	φ 62	B1	10	φ5	φ46	10	20	62.6
S1BP 64B — 1005	64	φ 64	φ 66	B1	10	φ5	φ48	10	20	70.2
S1BP 65B — 1005	65	φ 65	φ 67	B1	10	φ5	φ48	10	20	71.6
S1BP 70B — 1005	70	φ 70	φ 72	B1	10	φ5	φ52	10	20	83.5
S1BP 72B — 1005	72	φ 72	φ 74	B1	10	φ5	φ52	10	20	86.6
S1BP 75B — 1005	75	φ 75 φ 90	φ 77 φ 92	B1	10	φ5 φ5	φ52 φ59	10	20	91.5
S1BP 80B — 1005	80	φ 80 φ 85	φ 82 φ 87	B1	10	φ5	φ58	10	20	107.4
S1BP 85B — 1005 S1BP 90B — 1005	85 90	φ 85 φ 90	φ 87 φ 92	B1	10 10	φ5 φ5	φ62 φ65	10	20	121.8
S1BP 100B — 1005	100	φ 90 φ100	φ 92 φ102	B1 B1	10	φ5 φ5	φ65 φ70	10 10	20 20	135.7 164.0
S1BP 120B — 1005	120	φ100 φ120	φ102 φ122	B1	10	φ5 φ5	φ70 φ84	10	20	236.8
31DF 12UD - 10U3	120	Ψ 120	ΨΙΖΖ	DI	10	Ψ⊃	Ψ04	10	20	230.0

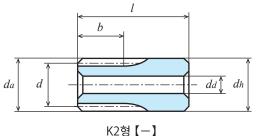
사프 기술		회전	속도별 허용전	<u>달동력표</u>	휨강도(단위	2 : W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S1BP 12B — 1004	0.73	7.27	14.53	29.03	57.98	86.86	108.43
S1BP 14B — 1004	0.97	9.67	19.34	38.64	77.13	115.58	144.19
S1BP 15B — 1004	1.07	10.69	21.36	42.67	85.20	127.57	159.18
S1BP 16B — 1004	1.17	11.70	23.39	46.75	93.26	139.67	174.30
S1BP 17B — 1004	1.27	12.72	25.43	50.82	101.41	151.77	189.43
S1BP 18B — 1004	1.38	13.75	27.48	54.89	109.93	163.98	204.70
S1BP 20B — 1005	1.61	16.08	32.14	64.20	128.08	191.66	239.15
S1BP 22B — 1005	1.69	16.90	33.79	67.47	134.58	201.34	251.27
S1BP 23B — 1005	1.79	17.88	35.75	71.38	142.41	212.98	265.69
S1BP 24B — 1005	1.93	19.29	38.55	77.00	153.55	229.66	286.46
S1BP 25B — 1005	2.01	20.09	40.16	80.20	159.91	239.15	298.26
S1BP 26B — 1005	2.09	20.85	41.67	83.20	165.91	248.12	309.35
S1BP 28B — 1005	2.25	22.50	44.97	89.79	178.97	267.55	333.59
S1BP 30B — 1005	2.41	24.11	48.18	96.18	191.66	286.46	357.10
S1BP 32B — 1005	2.57	25.72	51.38	102.57	204.34	305.33	380.51
S1BP 34B — 1005	2.70	26.95	53.85	107.49	214.05	319.79	397.97
S1BP 35B — 1005	2.79	27.89	55.71	111.21	221.48	330.81	411.27
S1BP 36B — 1005	2.90	28.93	57.79	115.33	229.66	343.00	426.13
S1BP 38B — 1005	3.08	30.81	61.54	122.80	244.47	365.10	452.84
S1BP 40B — 1005	3.22	32.14	64.20	128.08	254.94	380.51	471.31
S1BP 42B — 1005	3.37	33.63	67.18	134.02	266.69	397.56	492.13
S1BP 44B — 1005	3.55	35.47	70.85	141.33	281.12	418.48	517.82
S1BP 45B — 1005	3.62	36.15	72.20	144.01	286.46	426.13	527.17
S1BP 48B — 1005	3.86	38.55	77.00	153.55	305.33	453.29	560.37
S1BP 50B — 1005	4.02	40.16	80.20	159.91	317.90	471.31	582.37
S1BP 52B — 1005	4.23	42.24	84.34	168.16	334.21	494.80	611.04
S1BP 55B — 1005	4.44	44.33	88.52	176.47	350.57	518.00	639.24
S1BP 56B — 1005	4.50	44.97	89.79	178.97	355.53	524.95	647.70
S1BP 60B — 1005	4.83	48.18	96.18	191.66	380.51	560.37	690.72
S1BP 64B — 1005	5.15	51.38	102.57	204.34	404.89	595.51	733.18
S1BP 65B — 1005	5.21	52.04	103.88	206.95	409.86	602.58	741.37
S1BP 70B — 1005	5.63	56.19	112.14	223.34	441.23	647.70	793.96
S1BP 72B — 1005	5.79	57.79	115.33	229.66	453.29	664.96	813.91
S1BP 75B — 1005	6.09	60.81	121.35	241.59	476.17	697.85	852.23
S1BP 80B — 1005	6.43	64.20	128.08	254.94	501.19	733.18	892.22
S1BP 85B — 1005	6.76	67.47	134.59	267.82	525.20	765.57	929.90
S1BP 90B — 1005	7.24	72.20	144.01	286.46	560.37	813.91	986.69
S1BP 100B — 1005	8.04	80.20	159.91	317.90	618.78	892.22	1073.70
S1BP 120B — 1005	9.65	96.18	191.66	380.51	733.18	1041.15	1223.46

목 차

인포메이션

노백래시 기어

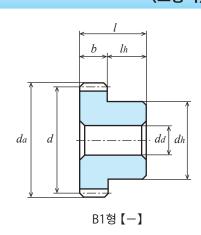

헬리컬 스크류 기어


마 이 터 기 어

베 벨 기 어

웜, 웜 휠

S1.5BP 60B - 1510



단위:mm

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	청색 POM	20도	절삭	_	0.09~0.18

- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다.
- ★청색 POM에 상세 내용은 22페이지를 참조하십시오. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

사프기숙	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
상품 기호	Z	d	da		b	dd	dh	lh	l	W(g)
S1.5BP 14K — 1806	14	φ 21	φ24	K2	18	ø 6	<i>φ</i> 24	22	40	21.0
S1.5BP 15B — 1506	15	φ22.5	φ25.5	B1	15	ø 6	φ 18	15	30	12.4
S1.5BP 16B — 1506	16	ø 24	φ 27	B1	15	ø 6	φ 18	15	30	13.6
S1.5BP 18B — 1508	18	φ 27	φ 30	B1	15	ø 8	φ 20	15	30	16.4
S1.5BP 20B — 1508	20	ø 30	φ 33	B1	15	ø 8	φ 22	15	30	20.6
S1.5BP 22B — 1508	22	φ 33	ø 36	B1	15	ø 8	<i>φ</i> 24	15	30	25.3
S1.5BP 24B — 1508	24	ø 36	ø 39	B1	15	ø 8	<i>φ</i> 24	15	30	28.7
S1.5BP 25B — 1508	25	φ 37.5	φ40.5	B1	15	ø 8	φ 28	15	30	32.8
S1.5BP 26B — 1508	26	ø 39	φ42	B1	15	ø 8	φ 28	15	30	35.9
S1.5BP 28B — 1508	28	φ42	ø 45	B1	15	ø 8	φ 30	15	30	41.8
S1.5BP 30B — 1508	30	\$\phi 45	 \$\psi 48	B1	15	ø 8	φ32	15	30	48.2
S1.5BP 32B — 1508	32	 48	φ 51	B1	15	ø 8	φ 35	15	30	56.2
S1.5BP 35B — 1508	35	ϕ 52.5	φ55.5	B1	15	ø 8	φ40	15	30	69.9
S1.5BP 36B — 1508	36	φ 54	φ 57	B1	15	ø 8	\$\phi 40	15	30	72.5
S1.5BP 40B — 1510	40	φ 60	φ63	B1	15	ø 10	ø 45	15	30	89.7
S1.5BP 45B — 1510	45	φ67.5	φ70.5	B1	15	ø 10	φ 50	15	30	113.5
S1.5BP 48B — 1510	48	φ 72	φ 75	B1	15	φ 10	φ 55	15	30	132.6
S1.5BP 50B — 1510	50	ø 75	φ 78	B1	15	ø 10	ø 55	15	30	139.9
S1.5BP 55B — 1510	55	φ82.5	φ85.5	B1	15	φ 10	φ 60	15	30	136.8
S1.5BP 56B — 1510	56	φ84	φ 87	B1	15	ø 10	φ60	15	30	173.2

15

φ10

φ65

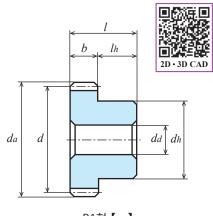
15

200.9

사프 기능		회전	속도별 허용전	달동력표	휨강도 (단위	P : W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S1.5BP 14K — 1806	1.43	14.29	28.57	57.06	113.82	170.38	212.54
S1.5BP 15B — 1506	1.58	15.79	31.55	63.01	125.73	188.06	234.53
S1.5BP 16B — 1506	1.73	17.29	34.55	69.02	137.63	205.83	256.74
S1.5BP 18B — 1508	2.03	20.31	40.59	81.07	161.61	241.63	301.27
S1.5BP 20B — 1508	2.34	23.38	46.72	93.27	185.89	277.78	346.35
S1.5BP 22B — 1508	2.65	26.45	52.85	105.49	210.11	313.93	390.88
S1.5BP 24B — 1508	2.96	29.53	58.99	117.72	234.45	350.08	434.97
S1.5BP 25B — 1508	3.11	31.07	62.07	123.88	246.64	368.29	456.96
S1.5BP 26B — 1508	3.27	32.62	65.16	130.04	258.84	386.41	478.95
S1.5BP 28B — 1508	3.58	35.73	71.37	142.38	283.29	422.30	522.82
S1.5BP 30B — 1508	4.02	40.11	80.10	159.80	317.83	472.79	584.94
S1.5BP 32B — 1508	4.34	43.33	86.54	172.58	343.16	509.38	629.80
S1.5BP 35B — 1508	4.82	48.17	96.18	191.78	381.11	564.09	696.54
S1.5BP 36B — 1508	4.99	49.79	99.41	198.18	393.77	582.21	718.75
S1.5BP 40B — 1510	5.80	57.95	115.70	230.55	457.75	674.13	830.90
S1.5BP 45B — 1510	6.64	66.26	132.26	263.44	521.14	765.61	940.19
S1.5BP 48B — 1510	7.14	71.28	142.25	283.26	559.08	820.15	1003.96
S1.5BP 50B — 1510	7.48	74.63	148.92	296.49	584.35	856.39	1045.85
S1.5BP 55B — 1510	8.32	83.00	165.59	329.53	647.04	944.88	1148.77
S1.5BP 56B — 1510	8.49	84.68	168.93	336.16	659.53	962.12	1169.00
S1.5BP 60B — 1510	9.34	93.16	185.82	369.61	723.04	1049.29	1273.12

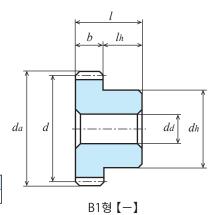

 ϕ 90

φ93


60

- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다.
- ★청색 POM에 상세 내용은 22페이지를 참조하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

B1형【一】

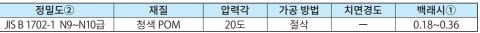

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	z	d	da		b	dd	dh	lh	l	W(g)
S2BP 12B — 2008	12	φ 24	φ 28	B1	20	ø 8	ø 18	20	40	16.7
S2BP 13B — 2008	13	φ 26	φ 30	B1	20	ø 8	ø 20	20	40	20.6
S2BP 14B — 2008	14	φ 28	φ 32	B1	20	ø 8	ø 20	20	40	23.0
S2BP 15B — 2008	15	φ 30	φ 34	B1	20	ø 8	φ 22	20	40	27.4
S2BP 16B — 2010	16	φ 32	φ 36	B1	20	ø 10	<i>φ</i> 24	20	40	30.5
S2BP 18B — 2010	18	φ 36	φ 40	B1	20	ø 10	ø 30	20	40	43.7
S2BP 20B — 2010	20	φ 40	φ 44	B1	20	ø 10	ø 30	20	40	50.4
S2BP 22B — 2010	22	φ 44	φ 48	B1	20	ø 10	φ 32	20	40	60.6
S2BP 24B — 2010	24	φ 48	φ 52	B1	20	ø 10	ø 36	20	40	74.7
S2BP 25B — 2010	25	φ 50	φ 54	B1	20	ø 10	ø 36	20	40	79.0
S2BP 26B — 2010	26	φ 52	φ 56	B1	20	ø 10	\$\phi 40	20	40	90.2
S2BP 28B — 2010	28	φ 56	φ 60	B1	20	ø 10	 \$40	20	40	99.8
S2BP 30B — 2010	30	φ 60	φ 64	B1	20	ø 10	ø 45	20	40	119.4
S2BP 32B — 2012	32	φ 64	φ 68	B1	20	φ 12	ø 45	20	40	128.4
S2BP 35B — 2012	35	φ 70	φ 74	B1	20	ø 12	ø 55	20	40	168.3
S2BP 36B — 2012	36	φ 72	φ 76	B1	20	φ 12	ø 55	20	40	174.6
S2BP 40B — 2012	40	φ 80	φ 84	B1	20	ø 12	ø 60	20	40	214.2
S2BP 45B — 2012	45	φ 90	φ 94	B1	20	φ 12	ø 65	20	40	265.6
S2BP 48B — 2012	48	ø 96	φ100	B1	20	ø 12	ø 70	20	40	305.2
S2BP 50B — 2012	50	φ100	φ104	B1	20	φ 12	φ 75	20	40	338.6
S2BP 55B — 2012	55	φ110	φ114	B1	20	φ 12	ø 80	20	40	402.2
S2BP 56B — 2012	56	φ112	φ116	B1	20	φ 12	ø 85	20	40	430.3
S2BP 60B — 2012	60	φ120	φ124	B1	20	ø 12	ø 90	20	40	490.7

상품 기호		회전	속도별 허용전	[달동력표 ·	휨강도 (단위	임: W)	
9도 시 <u>조</u>	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S2BP 12B — 2008	1.99	19.85	39.67	79.22	158.00	236.32	294.74
S2BP 13B — 2008	2.30	22.95	45.87	91.61	182.58	273.07	340.58
S2BP 14B — 2008	2.48	24.83	49.61	99.05	197.44	295.16	368.01
S2BP 15B — 2008	2.66	26.60	53.15	106.10	211.44	316.01	393.94
S2BP 16B — 2010	2.84	28.37	56.68	113.15	225.43	336.84	419.77
S2BP 18B — 2010	3.19	31.91	63.75	127.23	253.36	378.39	470.09
S2BP 20B — 2010	3.55	35.45	70.82	141.30	281.24	419.77	519.94
S2BP 22B — 2010	3.83	38.27	76.42	152.51	303.28	451.62	558.79
S2BP 24B — 2010	4.26	42.53	84.94	169.40	336.84	500.06	618.19
S2BP 25B — 2010	4.44	44.30	88.47	176.41	350.70	519.94	642.45
S2BP 26B — 2010	4.76	47.49	94.84	189.00	375.82	556.38	686.84
S2BP 28B — 2010	4.97	49.61	99.05	197.44	392.21	579.12	714.53
S2BP 30B — 2010	5.32	53.15	106.10	211.44	419.77	618.19	761.98
S2BP 32B — 2012	5.68	56.68	113.15	225.43	446.67	656.95	808.83
S2BP 35B — 2012	6.21	61.99	123.71	246.38	486.76	714.53	875.88
S2BP 36B — 2012	6.39	63.75	127.23	253.36	500.06	733.57	897.89
S2BP 40B — 2012	7.10	70.82	141.30	281.24	552.90	808.83	984.27
S2BP 45B — 2012	7.98	79.65	158.87	316.01	618.19	897.89	1088.49
S2BP 48B — 2012	8.52	84.94	169.40	336.84	656.95	950.04	1148.58
S2BP 50B — 2012	8.87	88.47	176.41	350.70	682.63	984.27	1184.49
S2BP 55B — 2012	9.65	96.17	191.80	381.11	737.95	1055.63	1255.42
S2BP 56B — 2012	9.94	99.05	197.44	392.21	758.83	1084.40	1286.48
S2BP 60B — 2012	10.64	106.10	211.44	419.77	808.83	1148.58	1349.70

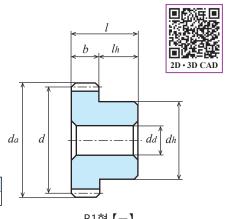
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

	JIS B 1702-1 N9~N10급	청색 POM	20도	절삭	_	0.15~0.3	
7	★본 허용전달동력표의 테이	l블은 LEWIS식을 사용	용합니다. 단위 환	한산 방법은 참고	고 고자료 20페이지	를 확인하십시오.	
7	★소재 특성상 경년 변화, 온	도 변화에 따라 치수,	정밀도가 변화협	합니다.			

★청색 POM에 상세 내용은 22페이지를 참조하십시오.


상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	Z	d	da		b	dd	dh	lh	l	W(g)
S2.5BP 12B — 2510	12	φ 30	φ 35	B1	25	φ10	φ 22	20	45	29.9
S2.5BP 13B — 2510	13	φ 32.5	φ 37.5	B1	25	φ 10	ø 25	20	45	37.3
S2.5BP 14B — 2510	14	φ 35	φ 40	B1	25	φ 10	ø 25	20	45	41.9
S2.5BP 15B — 2510	15	φ 37.5	φ 42.5	B1	25	φ 10	φ 30	20	45	53.0
S2.5BP 16B — 2510	16	φ 40	φ 45	B1	25	ø 10	φ 30	20	45	58.3
S2.5BP 18B — 2510	18	φ 45	φ 50	B1	25	ø 10	φ34	20	45	75.7
S2.5BP 20B — 2512	20	φ 50	φ 55	B1	25	φ 12	<i>φ</i> 34	20	45	86.6
S2.5BP 22B — 2512	22	φ 55	φ 60	B1	25	φ 12	<i>φ</i> 40	20	45	110.9
S2.5BP 24B — 2512	24	φ 60	φ 65	B1	25	φ 12	ø 45	20	45	136.1
S2.5BP 25B — 2512	25	φ 62.5	φ 67.5	B1	25	φ 12	ø 45	20	45	144.6
S2.5BP 26B — 2512	26	φ 65	φ 70	B1	25	φ 12	φ 50	20	45	163.9
S2.5BP 28B — 2512	28	φ 70	φ 75	B1	25	φ 12	φ 50	20	45	182.5
S2.5BP 30B — 2512	30	φ 75	φ 80	B1	25	φ 12	φ 60	20	45	226.9
S2.5BP 32B — 2515	32	φ 80	φ 85	B1	25	ø 15	φ 60	20	45	244.2
S2.5BP 35B — 2515	35	φ 87.5	φ 92.5	B1	25	ø 15	φ 70	20	45	307.7
S2.5BP 36B — 2515	36	φ 90	φ 95	B1	25	ø 15	φ 70	20	45	319.9
S2.5BP 40B — 2515	40	φ100	φ105	B1	25	ø 15	ø 80	20	45	405.6
S2.5BP 45B — 2515	45	φ112.5	φ117.5	B1	25	ø 15	ø 80	20	45	479.0
S2.5BP 48B — 2515	48	φ120	φ125	B1	25	ø 15	φ 90	20	45	564.8
S2.5BP 50B — 2515	50	φ125	φ130	B1	25	ø 15	ø 90	20	45	598.7

상품 기호		회전	속도별 허용전	달동력표	휨강도 (단위	P : W)	
영품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S2.5BP 12B — 2510	2.50	25.00	49.93	99.69	198.67	296.96	370.21
S2.5BP 13B — 2510	2.98	29.83	59.59	118.95	236.97	354.04	441.01
S2.5BP 14B — 2510	3.33	33.27	66.47	132.67	264.23	394.68	490.71
S2.5BP 15B — 2510	3.68	36.75	73.42	146.48	291.68	435.49	540.41
S2.5BP 16B — 2510	4.03	40.24	80.40	160.41	319.24	476.48	590.22
S2.5BP 18B — 2510	4.73	47.29	94.44	188.35	374.71	557.41	689.61
S2.5BP 20B — 2512	5.45	54.42	108.68	216.71	430.77	638.68	789.12
S2.5BP 22B — 2512	6.16	61.55	122.90	245.00	486.72	719.17	887.53
S2.5BP 24B — 2512	6.88	68.71	137.17	273.35	542.66	799.21	985.05
S2.5BP 25B — 2512	7.24	72.30	144.34	287.60	570.28	839.15	1033.65
S2.5BP 26B - 2512	7.60	75.91	151.53	301.85	597.84	878.99	1081.48
S2.5BP 28B — 2512	8.33	83.14	165.92	330.44	652.85	958.33	1174.72
S2.5BP 30B — 2512	9.35	93.32	186.21	370.76	730.66	1070.84	1307.76
S2.5BP 32B — 2515	10.10	100.80	201.12	400.31	787.02	1151.32	1401.00
S2.5BP 35B — 2515	11.23	112.06	223.54	444.70	871.05	1267.43	1538.00
S2.5BP 36B — 2515	11.61	115.82	231.01	459.51	898.90	1305.60	1582.75
S2.5BP 40B — 2515	13.52	134.80	268.78	534.33	1040.05	1499.65	1804.74
S2.5BP 45B — 2515	15.46	154.11	307.17	610.18	1180.26	1686.03	1999.02
S2.5BP 48B — 2515	16.63	165.76	330.32	655.78	1263.59	1794.40	2108.53
S2.5BP 50B — 2515	17.41	173.53	345.76	685.60	1317.19	1860.02	2178.46



- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다.
- ★청색 POM에 상세 내용은 22페이지를 참조하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

B1형【一】

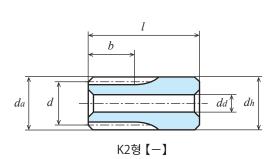
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
	Z	d	da		b	dd	dh	lh	l	W(g)
S3BP 12B — 3012	12	φ 36	φ 42	B1	30	φ12	φ 26	20	50	48.7
S3BP 13B — 3012	13	φ 39	φ 45	B1	30	φ 12	φ 30	20	50	61.1
S3BP 14B — 3012	14	φ 42	φ 48	B1	30	φ 12	φ 30	20	50	69.1
S3BP 15B — 3012	15	ø 45	φ 51	B1	30	φ 12	φ 34	20	50	83.4
S3BP 16B — 3012	16	ø 48	φ 54	B1	30	φ 12	φ 34	20	50	92.6
S3BP 18B — 3014	18	φ 54	ø 60	B1	30	<i>φ</i> 14	φ 40	20	50	139.7
S3BP 20B — 3014	20	ø 60	ø 66	B1	30	<i>φ</i> 14	φ 50	20	50	162.3
S3BP 22B — 3014	22	ø 66	φ 72	B1	30	<i>φ</i> 14	φ 50	20	50	187.3
S3BP 24B — 3014	24	φ 72	φ 78	B1	30	<i>φ</i> 14	φ 55	20	50	226.3
S3BP 25B — 3014	25	φ 75	ø 81	B1	30	<i>φ</i> 14	φ 55	20	50	240.9
S3BP 26B — 3014	26	ø 78	φ 84	B1	30	<i>φ</i> 14	φ 65	20	50	282.6
S3BP 28B — 3014	28	φ 84	ø 90	B1	30	<i>φ</i> 14	φ 65	20	50	314.8
S3BP 30B — 3014	30	ø 90	ø 96	B1	30	<i>φ</i> 14	φ 70	20	50	364.3
S3BP 32B — 3016	32	ø 96	φ102	B1	30	ø 16	φ 70	20	50	398.0
S3BP 35B — 3016	35	ø 105	φ111	B1	30	ø 16	ø 80	20	50	491.1
S3BP 36B — 3016	36	ø 108	φ114	B1	30	ø 16	ø 80	20	50	512.3
S3BP 40B — 3018	40	φ120	φ126	B1	30	φ 18	ø 95	20	50	657.3
S3BP 45B — 3018	45	φ135	φ141	B1	30	ø 18	ø 95	20	50	1441.4
S3BP 48B — 3018	48	φ144	φ 150	B1	30	ø 18	φ110	20	50	1719.6
S3BP 50B — 3018	50	φ150	φ156	B1	30	φ 18	φ110	20	50	1929.4

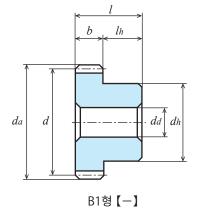
상품 기호		회전	속도별 허용전	년달동력표 -	휨강도 (단위	임: W)	
영품 기보	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S3BP 12B — 3012	5.45	54.39	108.70	216.93	431.98	645.19	801.22
S3BP 13B — 3012	6.30	62.89	125.70	250.69	499.19	745.03	923.86
S3BP 14B — 3012	6.85	68.38	136.59	272.49	542.23	808.24	1000.62
S3BP 15B — 3012	7.33	73.26	146.32	291.85	580.54	863.60	1068.39
S3BP 16B — 3012	7.82	78.14	156.05	311.19	618.79	918.64	1135.66
S3BP 18B — 3014	8.80	87.89	175.49	349.84	695.13	1027.78	1268.73
S3BP 20B — 3014	9.78	97.63	194.92	388.43	771.16	1135.66	1399.82
S3BP 22B — 3014	10.35	103.24	206.18	410.89	815.87	1201.65	1480.98
S3BP 24B — 3014	11.73	117.12	233.73	465.44	918.69	1347.62	1649.49
S3BP 25B — 3014	12.22	121.99	243.43	484.66	955.16	1399.82	1709.58
S3BP 26B — 3014	12.84	128.12	255.51	508.82	1001.51	1465.93	1785.67
S3BP 28B — 3014	13.69	136.59	272.49	542.23	1063.88	1551.92	1885.69
S3BP 30B — 3014	14.67	146.32	291.85	580.54	1135.66	1649.49	1999.64
S3BP 32B — 3016	15.65	156.05	311.19	618.79	1206.88	1745.30	2110.03
S3BP 35B — 3016	17.11	170.63	340.19	676.07	1312.65	1885.69	2255.99
S3BP 36B — 3016	17.60	175.49	349.84	695.13	1347.62	1931.61	2302.67
S3BP 40B — 3018	19.56	194.92	388.43	771.16	1485.88	2110.03	2479.51
S3BP 45B — 3018	22.00	219.18	436.59	863.60	1649.49	2302.67	-
S3BP 48B — 3018	23.46	233.73	465.44	918.64	1745.30	2410.67	-
S3BP 50B — 3018	24.44	243.43	484.66	955.16	1808.19	2479.51	-

노백래시 기어

평기어 (백색 POM) 모듈 0.5

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	절삭	_	0.02~0.06


- \bigstar 스테인리스 재질의 파형 스프링 핀 포함입니다.파형 스프링 핀의 호칭경은 ϕ 1입니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.


①동종품, 동재질, 한 쌍의 맞물림 시의										
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
99 /12	z	d	da		b	dd	dh	lh	l	W(g)
S50D 14K — 0803	14	φ 7	φ 8	K2	8	ø 3	ø 9	10	18	1.15
S50D 15K — 0803	15	φ 7.5	φ 8.5	K2	8	ø 3	φ 9	10	18	1.22
S50D 16K — 0803	16	φ 8	φ 9	K2	8	ø 3	φ 9	10	18	1.29
S50D 18K — 0803	18	φ 9	φ 10	K2	8	ø 3	φ10	10	18	1.65
S50D 20B — 0303	20	φ10	φ11	B1	3	ø 3	φ 8	5	8	0.61
S50D 24B — 0303	24	φ12	φ 13	B1	3	ø 3	φ 8	5	8	0.75
S50D 25B — 0303	25	φ12.5	φ13.5	B1	3	φ 3	φ 8	5	8	0.79
S50D 28B — 0303	28	φ14	φ 15	B1	3	φ 3	φ 8	5	8	0.93
S50D 30B — 0303	30	φ15	φ 16	B1	3	φ 3	φ 8	5	8	0.97
S50D 32B — 0303	32	φ16	φ 17	B1	3	ø 3	φ 8	5	8	1.13
S50D 36B — 0303	36	φ18	ø 19	B1	3	ø 3	φ 8	5	8	1.35
S50D 40B — 0303	40	φ20	φ21	B1	3	ø 3	φ10	5	8	1.81
S50D 45B — 0303	45	φ22.5	φ23.5	B1	3	ø 3	φ 10	5	8	2.17
S50D 50B — 0303	50	φ 25	φ 26	B1	3	ø 3	φ10	5	8	2.56
S50D 56B — 0303	56	φ28	φ 29	B1	3	ø 3	φ 10	5	8	3.09
S50D 60B — 0303	60	φ30	φ 31	B1	3	ø 3	φ 10	5	8	3.40
S50D 64B — 0303	64	φ32	φ 33	B1	3	ø 3	φ 10	5	8	3.90
S50D 70B — 0304	70	φ35	ø 36	B1	3	ϕ 4	φ12	5	8	4.70
S50D 72B — 0304	72	φ36	φ 37	B1	3	ϕ 4	φ12	5	8	4.99
S50D 80B — 0304	80	φ40	<i>φ</i> 41	B1	3	ϕ 4	φ12	5	8	6.01
S50D 90B — 0305	90	φ45	φ46	B1	3	φ 5	φ14	5	8	7.64
S50D 100B — 0305	100	φ50	φ 51	B1	3	φ 5	φ14	5	8	9.22
S50D 120B — 0305	120	φ60	φ 61	B1	3	φ 5	φ14	5	8	12.90

목 차

인포메 이션

마 이 터 기 어

베 벨 기 어

자
=

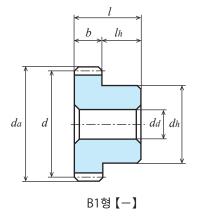
사프 기능		회전	속도별 허용전	선달동력표 -	휨강도 (단위	임: W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S50D 14K - 0803	0.22	2.24	4.48	8.95	17.89	26.82	33.50
S50D 15K — 0803	0.24	2.40	4.80	9.59	19.17	28.73	35.88
S50D 16K — 0803	0.26	2.56	5.12	10.23	20.44	30.64	38.27
S50D 18K — 0803	0.29	2.88	5.76	11.51	22.99	34.45	43.03
S50D 20B — 0303	0.12	1.20	2.40	4.79	9.58	14.35	17.92
S50D 24B — 0303	0.17	1.74	3.48	6.96	13.90	20.82	25.99
S50D 25B — 0303	0.18	1.81	3.63	7.25	14.47	21.68	27.07
S50D 28B — 0303	0.20	2.03	4.06	8.12	16.21	24.27	30.30
S50D 30B — 0303	0.22	2.18	4.35	8.70	17.36	25.99	32.45
S50D 32B — 0303	0.23	2.32	4.64	9.27	18.51	27.71	34.59
S50D 36B — 0303	0.26	2.61	5.22	10.43	20.82	31.16	38.88
S50D 40B — 0303	0.29	2.90	5.80	11.59	23.12	34.59	43.16
S50D 45B — 0303	0.33	3.26	6.52	13.03	25.99	38.88	48.50
S50D 50B — 0303	0.36	3.63	7.25	14.47	28.86	43.16	53.83
S50D 56B — 0303	0.41	4.06	8.12	16.21	32.30	48.29	60.21
S50D 60B — 0303	0.44	4.35	8.70	17.36	34.59	51.70	64.45
S50D 64B — 0303	0.46	4.64	9.27	18.51	36.88	55.11	68.68
S50D 70B — 0304	0.51	5.08	10.14	20.24	40.31	60.21	74.86
S50D 72B — 0304	0.52	5.22	10.43	20.82	41.45	61.91	76.91
S50D 80B — 0304	0.58	5.80	11.59	23.12	46.01	68.68	85.07
S50D 90B — 0305	0.65	6.52	13.03	25.99	51.70	76.91	95.15
S50D 100B — 0305	0.73	7.25	14.47	28.86	57.38	85.07	105.11
S50D 120B — 0305	0.87	8.70	17.36	34.59	68.68	101.14	124.67

평기어 (백색 POM) 모듈 0.8

단위:mm

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	절삭	_	0.02~0.06

- ★스테인리스 재질의 파형 스프링 핀 포함입니다.(잇수120은 포함되지 않습니다.)
- ★파형 스프링 핀의 호칭경: 잇수 14~64는 Ø1, 잇수 70~100은 Ø1.4입니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

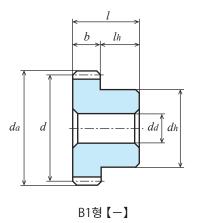

①동종품, 동재질, 한 쌍의 맞물림 시의	잇수	기준원	이끝원	형	치폭	구멍	허브	허브	전장	중량
상품 기호	z	직경 d	직경 da		b	직경 da	외경 <i>dh</i>	길이 <i>l</i> h	l	W(g)
S80D 14K — 0704	14	φ11.2	φ12.8	K2	7	<i>φ</i> 4	φ12.8	13	20	3.0
S80D 15K — 0704	15	φ12	φ13.6	K2	7	<i>φ</i> 4	φ13.6	13	20	3.4
S80D 16B — 0504	16	φ12.8	φ14.4	B1	5	φ4	φ10	9	14	1.7
S80D 18B — 0504	18	φ14.4	φ 16	B1	5	φ4	φ 10	9	14	1.9
S80D 20B — 0504	20	φ16	φ17.6	B1	5	<i>φ</i> 4	φ10	9	14	2.2
S80D 22B — 0505	22	φ17.6	φ19.2	B1	5	φ 5	φ12.5	9	14	2.9
S80D 24B — 0505	24	φ19.2	φ20.8	B1	5	φ 5	φ12.5	9	14	3.2
S80D 25B — 0505	25	φ 20	φ21.6	B1	5	φ 5	φ12.5	9	14	3.4
S80D 28B — 0505	28	φ22.4	φ24	B1	5	φ 5	φ12.5	9	14	4.0
S80D 30B — 0505	30	<i>φ</i> 24	φ25.6	B1	5	φ 5	φ12.5	9	14	4.4
S80D 32B — 0505	32	φ25.6	φ27.2	B1	5	φ 5	φ12.5	9	14	4.8
S80D 36B — 0506	36	φ28.8	φ30.4	B1	5	ø 6	φ14	9	14	6.0
S80D 40B — 0506	40	φ 32	φ33.6	B1	5	φ 6	φ14	9	14	7.1
S80D 45B — 0506	45	φ 36	φ37.6	B1	5	φ 6	φ14	9	14	8.6
S80D 48B — 0506	48	φ38.4	φ40	B1	5	φ 6	φ14	9	14	9.6
S80D 50B — 0506	50	φ40	φ41.6	B1	5	ø 6	φ14	9	14	10.3
S80D 56B — 0506	56	φ44.8	φ46.4	B1	5	ø 6	φ14	9	14	12.6
S80D 60B — 0506	60	φ48	φ49.6	B1	5	φ 6	φ14	9	14	14.2
S80D 64B — 0506	64	φ51.2	φ52.8	B1	5	φ 6	φ14	9	14	15.9
S80D 70B — 0508	70	φ 56	φ57.6	B1	5	ø 8	ø 16	9	14	19.0
S80D 72B — 0508	72	φ57.6	φ59.2	B1	5	ø 8	ø 16	9	14	20.1
S80D 80B — 0508	80	φ64	φ65.6	B1	5	ø 8	ø 16	9	14	24.2
S80D 90B — 0508	90	φ 72	φ73.6	B1	5	ø 8	φ 20	9	14	31.7
S80D 100B — 0508	100	φ 80	φ 81.6	B1	5	ø 8	φ 24	9	14	40.2
S80D 120B — 0508	120	φ 96	φ97.6	B1	5	ø 8	φ 30	9	14	59.0

모듈 0.8

(보통이)

사표 기술		회전	속도별 허용전	달동력표 -	휨강도 (단위	4: W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S80D 14K - 0704	0.50	5.02	10.03	20.05	40.04	59.98	74.90
S80D 15K - 0704	0.54	5.37	10.75	21.48	42.89	64.24	80.22
S80D 16B — 0504	0.41	4.10	8.19	16.36	32.67	48.93	61.10
S80D 18B — 0504	0.46	4.61	9.21	18.40	36.74	55.02	68.68
S80D 20B — 0504	0.51	5.12	10.23	20.44	40.81	61.10	76.26
S80D 22B — 0505	0.56	5.63	11.25	22.48	44.87	67.17	83.83
S80D 24B — 0505	0.61	6.14	12.28	24.52	48.93	73.23	91.38
S80D 25B — 0505	0.64	6.40	12.79	25.54	50.96	76.26	95.15
S80D 28B — 0505	0.72	7.16	14.32	28.60	57.05	85.34	106.46
S80D 30B — 0505	0.77	7.68	15.34	30.64	61.10	91.38	113.98
S80D 32B — 0505	0.82	8.19	16.36	32.67	65.14	97.41	121.49
S80D 36B — 0506	0.92	9.21	18.40	36.74	73.23	109.47	136.47
S80D 40B — 0506	1.02	10.23	20.44	40.81	81.30	121.49	151.40
S80D 45B — 0506	1.15	11.51	22.99	45.89	91.38	136.47	169.55
S80D 48B — 0506	1.23	12.28	24.52	48.93	97.41	145.44	180.36
S80D 50B — 0506	1.28	12.79	25.54	50.96	101.44	151.40	187.53
S80D 56B — 0506	1.43	14.32	28.60	57.05	113.48	168.83	208.87
S80D 60B — 0506	1.54	15.34	30.64	61.10	121.49	180.36	222.96
S80D 64B — 0506	1.64	16.36	32.67	65.14	129.49	191.81	236.94
S80D 70B — 0508	1.79	17.89	35.73	71.21	141.46	208.87	257.71
S80D 72B — 0508	1.84	18.40	36.74	73.23	145.44	214.52	264.58
S80D 80B — 0508	2.05	20.44	40.81	81.30	161.10	236.94	291.72
S80D 90B — 0508	2.30	22.99	45.89	91.38	180.36	264.58	323.84
S80D 100B — 0508	2.56	25.54	50.96	101.44	199.41	291.72	355.00
S80D 120B — 0508	3.07	30.64	61.10	121.49	236.94	342.65	414.26

목 차


인포메 이션

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	절삭	_	0.02~0.06

- ★스테인리스 재질의 파형 스프링 핀 포함입니다.(잇수90~120은 포함되지 않습니다.)
- ★파형 스프링 핀의 호칭경: 잇수 12~18은 *ϕ*1, 잇수 20~80은 *ϕ*1.4입니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
88712	z	d	da		b	dd	dh	lh	l	W(g)
S1D 12A — 1206	12	φ 12	φ 14	A1	12	φ 6	-	-	12	1.4
S1D 14A — 1206	14	φ 14	φ 16	A1	12	φ 6	-	-	12	2.1
S1D 15A — 1206	15	φ 15	φ 17	A1	12	φ 6	-	-	12	2.5
S1D 16A — 1206	16	ø 16	φ 18	A1	12	ø 6	-	-	12	2.9
S1D 17B — 0806	17	φ 17	ø 19	B1	8	φ 6	φ14	8	16	3.7
S1D 18B — 0808	18	φ 18	φ 20	B1	8	ø 8	φ 15	8	16	3.7
S1D 20B — 0808	20	φ 20	φ 22	B1	8	ø 8	φ 16	8	16	4.7
S1D 22B — 0808	22	φ 22	φ 24	B1	8	ø 8	ø 18	8	16	6.0
S1D 23B — 0808	23	φ 23	φ 25	B1	8	ø 8	φ 18	8	16	6.4
S1D 24B — 0808	24	φ 24	φ 26	B1	8	ø 8	φ 18	8	16	6.8
S1D 25B — 0808	25	φ 25	φ 27	B1	8	φ 8	φ 18	8	16	7.3
S1D 26B — 0808	26	φ 26	φ 28	B1	8	ø 8	ø 20	8	16	8.4
S1D 28B — 0808	28	φ 28	φ 30	B1	8	ø 8	φ 20	8	16	9.4
S1D 30B — 0808	30	φ 30	φ 32	B1	8	ø 8	φ 20	8	16	10.4
S1D 32B — 0608	32	φ 32	φ 34	B1	6	ø 8	φ 20	8	14	9.4
S1D 34B — 0608	34	φ 34	φ 36	B1	6	ø 8	φ 20	8	14	10.2
S1D 35B — 0608	35	φ 35	φ 37	B1	6	ø 8	φ 20	8	14	10.7
S1D 36B — 0608	36	φ 36	φ 38	B1	6	ø 8	\$\phi 20	8	14	11.2
S1D 40B — 0608	40	φ 40	φ 42	B1	6	ø 8	φ 20	8	14	13.2
S1D 42B — 0608	42	φ 42	φ 44	B1	6	ø 8	φ 20	8	14	14.3
S1D 44B — 0608	44	φ 44	φ 46	B1	6	ø 8	\$ 20	8	14	15.4
S1D 45B — 0608	45	φ 45	φ 47	B1	6	φ 8	φ 20	8	14	16.0
S1D 48B — 0608	48	φ 48	φ 50	B1	6	ø 8	φ 20	8	14	17.9
S1D 50B — 0608	50	φ 50	φ 52	B1	6	ø 8	φ 20	8	14	19.2
S1D 52B — 0608	52	φ 52	φ 54	B1	6	ø 8	φ 20	8	14	20.5
S1D 55B — 0608	55	φ 55	φ 57	B1	6	ø 8	φ 20	8	14	22.7
S1D 56B — 0608	56	φ 56	φ 58	B1	6	φ 8	φ 20	8	14	23.4
S1D 60B — 0608	60	φ 60	φ 62	B1	6	ø 8	φ 20	8	14	26.5
S1D 64B — 0608	64	φ 64	φ 66	B1	6	\$ 8	φ 20	8	14	29.8
S1D 70B — 0608	70	φ 70	φ 72	B1	6	ø 8	φ 20	8	14	35.1
S1D 72B — 0608	72	φ 72	φ 74	B1	6	ø 8	φ 20	8	14	37.0
S1D 80B — 0608	80	φ 80	φ 82	B1	6	ø 8	φ 20	8	14	45.1
S1D 90B — 0608	90	φ 90	φ 92	B1	6	φ 8	φ30	8	14	60.8
S1D 100B — 0608	100	φ100	φ102	B1	6	φ 8	φ30	8	14	73.4
S1D 120B — 0608	120	φ120	φ122	B1	6	ø 8	φ30	8	14	102.7

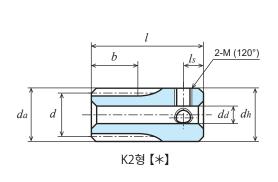
사프 기수		회전	속도별 허용전	년달동력표 -	휨강도 (단위	2 : W)	
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S1D 12A - 1206	0.88	8.82	17.64	35.25	70.40	105.44	131.66
S1D 14A - 1206	1.03	10.29	20.57	41.11	82.09	122.93	153.47
S1D 15A — 1206	1.10	11.03	22.04	44.05	87.93	131.66	164.35
S1D 16A - 1206	1.18	11.76	23.51	46.98	93.77	140.39	175.23
S1D 17B — 0806	0.83	8.33	16.65	33.27	66.41	99.41	124.07
S1D 18B — 0808	0.88	8.82	17.63	35.22	70.30	105.22	131.31
S1D 20B — 0808	0.98	9.80	19.59	39.13	78.07	116.82	145.76
S1D 22B - 0808	1.08	10.78	21.54	43.03	85.83	128.41	160.19
S1D 23B — 0808	1.13	11.27	22.52	44.98	89.71	134.20	167.40
S1D 24B - 0808	1.18	11.76	23.50	46.93	93.59	139.98	174.60
S1D 25B — 0808	1.23	12.25	24.48	48.88	97.47	145.76	181.79
S1D 26B — 0808	1.27	12.74	25.45	50.83	101.34	151.54	188.98
S1D 28B - 0808	1.37	13.72	27.41	54.73	109.09	163.08	203.33
S1D 30B — 0808	1.47	14.70	29.36	58.62	116.82	174.60	217.65
S1D 32B - 0608	2.10	20.97	41.90	83.65	166.65	249.01	310.33
S1D 34B - 0608	2.23	22.28	44.52	88.85	176.98	264.39	328.97
S1D 35B — 0608	2.30	22.94	45.82	91.46	182.14	272.06	338.26
S1D 36B - 0608	2.36	23.59	47.13	94.06	187.30	279.73	347.53
S1D 38B - 0608	2.49	24.90	49.74	99.26	197.61	295.06	366.00
S1D 40B - 0608	2.62	26.21	52.36	104.46	207.91	310.33	384.38
S1D 42B - 0608	2.75	27.52	54.97	109.66	218.20	325.25	402.67
S1D 44B - 0608	2.89	28.83	57.58	114.85	228.48	340.12	420.87
S1D 45B - 0608	2.9	28.92	57.76	115.21	229.17	340.98	421.74
S1D 48B - 0608	3.15	31.44	62.80	125.23	249.01	369.68	457.01
S1D 50B — 0608	3.28	32.75	65.40	130.42	259.26	384.38	474.95
S1D 52B - 0608	3.41	34.06	68.01	135.60	269.50	399.02	492.80
S1D 55B — 0608	3.61	36.02	71.92	143.37	284.84	420.87	519.41
S1D 56B — 0608	3.67	36.68	73.23	145.96	289.95	428.13	528.23
S1D 60B — 0608	3.94	39.29	78.44	156.31	310.33	457.01	563.31
S1D 64B - 0608	4.20	41.92	83.65	166.65	330.21	485.67	597.95
S1D 70B — 0608	4.59	45.82	91.46	182.14	359.85	528.23	647.51
S1D 72B — 0608	4.72	47.13	94.06	187.30	369.68	542.31	663.79
S1D 80B — 0608	5.25	52.36	104.46	207.91	408.74	597.95	727.65
S1D 90B - 0608	5.90	58.88	117.45	233.62	457.01	663.79	804.69
S1D 100B — 0608	6.56	65.40	130.42	259.26	504.65	727.65	875.66
S1D 120B — 0608	7.87	78.44	156.31	310.33	597.95	849.11	997.80

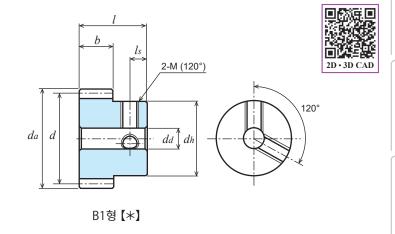
기 어 박 스

마 이 터 기 어

베 벨 기 어

인포메이션


평기어 (백색 POM) 모듈 0.5



정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	절삭	_	0.02~0.06

- ★ 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

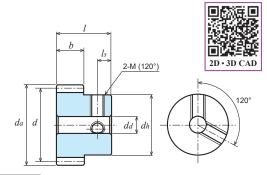
①동종품, 동재질, 한 쌍의 맞물림 시의	ĺ				4177	7.01	4111	411.1	-1-1			T-1
상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
08.12	Z	d	da		b	dd	dh	lh	l	2-M(120°)	ls	W(g)
S50D 14K * 0803	14	φ 7	ø 8	K2	8	ø 3	ø 9	10	18	2-M3	3	1.10
S50D 15K * 0803	15	φ 7.5	φ 8.5	K2	8	ø 3	φ 9	10	18	2-M3	3	1.17
S50D 18K * 0803	18	ø 9	φ10	K2	8	ø 3	ø 10	10	18	2-M3	3	1.59
S50D 20B * 0303	20	φ10	φ11	B1	3	ø 3	ø 8	5	8	2-M3	3	0.57
S50D 24B * 0303	24	φ12	φ13	B1	3	ø 3	ø 10	5	8	2-M3	3	0.90
S50D 30B * 0303	30	φ15	φ16	B1	3	ø 3	φ12	5	8	2-M3	3	1.39
S50D 32B * 0303	32	φ16	φ17	B1	3	ø 3	<i>φ</i> 14	5	8	2-M3	3	1.77
S50D 36B * 0303	36	φ18	φ19	B1	3	ø 3	ø 15	5	8	2-M3	3	2.15
S50D 40B * 0303	40	φ20	φ21	B1	3	ø 3	ø 15	5	8	2-M3	3	2.40
S50D 45B * 0303	45	φ22.5	φ23.5	B1	3	ø 3	ø 15	5	8	2-M3	3	2.75
S50D 50B * 0303	50	φ 25	φ 26	B1	3	ø 3	ø 15	5	8	2-M3	3	3.15
S50D 56B * 0303	56	φ 28	ø 29	B1	3	ø 3	ø 15	5	8	2-M3	3	3.67
S50D 60B * 0303	60	φ 30	φ31	B1	3	ø 3	ø 15	5	8	2-M3	3	4.06
S50D 64B * 0303	64	φ32	φ33	B1	3	ø 3	ø 15	5	8	2-M3	3	4.47
S50D 70B * 0304	70	φ 35	φ36	B1	3	ϕ 4	φ 16	5	8	2-M3	3	5.25
S50D 72B * 0304	72	φ36	φ 37	B1	3	φ 4	φ 16	5	8	2-M3	3	5.48
S50D 80B * 0304	80	φ40	φ 41	B1	3	ϕ 4	φ 16	5	8	2-M3	3	6.49
S50D 90B * 0305	90	φ45	φ46	B1	3	φ 5	ø 18	5	8	2-M3	3	8.20
S50D 100B * 0305	100	φ 50	φ 51	B1	3	φ 5	φ 18	5	8	2-M3	3	9.77
S50D 120B * 0305	120	φ 60	φ 61	B1	3	φ 5	φ 18	5	8	2-M3	3	13.43

상품 기호		회전	속도별 허용전	!달동력표	휨강도 (단위	4: W)	
영품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm
S50D 14K * 0803	0.22	2.24	4.48	8.95	17.89	26.82	33.50
S50D 15K * 0803	0.24	2.40	4.80	9.59	19.17	28.73	35.88
S50D 18K * 0803	0.29	2.88	5.76	11.51	22.99	34.45	43.03
S50D 20B * 0303	0.12	1.20	2.40	4.79	9.58	14.35	17.92
S50D 24B * 0303	0.17	1.74	3.48	6.96	13.90	20.82	25.99
S50D 30B * 0303	0.22	2.18	4.35	8.70	17.36	25.99	32.45
S50D 32B * 0303	0.23	2.32	4.64	9.27	18.51	27.71	34.59
S50D 36B * 0303	0.26	2.61	5.22	10.43	20.82	31.16	38.88
S50D 40B * 0303	0.29	2.90	5.80	11.59	23.12	34.59	43.16
S50D 45B * 0303	0.33	3.26	6.52	13.03	25.99	38.88	48.50
S50D 50B * 0303	0.36	3.63	7.25	14.47	28.86	43.16	53.83
S50D 56B * 0303	0.41	4.06	8.12	16.21	32.30	48.29	60.21
S50D 60B * 0303	0.44	4.35	8.70	17.36	34.59	51.70	64.45
S50D 64B * 0303	0.46	4.64	9.27	18.51	36.88	55.11	68.68
S50D 70B * 0304	0.51	5.08	10.14	20.24	40.31	60.21	74.86
S50D 72B * 0304	0.52	5.22	10.43	20.82	41.45	61.91	76.91
S50D 80B * 0304	0.58	5.80	11.59	23.12	46.01	68.68	85.07
S50D 90B * 0305	0.65	6.52	13.03	25.99	51.70	76.91	95.15
S50D 100B * 0305	0.73	7.25	14.47	28.86	57.38	85.07	105.11
S50D 120B * 0305	0.87	8.70	17.36	34.59	68.68	101.14	124.67

2-M (120°) dadd ∫ dh

B1형【*】

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	절삭	_	0.06~0.12


- ★ 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다. ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	z	d	da		b	dd	dh	lh	l	2-M(120°)	ls	W(g)
S80D 16B * 0503	16	φ12.8	φ14.4	B1	5	ø 3	φ 10	7	12	2-M3	4	1.5
S80D 20B * 0503	20	ø 16	φ17.6	B1	5	ø 3	φ12	7	12	2-M3	4	2.4
S80D 25B * 0503	25	φ 20	φ21.6	B1	5	ø 3	ø 16	7	12	2-M3	4	4.0
S80D 28B * 0503	28	φ22.4	φ24	B1	5	ø 3	φ 20	7	12	2-M3	4	5.7
S80D 30B * 0503	30	φ 24	φ25.6	B1	5	ø 3	ø 20	7	12	2-M3	4	6.1
S80D 32B * 0503	32	φ25.6	φ27.2	B1	5	ø 3	ø 20	7	12	2-M3	4	6.6
S80D 36B * 0504	36	φ28.8	φ30.4	B1	5	ϕ 4	φ 22	7	12	2-M4	4	8.1
S80D 40B * 0504	40	φ32	φ33.6	B1	5	ϕ 4	φ 22	7	12	2-M4	4	9.2
S80D 60B * 0504	60	φ48	ø 49.6	B1	5	<i>φ</i> 4	φ22	7	12	2-M4	4	16.3

상품 기호	회전속도별 허용전달동력표 휨강도 (단위: W)										
O 됩 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm				
S80D 16B * 0503	0.41	4.10	8.19	16.36	32.67	48.93	61.10				
S80D 20B * 0503	0.51	5.12	10.23	20.44	40.81	61.10	76.26				
S80D 25B * 0503	0.64	6.40	12.79	25.54	50.96	76.26	95.15				
S80D 28B * 0503	0.72	7.16	14.32	28.60	57.05	85.34	106.46				
S80D 30B * 0503	0.77	7.68	15.34	30.64	61.10	91.38	113.98				
S80D 32B * 0503	0.82	8.19	16.36	32.67	65.14	97.41	121.49				
S80D 36B * 0504	0.92	9.21	18.40	36.74	73.23	109.47	136.47				
S80D 40B * 0504	1.02	10.23	20.44	40.81	81.30	121.49	151.40				
S80D 60B * 0504	1.54	15.34	30.64	61.10	121.49	180.36	222.96				

목 차

인포메이션

단위:mm

정밀도②	재질	압력각	가공 방법	치면경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	절삭	_	0.06~0.12

B1형【*】

- ★ 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화에 따라 치수, 정밀도가 변화합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. ②제작 시의 정밀도입니다.

아동당도, 동세절, 안 정의 및물님 시의 상품 기호	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
	Z	d	da		b	dd	dh	lh	l	2-M(120°)	ls	W(g)
S1D 17B * 0804	17	φ 17	ø 19	B1	8	<i>φ</i> 4	φ14	8	16	2-M4	4	4.0
S1D 18B * 0804	18	φ 18	φ 20	B1	8	ϕ 4	ø 15	8	16	2-M4	4	4.5
S1D 20B * 0805	20	φ 20	φ 22	B1	8	φ 5	ø 16	8	16	2-M4	4	5.3
S1D 24B * 0805	24	φ 24	φ 26	B1	8	φ 5	φ20	8	16	2-M4	4	8.2
S1D 25B * 0805	25	φ 25	φ 27	B1	8	φ 5	φ22	8	16	2-M4	4	9.3
S1D 26B * 0805	26	φ 26	φ 28	B1	8	φ 5	φ22	8	16	2-M4	4	9.8
S1D 30B * 0805	30	φ 30	φ 32	B1	8	φ 5	<i>φ</i> 24	8	16	2-M4	4	12.6
S1D 32B * 0605	32	φ 32	φ 34	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	11.5
S1D 36B * 0605	36	φ 36	φ 38	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	13.3
S1D 38B * 0605	38	φ 38	φ 40	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	14.3
S1D 40B * 0605	40	φ 40	φ 42	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	15.3
S1D 48B * 0605	48	φ 48	φ 50	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	20.0
S1D 50B * 0605	50	φ 50	φ 52	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	21.3
S1D 60B * 0605	60	φ 60	φ 62	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	28.6
S1D 64B * 0605	64	φ 64	φ 66	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	31.9
S1D 72B * 0605	72	φ 72	φ 74	B1	6	φ 5	<i>φ</i> 24	8	14	2-M4	4	39.1
S1D 80B * 0605	80	φ 80	φ 82	B1	6	φ 5	φ24	8	14	2-M4	4	47.2

사표 기술	회전속도별 허용전달동력표 휨강도 (단위: W)											
상품 기호	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm					
S1D 17B * 0804	0.83	8.33	16.65	33.27	66.41	99.41	124.07					
S1D 18B * 0804	0.88	8.82	17.63	35.22	70.30	105.22	131.31					
S1D 20B * 0805	0.98	9.80	19.59	39.13	78.07	116.82	145.76					
S1D 24B * 0805	1.18	11.76	23.50	46.93	93.59	139.98	174.60					
S1D 25B * 0805	1.23	12.25	24.48	48.88	97.47	145.76	181.79					
S1D 26B * 0805	1.27	12.74	25.45	50.83	101.34	151.54	188.98					
S1D 30B * 0805	1.47	14.70	29.36	58.62	116.82	174.60	217.65					
S1D 32B * 0605	2.10	20.97	41.90	83.65	166.65	249.01	310.33					
S1D 36B * 0605	2.36	23.59	47.13	94.06	187.30	279.73	347.53					
S1D 38B * 0605	2.49	24.90	49.74	99.26	197.61	295.06	366.00					
S1D 40B * 0605	2.62	26.21	52.36	104.46	207.91	310.33	384.38					
S1D 48B * 0605	3.15	31.44	62.80	125.23	249.01	369.68	457.01					
S1D 50B * 0605	3.28	32.75	65.40	130.42	259.26	384.38	474.95					
S1D 60B * 0605	3.94	39.29	78.44	156.31	310.33	457.01	563.31					
S1D 64B * 0605	4.20	41.92	83.65	166.65	330.21	485.67	597.95					
S1D 72B * 0605	4.72	47.13	94.06	187.30	369.68	542.31	663.79					
S1D 80B * 0605	5.25	52.36	104.46	207.91	408.74	597.95	727.65					

마 이 터 기 어

^{모듈치수} **랙** RK 시리즈 ORK 시리즈

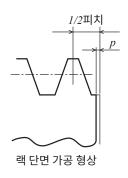
※외관은 이미지입니다.

상품 기호 읽는 방법

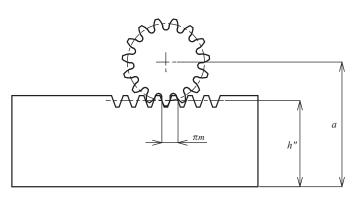
RK 1.5 SD 10 - 16 16

기어 종류	모듈	재질	전장	치폭	높이
RK : 랙	모듈 크기를 표현 . 모듈 1 보다 아래인 경우 표기 숫자는 실제 모듈의 100 배 . 예 : 모듈 0.5 는 "50" 모듈 0.8 은 "80"	SD : S45C SU : 스테인리스 SUS304 B : 황동 C3604B BP : 아세탈 청색 POM	단위: mm 실제 길이는 표기숫자의 100 배 예: 2 → 200mm 3 → 300mm	단위: mm	단위 : mm

ORK 50 SU 2 - 08 15


기어 종류	모듈	재질	전장	치폭	유효 맞물림길이
ORK : 원형 랙	모듈 크기를 표현 . 모듈 1 보다 아래인 경우 표기 숫자는 실제 모듈의 100 배 . 예 : 모듈 0.5 는 "50" 모듈 0.8 은 "80"	SU: 스테인리스 SUS304	단위: mm 실제 길이는 표기숫자의 100 배 예: 2 → 200mm 3 → 300mm	단위 : mm	단위:mm 실제 길이는 표기숫자의 10 배

상품 기호	RK	ORK	RK	RK	RK
형상	AND THE PARTY OF T		AMMANIAN AND AND AND AND AND AND AND AND AND A	A THE STATE OF THE	STATISTICS.
페이지	P. 183	P. 184	P. 184	P. 185	P. 185
재질	S45C	SUS304	SUS304	황동	청색 POM
모듈	m 1 ~ 3	m $0.5 \sim 1$	m $0.5 \sim 1.5$	m $0.3 \sim 0.8$	m $0.5 \sim 1$
열처리	_	_	_	_	_
치부처리	절삭	절삭	절삭	절삭	절삭


랙 인포메이션

양단면 가공 (연결용 피치 맞춤 가공)

랙을 연결하여 사용할 경우 양단면 가공 P 의 잇수로 마감되어 있습니다.

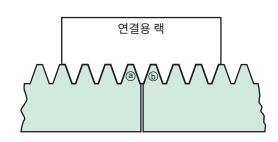
랙의 조립 거리의 계산 방법

$$a = h'' + \frac{m \times z}{2} + xm$$

기호설명:

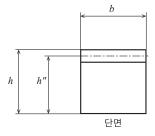
a: 조립 위치 거리(랙 밑면에서 평기어 중심까지의 거리)

h'': 랙의 맞물림 높이


m : 모듈 / 모듈 1 이상

※당사 규격품인 경우

양단면 가공랙 연결법


복수의 랙을 연결하여 사용하는 경우 ⓐ ⓑ 랙 간의 최적 피치 설정에는 오른쪽 그림과 같이 제 3 의 랙으로 피치를 맞추십시오 .

주의 : 당사에서는 연결용 전용 랙은 판매하지 않습니다 .

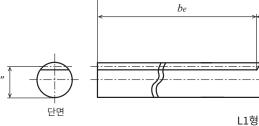
단위 : mm

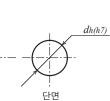
정밀도	재질	압력각	열처리	치면 경도
JIS 규격 없음	S45C	20도	_	_

- ★표면 처리는 하지 않았습니다. <mark>양단면 가공한 랙은 연결 사용할</mark> 수 있습니다.
- ★소재는 인발재이므로 치수 공차가 치폭, 높이 모두 h12~h13급 정도로 마무리되었습니다.
- ★치부 절삭 가공 후 교정을 했으나 소재의 경년 변화로 인해 휨이 발생할 수 있습니다.
- ★치부 고주파 열처리를 할 경우 본 제품의 재료인 인발재는 표면에 탈탄층이 있기 때문에 표면 경도가 올라가지 않을 수 있습니다. 또한 뒤틀림, 휨이 발생하여 피치 변화의 원인이 되므로 주의하십시오.

상대측 기어

S45C 절삭 평기어


있습니다. 또한 뒤틀림, 휨이 발생하여 피치 변화의 원인이 되므로 주의하십시오.								
	모듈	전장	양단면 가공	유효 잇수	맞물림 높이	치폭	높이	중량
상품 기호								
	m	l	p	Z	h"	b	h	W(kg)
RK1SD 3 — 1010		303~306	-	94	9	10	10	0.20
RK1SD 5 — 1010	1	505~508	-	158	9	10	10	0.34
RK1SD 10 — 1015		1021.0	0.1~0.3	325	14	10	15	1.12
RK1.5SD 3 — 1616		303~306	-	62	14.5	16	16	0.53
RK1.5SD 5 — 1216		505~508	-	105	14.5	12	16	0.66
RK1.5SD 5 — 1616	1.5	503~506	-	105	14.5	16	16	0.90
RK1.5SD 10 — 1616	1.5	1008.5	0.1~0.3	214	14.5	16	16	1.84
RK1.5SD 5 — 1620		503~506	-	105	18.5	16	20	1.16
RK1.5SD 16 — 1620		1602.2	0.1~0.3	340	18.5	16	20	3.72
RK2SD 3 — 2020		303~306	-	46	18	20	20	0.90
RK2SD 5 — 2020		503~506	-	78	18	20	20	1.40
RK2SD 5 — 2025		501~506	-	78	23	20	25	1.80
RK2SD 10 — 1420	2	1005.3	0.1~0.3	160	18	14	20	1.95
RK2SD 10 — 2020		1005.3	0.1~0.3	160	18	20	20	2.80
RK2SD 10 — 2025		1005.3	0.1~0.3	160	23	20	25	3.63
RK2SD 16 — 2025		1602.2	0.1~0.3	255	23	20	25	5.80
RK2.5SD 3 — 2525		303~306	-	36	22.5	25	25	1.32
RK2.5SD 5 — 2525	2.5	503~506	-	62	22.5	25	25	2.20
RK2.5SD 10 — 1825	2.5	1005.3	0.1~0.4	128	22.5	18	25	3.13
RK2.5SD 10 — 2525		1005.3	0.1~0.4	128	22.5	25	25	4.40
RK3SD 3 — 3030		300~306	-	30	27	30	30	1.90
RK3SD 5 — 3030	3	503~506	-	52	27	30	30	3.20
RK3SD 10 — 2230	3	1008.5	0.1~0.4	107	27	22	30	4.80
RK3SD 10 — 3030		1008.5	0.1~0.4	107	27	30	30	6.40


ORK, RK 백 (SUS304) 모듈 0.5/0.7

모듈 0.5/0.75/0.8/1/1.5

(보통이)

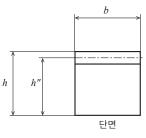
단위:mm

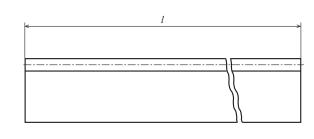
정밀도	재질	압력각	열처리	치면 경도
JIS 규격 없음	SUS304	20도	_	_

★표면 처리는 하지 않았습니다. 양단면 가공은 하지 않았으므로 연결 사용할 수 없습니다.

★소재의 치수공차는 전장 호칭이 200mm인 경우에는 202±1mm; 300mm인 경우에는 305±1mm.

상대측 기어


(lh)



SUS304 평기어

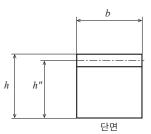
상품 기호	모듈	전장	유효 잇수	유효 맞물림 길이	맞물림 높이	축 직경	자루 길이	중량
	m	l	Z	be	h"	dh(h7)	lh	W(g)
ORK50SU 2 — 0815	0.5	200	95	149	7.5	ø 8	50	78
ORK75SU 2— 0815	0.75	200	63	148	7.25	ø 8	50	76
ORK80SU 2 — 0815	0.8	200	59	148	7.2	ø 8	50	76
ORK1SU 3 — 1024	1	300	76	238	9	φ10	60	177

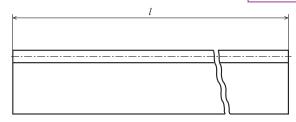
단위 : mm

정밀도	재질	압력각	열처리	치면 경도
JIS 규격 없음	SUS304	20도	-	1

- ★표면 처리는 하지 않았습니다. 양단면 가공한 랙은 연결 사용할 수 있습니다.
- ★전장: 양단면 가공을 한 것은 이론치로부터 0.06~0.5mm 마이너스입니다.
- ★소재는 인발재이므로 치수 공차가 치폭, 높이 모두 h12~h13급 정도로 마무리되었습니다.
- ★치부 절삭 가공 후 교정을 했으나 소재의 경년 변화로 인해 휨이 발생할 수 있습니다.

상대측 기어


SUS304 평기어


★시무 실작 가공 후 교정을 했으나 소재의 경년 면와로 인해 휨이 발생발 수 있습니다.								
상품 기호	모듈	전장	양단면 가공	유효 잇수	맞물림 높이	치폭	높이	중량
	m	l	p	Z	h"	b	h	W(g)
RK50SU 2 — 0310		202~205	-	126	9.5	3	10	45
RK50SU 2 — 0808	0.5	202~205	-	126	7.5	8	8	95
RK50SU 5 — 0810		505~508	-	319	9.5	8	10	300
RK75SU 2 — 0310		202~205	-	83	9.25	3	10	44
RK75SU 2 — 0808	0.75	202~205	-	83	7.25	8	8	91
RK75SU 5 — 0810		505~508	-	212	9.25	8	10	295
RK80SU 2 — 0707		202~205	-	78	6.2	7	7	70
RK80SU 5 — 0510	0.8	505~508	-	198	9.2	5	10	183
RK80SU 5 — 0710		505~508	-	198	9.2	7	10	256
RK1SU 3 — 1010		303~306	-	94	9	10	10	210
RK1SU 5 — 0810	1	505~508	-	158	9	8	10	280
RK1SU 5 — 1010		505~508	-	158	9	10	10	360
RK1.5SU 3 — 1616		303~306	-	62	14.5	16	16	0.55(kg)
RK1.5SU 5 — 1616	1.5	503~506	-	105	14.5	16	16	0.92(kg)
RK1.5SU 10 - 1616		1008.5	0.1~0.3	214	14.5	16	16	1.83(kg)

목 차

단위:mm

정밀도	재질	압력각	열처리	치면 경도
JIS 규격 없음	C3604B	20도	_	_

★표면 처리는 하지 않았습니다. 양단면 가공은 하지 않았으므로 연결 사용할 수 없습니다.

★소재의 전장(200mm 및 505mm)의 치수공차는 0~+3mm입니다.

-	l	
))

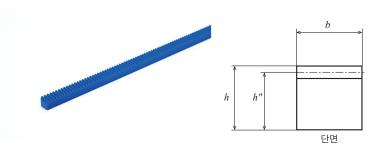
상대측 기어

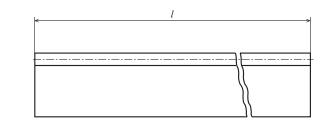
금속제 평기어

	모듈	전장	유효 잇수	맞물림 높이	치폭	높이	중량
상품 기호				h"			
	m	l	Z		b(h11)	h(h11)	W(g)
RK30B 2 — 0308	0.3	200	210	7.7	3	8	38
RK50B 2 — 0308		200	125	7.5	3	8	37
RK50B 2 — 0808	0.5	200	125	7.5	8	8	98
RK50B 5 — 0810		505	319	9.5	8	10	313
RK75B 2 — 0308		200	82	7.25	3	8	35
RK75B 2 — 0808	0.75	200	82	7.25	8	8	95
RK75B 5 — 0310	0.75	505	212	9.25	3	10	115
RK75B 5 — 0810		505	212	9.25	8	10	307
RK80B 2 — 0707		200	77	6.2	7	7	70
RK80B 5 — 0510	0.8	505	198	9.2	5	10	191
RK80B 5 — 0710		505	198	9.2	7	10	268

RK

랙 (청색 POM)


모듈 0.5/0.8/1


(보통이)

헬리컬 스크류 기어

기어

웜 , 웜 휠

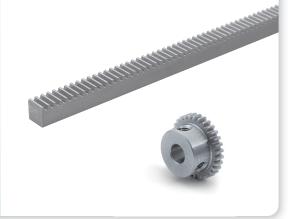
단위: mm

정밀도	재질	압력각	열처리	치면 경도
JIS 규격 없음	청색 POM	20도	_	_

- ★양단면 가공은 하지 않았으므로 연결 사용할 수 없습니다.
- ★휨 조정 부탁: 치부 절삭 가공 후 교정을 했으나 소재의 경년 변화나 온도 변화로 인해 휨이 발생할 수 있습니다. 부착 시에는 휨을 조정하여 사용하십시오.
- ★청색 POM 소재 특성상 경년 변화, 온도 변화 등에 의해 치수 변화가 발생합니다.

상대측	기어

SG, SGR, 청색 POM 평


폴리아세탈 간의 기어 맞물림은 폴리아세탈과 금속의 기어의 맞물림보 다 약 75%의 강도입니다.

폴리아세탈과 맞물리는 금속 평기어는 치면 연마 제품을 추천합니다.

★청색 POM의 상세 내용은 22페이지를 참조하십시.

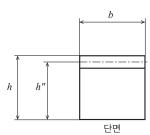
70 F 10 F										
상품 기호	모듈	전장	유효 잇수	맞물림 높이	치폭	높이	중량			
	m	l	z	h"	b	h	W(g)			
RK50BP 2 — 0510	0.5	202~205	126	9.5	5	10	13.4			
RK80BP 2 — 0510	0.8	202~205	78	9.2	5	10	13.0			
RK80BP 5 — 0510	0.0	505~508	198	9.2	5	10	32.6			
RK1BP 3 — 1010		303~306	94	9	10	10	38.2			
RK1BP 5 — 1010	1	502~506	158	9	10	10	63.7			
RK1BP 5 — 1012		502~506	158	11	10	12	77.9			

서큘러 피치 치수 **CP 랙** RKP 시리즈 **CP 피니언** SP 시리즈

※외관은 이미지입니다.

상품 기호 읽는 방법

RKP 5 SD 5 - 16 16


기어 종류	피치	재질	전장	치폭	높이
RKP: CP 랙 (서큘러 피치)	이웃하고 있는 이와 이의 원주 피치의 크기를 표현 5 가 표기수치일 경우 원주피치는 5mm 입니다 .	B : 쾌삭황동 C3604B SD: S45C	단위: mm 실제길이는 이 숫자의 100 배. 예: 2 → 200mm 3 → 300mm	단위 : mm	단위 : mm


SP 5 S - 15

기어 종류	피치	재질	구멍가공	잇수
SP: CP 피니언 평기어 (서큘러 피치)	이웃하고 있는 이와 이의 원주 피치의 크기를 표현 5 가 표기수치일 경우 원주피치는 5mm 입니다 . 이때 1 주 회전시의 기어 중심 이동 거리는 5 mm ×잇수입니다	S: S45C	구멍 절삭 가공 【一】: 나사구멍 없음 , 키 홈 없음 【*】: 나사구멍 2 개 있음	예 : 잇수가 15 개 일 경우 " 15 " 로 표기

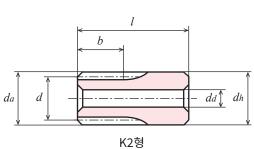
CP 랙				
상품기호	RKP	SP	RKP	SP
형상	······································		WHITH THE	A STATE OF THE STA
페이지	P. 188	P. 188	P. 189	P. 189
재질	황동	S45C	S45C	S45C
피치	CP2	CP2	CP5 • 10	CP5 • 10
열처리	_	_	_	_
치부 처리	절삭	절삭	절삭	절삭

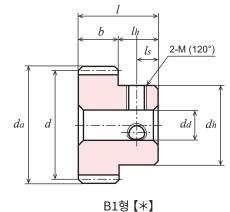
단위 : mm

정밀도	재질	압력각	열처리	치면 경도
JIS 규격 없음	C3604B	20도	_	_

- ★표면 처리는 하지 않았습니다. 양단면 가공은 하지 않았으므로 연결 사용할 수 없습니다.
- ★소재의 전장(200mm 및 505mm)의 치수공차는 0~+3mm입니다.
- ★기어 이 크기 기준이 서큘러 피치(CP)이기 때문에 모듈 크기 기어와 맞지 않습니다.
- ★상대 피니언은 KG의 SP 시리즈의 CP 랙 전용 피니언에서 선택하십시오.
- ★랙의 조립 거리 계산 방법 및 기타 설명은 뒤페지의 랙 인포메이션을 참조하십시오.

상품 기호	피치	전장	유효 잇수	맞물림 높이	치폭	높이	중량
	ср	l	Z	h"	b(h11)	h(h11)	W(g)
RKP2B 2 — 0308	2	200	98	7.36	3	8	35.8
RKP2B 5 — 0310	2	505	248	9.36	3	10	113.7


SP

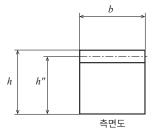

CP 피니언 (S45C)

피치 2(모듈 0.6366)

(보통이)

단위:mm

정밀도	재질	압력각	열처리	치면 경도
JIS B 1702-1 N8급	S45C	20도	_	_


- ★표면 처리는 하지 않았습니다. 【*】 나사구멍이 2곳, 세트 스크류가 2개 포함되어 있습니다.
- ★기어 이 크기 기준이 서큘러 피치(CP)이기 때문에 모듈 크기 기어의 랙과 맞지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★상대 랙은 KG의 RKP 시리즈의 CP 랙에서 선택하십시오.

상품 기회	,	피치	잇수	기준원 직경	이끝원 직경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	1회전 거리	중량
	ср	z	d	da		b	dd(H7)	dh	lh	l	2-M(120°)	ls	주)	W(g)	
SP2S —	15		15	φ 9.55	φ 10.82	K2	5	φ4(H8)	φ10.82	10	15	-	-	30	8.54
SP2S —	20		20	φ12.73	φ 14.01	B1	3	ø 5	φ 10	7	10	-	-	40	5.78
SP2S *	20	2	20	φ12.73	φ 14.01	B1	3	ø 5	φ 10	7	10	2-M3	3.5	40	5.55
SP2S —	25		25	φ15.92	φ 17.19	B1	3	ø 6	φ12	7	10	-	-	50	8.67
SP2S —	SP2S — 30		30	φ19.10	φ 20.37	B1	3	ø 6	ø 15	7	10	-	-	60	14.2
SP2S * 1	30		30	φ19.10	φ 20.37	B1	3	φ 6	φ 15	7	10	2-M4	3.5	60	13.5

상품 기호		회전속도별 허용전달동력표 휨강도(단위: W)								
영품 기오	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm			
SP2S — 15	0.88	8.78	17.55	35.10	70.21	105.31	131.64			
SP2S — 20	0.83	8.25	16.50	33.00	66.01	99.01	117.89			
SP2S — 25	1.14	11.36	22.71	45.43	90.86	131.38	154.87			
SP2S — 30	1.46	14.56	29.12	58.25	116.49	162.56	189.99			

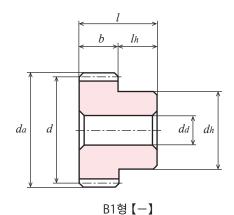
	회전속도별 허용전달동력표 치면강도(단위: W)												
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm							
0.03	0.29	0.59	1.21	2.42	3.63	4.54							
0.03	0.33	0.66	1.32	2.63	3.95	4.81							
0.05	0.53	1.05	2.10	4.27	6.19	7.34							
0.08	0.77	1.55	3.10	6.27	8.76	10.41							

<u>단위 : mm</u>

정밀도	재질	압력각	열처리	치면 경도	
JIS 규격 없음	S45C	20도	_	_	

- ★표면 처리는 하지 않았습니다.양단면 가공한 랙은 연결 사용할 수 있습니다.(예:1000mm치수)
- ★랙 이형 크기 기준이 서큘러 피치(CP)이기 때문에 모듈 크기 기어와 맞지 않습니다.
- ★상대 피니언은 KG의 SP 시리즈의 CP 랙 전용 피니언에서 선택하십시오.
- ★랙의 조립 거리 계산 방법 및 기타 설명은 뒤페지의 랙 인포메이션을 참조하십시오.
- ★소재는 인발재이므로 치수 공차가 치폭, 높이 모두 h12~h13급 정도로 마무리되었습니다.

상품 기호	피치	전장	양단면 가 공	유효 잇수	맞물림 높 이	치폭	높이	중량
	ср	l	p	Z	h"	b	h	W(kg)
RKP5SD 5 — 1616		503~506	-	98	14.41	16	16	0.92
RKP5SD 10 — 1616	3	1,000	0.1~0.3	200	14.41	16	16	1.80
RKP10SD 10 — 3030	10	1,000	0.1~0.4	100	26.82	30	30	6.32


SP

CP 피니언 (S45C)

피치 5(모듈 1.5915) /10(모듈 3.1831)

(보통이)

단위 : mm

	정밀도	재질	압력각	열처리	치면 경도
Г	JIS B 1702-1 N8급	S45C	20도	_	_

- ★표면 처리는 하지 않았습니다.
- ★기어의 이형 크기 기준이 서큘러 피치(CP)이기 때문에 모듈 크기 기어의 랙과 맞지 않습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★상대 랙은 KG의 RKP 시리즈의 CP 랙에서 선택하십시오

상품 기호	피치	잇수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	1회전 거리	중량
	ср	z	d	da		b	dd(H7)	dh	lh	l	注)	W(g)
SP5S — 15		15	φ23.87	φ 27.06	B1	16	ø 8	φ18	10	26	75	65.9
SP5S — 20	5	20	φ31.83	φ 35.01	B1	16	φ10	φ 25	10	26	100	122.4
SP5S — 24		24	φ38.20	φ 41.38	B1	16	φ 10	ø 25	10	26	120	166.3
SP10S — 20	10	20	φ63.66	φ 70.03	B1	30	ø 18	φ50	15	45	200	0.89(kg)
SP10S — 30	10	30	φ95.49	φ101.86	B1	30	ø 18	φ60	15	45	300	1.93(kg)

상품 기호		회견	전속도별 허	용전달동력표	· 휨강도(회전속도별 허용전달동력표 휨강도 (단위: W)											
0 급 기포	10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm										
SP5S — 15	17.55	175.51	351.03	702.06	1353.35	1861.80	2149.14										
SP5S — 20	27.51	275.13	550.27	1048.12	2000.97	2695.23	3134.46										
SP5S — 24	35.75	357.55	715.09	1312.09	2487.24	3300.42	3972.78										
SP10S — 20	206.4	2063.5	3751.8	6603.2	12537.7	17687.1	21265.0										
SP10S — 30	364.1	3509.2	5944.2	10787.6	20804.7	29453.5	36408.2										

회전속도별 허용전달동력표 치면강도(단위: W)												
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm						
0.65	6.55	13.21	26.63	51.62	71.99	84.51						
1.20	12.03	24.28	46.78	89.93	123.79	147.26						
1.76	17.69	35.76	66.51	127.17	173.46	213.09						
9.67	97.83	181.2	327.2	632.5	932.7	1169.8						
22.78	223.3	389.8	732.0	1458.7	2192.2	2850.5						

인 포 메 이 션

> 기 어 박 스

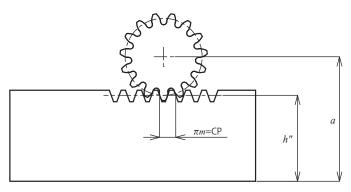
노백래시 기어

기어

크류기어

마 이 터 기 어

> 베 벨 기 어


웜, 웜 휠

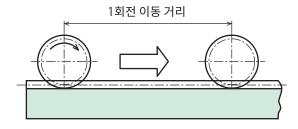
참 고 자 료

서큘러피치 CP 랙 인포메이션

랙의 조립 거리의 계산 방법

원주 피치를 기준으로 한 기어는 원주 피치 : 원주율에 따라 모듈 크기로 환산할 수 있습니다.

$$a = h'' + \frac{m \times z}{2} + xn$$

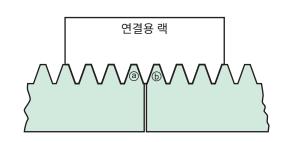

기호설명:

a : 조립 위치 거리(랙 밑면에서 평기어 중심까지의 거리)

h'': 랙의 맞물림 높이

 m
 : 모듈

 z
 : 잇수



주) 1회전 이동 거리…피니언이 랙 위에서 1회전했을 때 중심이 이동하는 거리입니다.

양단면 가공랙 연결법

복수의 랙을 연결하여 사용하는 경우 @ ⓑ 랙 간의 최적 피치 설정에는 오른쪽 그림과 같이 제 3 의 랙으로 피치를 맞추십시오.

주의 : 당사에서는 연결용 전용 랙은 판매하지 않습니다.

헬리컬 기어

H 시리즈

※외관은 이미지 입니다.

상품 기호 읽는 방법

H 1 S 13 R - B

기어 종류	모듈	재질	잇수	잇줄 형상	구멍가공	형상
H: 헬리컬 기어		S : S45C SU : 스테인리스 SUS304 BP : 아세탈 청색 POM D : 아세탈 백색 POM	예: 잇수 13 는 "13" 으로 표기.	R: 오른쪽 나선 L: 왼쪽 나선	절삭 가공 【一】: 나사 구멍 없음, 키 홈 없음 【*】: 나사 구멍 2 개 있음	B: 한쪽 허브

상품기호	Н	Н	Н	Н
형상		All a		and the second
페이지	P. 194	P. 196	P. 198	P. 202
재질	S45C	SUS304	청색POM	백색POM
모듈	m 1~3	m 1~1.5	m 1~3	m 1~1.5
정밀도 등급	JIS N9급	JIS N9급	JIS N9~10급 **	JIS N9~10급 *
치부처리	절삭, 치부 고주파 열처리	절삭	절삭	절삭

※제작시의 정밀도 입니다.

헬리컬 기어 인포메이션

1. 조립상의 주의점

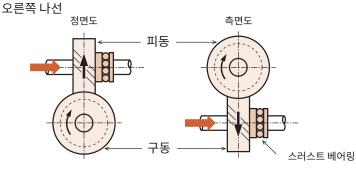
1) 축각에 대하여:

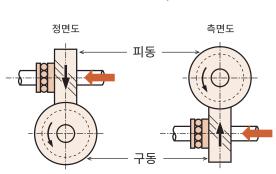
축의 각도에 따라 조합하는 기어의 나선 방향이 달라집니다.

• 90° 엇갈림축 : 동일 나선 방향인 것을 조합 • 평행축 : 다른 나선 방향인 것을 조합

이상적인 맞물림을 위해 각각의 헬리컬 기어의 축 각도는 가능한 한 정확하게 장착하십시오.

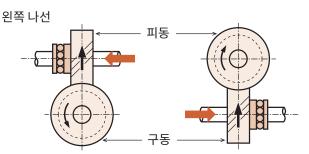
평행축의 경우 감합률이 높아 저소음, 고강도를 기대할 수 있습니다.

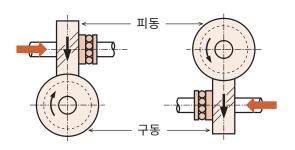

2) 헬리컬 기어의 스러스트 하중에 대해서:

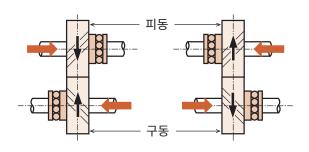

헬리컬 기어는 평기어에 비해 맞물림이 매끈해지지만 잇줄이 나선으로 되어 있어 축 방향의 스러스트가 생기는 결점이 있습니다 . 따라서축 방향 스러스트를 충분히 지탱할 수 있도록 베어링 설계하십시오 .

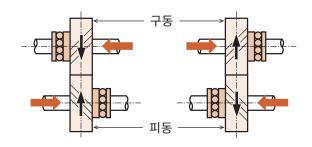
당사 이외의 상품과 조합하여 사용할 경우 문제가 발생할 우려가 있습니다 . 규격품 이외의 사양으로 설계하실 때는 당사에 상담해 주십시오 .

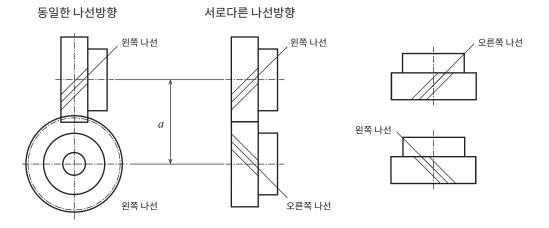
2. 헬리컬 기어의 축 방향에 걸리는 스러스트


90° 엇갈림축의 경우 : 동일한 나선 방향의 조합




회전 방향


스러스트 방향

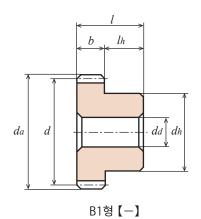


평행축의 경우: 다른 나선 방향의 조합

3.나선 방향과 헬리컬기어 장착

단위:mm

정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1702-1 N9급	S45C	20도	45도	기어 고주파	HRC47~53	표 참조


- ★표면처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★조립 방법 및 허용 전달 동력: 평행축으로 조립하는 경우 허용전달동력표를 확인하십시오. 이때의 치면은 면접촉입니다. 엇갈림축(교차하거나 평행하지 않는 축) 조립의 경우에는 평행축에 비해 허용 전달 동력이 크게 떨어집니다. 이때의 치면은 점접촉입니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. 백래시는 원주 방향 백래시입니다.

상품 기호	나선 방향	모듈	잇수	기준원 직 경	이끝원 직 경	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
<u> </u>		m	z	d	da	b	dd(H8)	dh	lh	l	W(kg)
H1S 13R — B	R	1	13	φ 18.38	φ 20.4	12	ø 8	φ 15	10	22	0.03
H1S 13L — B	L	1	13	φ 18.38	φ 20.4	12	ø 8	φ 15	10	22	0.03
H1S 26R — B	R	1	26	φ 36.77	φ 38.8	12	φ 10	φ 32	10	22	0.15
H1S 26L — B	L	1	26	φ 36.77	φ 38.8	12	φ 10	φ32	10	22	0.15
H1.5S 13R — B	R	1.5	13	φ 27.58	φ 30.6	15	φ 10	φ 23	10	25	0.09
H1.5S 13L — B	L	1.5	13	φ 27.58	φ 30.6	15	φ 10	φ 23	10	25	0.09
H1.5S 26R — B	R	1.5	26	φ 55.15	φ 58.2	15	φ12	 4 0	10	25	0.36
H1.5S 26L — B	L	1.5	26	φ 55.15	φ 58.2	15	φ12	 4 0	10	25	0.36
H2S 13R — B	R	2	13	φ 36.77	φ 40.8	20	φ12	ø 30	13	33	0.21
H2S 13L — B	L	2	13	φ 36.77	φ 40.8	20	φ12	ø 30	13	33	0.21
H2S 26R — B	R	2	26	φ 73.54	φ 77.5	20	ø 16	φ 55	13	33	0.86
H2S 26L — B	L	2	26	φ 73.54	φ 77.5	20	ø 16	φ 55	13	33	0.86
H2.5S 13R — B	R	2.5	13	φ 45.96	φ 50.9	22	φ14	ø 38	14	36	0.37
H2.5S 13L — B	L	2.5	13	φ 45.96	φ 50.9	22	φ14	ø 38	14	36	0.37
H2.5S 26R — B	R	2.5	26	φ 91.92	φ 96.9	22	ø 18	φ 63	14	36	1.41
H3S 13R — B	R	3	13	φ 55.15	φ 61.2	25	ø 16	φ44	15	40	0.58
H3S 26L — B	L	3	26	φ110.31	φ116.3	25	φ 22	φ 70	15	40	2.21

(보통이)

회전	선속도별 허	용전달동력	력표(평행력	북) 휨강	도(단위: I	kW)	회전	속도별 허용	용전달동력	표(평행축)) 치면경	강도(단위	: kW)	평행축 백래시	
10 rpm	100 rpm	200 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	10 rpm	100 rpm	200 rpm	400 rpm	800 rpm	1,200 rpm	1,500 rpm	(단위: mm)	상품 기호
0.009	0.09	0.19	0.38	0.77	1.13	1.36	0.003	0.03	0.07	0.14	0.28	0.42	0.51	0.04~0.10	H1S 13R — B
0.009	0.00	0.15	0.50	0.77	1.13	1.50	0.003	0.03	0.07	0.14	0.20	0.42	0.51	0.04 0.10	H1S 13L — B
0.022	0.22	0.45	0.90	1.67	2.26	2.64	0.015	0.15	0.31	0.64	1.20	1.65	1.95	0.04~0.10	H1S 26R — B
0.022	0.22	0.43	0.90	1.07	2.20	2.04	0.013	0.15	0.51	0.04	1.20	1.03	1.93	0.04**0.10	H1S 26L — B
0.027	0.27	0.54	1.08	2.12	2.94	3.47	0.010	0.10	0.20	0.41	0.81	1.14	1.36	0.06~0.15	H1.5S 13R — B
0.027	0.27	0.54	1.00	2.12	2.54	3.47	0.010	0.10	0.20	0.41	0.01	1.14	1.50	0.00~0.13	H1.5S 13L — B
0.063	0.63	1.27	2.48	4.25	5.76	6.98	0.045	0.45	0.91	1.81	3.16	4.37	5.35	0.06~0.15	H1.5S 26R — B
0.003	0.03	1.27	2.40	7.23	3.70	0.90	0.043	0.43	0.91	1.01	5.10	7.57	5.55	0.000.15	H1.5S 26L — B
0.06	0.64	1.29	2.58	4.77	6.47	7.54	0.02	0.24	0.49	0.99	1.87	2.57	3.03	0.08~0.20	H2S 13R — B
0.00	0.04	1.23	2.50	7.77	0.47	7.54	0.02	0.24	0.49	0.55	1.07	2.57	5.05	0.00**0.20	H2S 13L — B
0.15	1.50	2.99	5.53	9.17	12.99	15.73	0.11	1.07	2.16	4.06	6.91	9.98	12.23	0.08~0.20	H2S 26R — B
0.13	1.50	2.99	5.55	9.17	12.55	13.73	0.11	1.07	2.10	4.00	0.91	9.90	12.23	0.00**0.20	H2S 26L — B
0.11	1.10	2.21	4.41	7.75	10.31	12.43	0.04	0.52	0.85	1.71	3.06	4.14	5.04	0.10~0.25	H2.5S 13R — B
0.11	1.10	2,21	7.71	7.73	10.51	12.43	0.04	0.52	0.03	1.7 1	3.00	7.17	5.04	0.100.23	H2.5S 13L — B
0.26	2.57	5.15	9.04	15.34	21.67	26.20	0.19	1.87	3.79	6.78	11.83	17.08	20.92	0.10~0.25	H2.5S 26R — B
0.18	1.82	3.63	7.10	12.14	16.47	19.93	0.07	0.71	1.42	2.82	4.92	6.79	8.31	0.12~0.30	H3S 13R — B
0.42	4.22	8.24	14.10	24.43	34.56	42.17	0.31	3.11	6.15	10.75	19.22	27.82	34.40	0.12~0.30	H3S 26L — B

인포메 이션

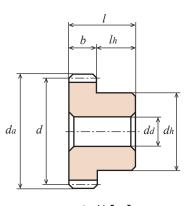
목 차

베 벨 기 어

단위 : mm

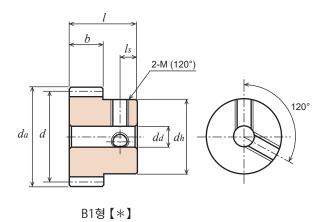
정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1702-1 N9급	SUS304	20도	45도	-	_	표 참조

- ★표면처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★조립 방법 및 허용 전달 동력: 평행축으로 조립하는 경우 허용전달동력표를 확인하십시오. 이때의 치면은 면접촉입니다.


엇갈림축(교차하거나 평행하지 않는 축) 조립의 경우에는 평행축에 비해 허용 전달 동력이 크게 떨어집니다. 이때의 치면은 점접촉입니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. 백래시는 원주 방향 백래시입니다.

상품 기호	나선 방향	모듈	잇수	기준원 직 경	이끝원 직 경	치폭	구멍 직경	허브 외경	허브 길이	전장	중량	
		m	z	d	da	b	dd(H8)	dh	lh	l	W(g)	
H1SU 13R — B	R	1	13	φ18.38	φ20.4	12	ø 8	φ 15	10	22	30.5	
H1SU 13L — B	L	1	13	φ18.38	φ20.4	12	φ 8	φ15	10	22	30.5	
H1SU 26R— B	R	1	26	φ36.77	φ38.8	12	φ 10	φ32	10	22	151.1	
H1.5SU 13R — B	R	1.5	13	φ27.58	φ30.6	15	φ 10	φ23	10	25	88.4	
H1.5SU 26R — B	R	1.5	26	φ55.15	φ58.2	15	φ 12	φ40	10	25	361.4	

【*】는 나사 구멍을 2곳 가공한 상품입니다. 세트 스크류는 포함되어 있지 않습니다.

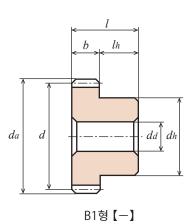

상품 기호	나선 방향	모듈	잇수	기준원 직 경	이끝원 직 경	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
		m	Z	d	da	b	dd(H8)	dh	lh	l	2-M(120°)	ls	W(g)
H1.5SU 13R * B	R	1.5	13	φ27.58	φ30.6	15	φ10	φ 23	10	25	2-M4	5	87.4

베 벨 기 어

B1형【一】

	회전속!	도별 허용전달	동력표(평행축) 휨강도(단	단위: W)		평행축 백래시	상품 기호
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	(단위: mm)	응품 기호
4.07	40.68	81.36	162.73	325.46	477.08	572.13	0.06~0.12	H1SU 13R — B
4.07	40.00	01.30	102.73	323.40	4/7.00	3/2.13	0.00~0.12	H1SU 13L — B
9.50	95.02	190.03	380.06	703.15	952.90	1,110.70	0.06~0.12	H1SU 26R – B
11.44	114.42	228.83	457.67	894.52	1,237.04	1,460.79	0.09~0.18	H1.5SU 13R — B
26.72	267.23	534.46	1,044.61	1,786.69	2,423.37	2,933.19	0.09~0.18	H1.5SU 26R — B

	회전속!	도별 허용전달	평행축 백래시	상품 기호				
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	(단위: mm)) 경품기호
11.44	114.42	228.83	457.67	894.52	1,237.04	1,460.79	0.09~0.18	H1.5SU 13R * B


단위 : mm

정밀도②	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1702-1 N9~N10급	청색 POM	20도	45도	_	_	표 참조

- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★조립 방법 및 허용 전달 동력: 엇갈림축(교차하거나 평행하지 않는 축)으로 조립하는 경우의 허용전달동력표입니다. 이때의 치면은 점접촉입니다.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. 백래시는 원주 방향 백래시입니다.

②제작 시의	정밀도입니다.
--------	---------

NT 기수	나선 방향	모듈	잇수	기준원 직 경	이끝원 직 경	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
상품 기호		m	z	d d	da	b	dd	dh	lh	l	W(g)
H1BP 10R — B	R	1	10	φ14.14	φ16.1	12	φ 4	φ10	10	22	3.4
H1BP 10L — B	L	1	10	φ14.14	φ16.1	12	φ 4	φ 10	10	22	3.4
H1BP 13R — B	R	1	13	φ18.38	φ20.4	12	φ 5	φ14	10	22	6.0
H1BP 13L — B	L	1	13	φ18.38	φ20.4	12	ø 5	φ14	10	22	6.0
H1BP 15R — B	R	1	15	φ21.21	φ23.2	12	ø 6	ø 15	10	22	7.6
H1BP 15L — B	L	1	15	φ21.21	φ23.2	12	ø 6	ø 15	10	22	7.6
H1BP 20R — B	R	1	20	φ28.28	φ30.3	12	φ 6	φ 22	10	22	15.1
H1BP 20L — B	L	1	20	φ28.28	φ30.3	12	ø 6	φ 22	10	22	15.1
H1BP 26R — B	R	1	26	φ36.77	φ38.8	12	ø 8	φ 32	10	22	27.7
H1BP 26L — B	L	1	26	φ36.77	φ38.8	12	φ 8	φ32	10	22	27.7
H1.5BP 10R — B	R	1.5	10	φ21.21	φ24.2	15	φ 6	ø 16	10	25	9.3
H1.5BP 10L — B	L	1.5	10	φ21.21	φ24.2	15	φ 6	ø 16	10	25	9.3
H1.5BP 13R — B	R	1.5	13	φ27.58	φ30.6	15	φ 8	φ 23	10	25	16.6
H1.5BP 13L — B	L	1.5	13	φ27.58	φ30.6	15	φ 8	φ 23	10	25	16.6
H1.5BP 15R — B	R	1.5	15	φ31.82	φ34.8	15	ø 8	\$\phi 25	10	25	22.0
H1.5BP 15L — B	L	1.5	15	φ31.82	φ34.8	15	φ 8	\$ 25	10	25	22.0
H1.5BP 20R — B	R	1.5	20	φ42.43	ϕ 45.4	15	φ 10	ø 30	10	25	37.1
H1.5BP 20L — B	L	1.5	20	φ42.43	ϕ 45.4	15	φ 10	ø 30	10	25	37.1
H1.5BP 26R — B	R	1.5	26	φ55.15	φ58.2	15	φ 10	φ40	10	25	65.5
H1.5BP 26L — B	L	1.5	26	φ55.15	φ58.2	15	φ 10	φ40	10	25	65.5
H2BP 10R — B	R	2	10	φ28.28	φ32.3	20	φ 10	φ 22	15	35	21.9
H2BP 10L — B	L	2	10	φ28.28	φ32.3	20	φ 10	φ 22	15	35	21.9
H2BP 13R — B	R	2	13	φ36.77	φ40.8	20	φ 10	ø 30	15	35	41.0
H2BP 13L — B	L	2	13	φ36.77	φ40.8	20	φ 10	φ 30	15	35	41.0
H2BP 15R — B	R	2	15	φ42.43	φ46.4	20	φ 10	ø 35	15	35	56.3
H2BP 15L — B	L	2	15	φ42.43	φ46.4	20	φ 10	ø 35	15	35	56.3
H2BP 20R — B	R	2	20	φ56.57	φ60.6	20	φ12	ø 45	15	35	98.9
H2BP 20L — B	L	2	20	φ56.57	φ60.6	20	φ 12	ø 45	15	35	98.9
H2BP 26R — B	R	2	26	φ73.54	φ77.5	20	φ 12	φ 55	15	35	164.4
H2BP 26L — B	L	2	26	φ73.54	φ 77.5	20	φ 12	ø 55	15	35	164.4

	회전속도빌	별 허용전달동력	벽표 (엇갈림축) 치면강도	- -(단위: W)		평행축 백래시	NT 214
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	(단위: mm)	상품 기호
0.06	0.51	1.03	2.05	3.29	3.70	4.62	0.06~0.12	H1BP 10R — B
								H1BP 10L — B H1BP 13R — B
0.13	1.23	2.47	4.11	6.57	8.63	9.24	0.06~0.12	H1BP 13L — B
0.21	1.05	2.70	C 1 C	0.06	12.22	12.06	0.06, 0.12	H1BP 15R — B
0.21	1.95	3.70	6.16	9.86	12.32	13.86	0.06~0.12	H1BP 15L — B
0.50	4.62	8.42	14.38	22.18	27.11	29.27	0.06~0.12	H1BP 20R — B
								H1BP 20L — B H1BP 26R — B
1.10	9.86	17.46	28.75	42.72	50.52	53.91	0.06~0.12	H1BP 26L — B
0.21	1.05	2.70	C 1C	0.06	12.22	12.06	0.09~0.18	H1.5BP 10R — B
0.21	1.95	3.70	6.16	9.86	12.32	13.86	0.09~0.18	H1.5BP 10L — B
0.46	4.11	7.80	13.14	20.54	24.65	27.73	0.09~0.18	H1.5BP 13R — B
								H1.5BP 13L — B H1.5BP 15R — B
0.72	6.47	11.71	19.72	29.58	35.74	38.51	0.09~0.18	H1.5BP 15L — B
				40.70				H1.5BP 20R — B
1.69	14.89	26.08	42.31	60.79	71.47	77.02	0.09~0.18	H1.5BP 20L — B
3.71	31.42	53.81	83.39	115.01	130.62	138.63	0.09~0.18	H1.5BP 26R — B
								H1.5BP 26L — B
0.50	4.62	8.42	14.38	22.18	27.11	29.27	0.12~0.24	H2BP 10R — B H2BP 10L — B
								H2BP 13R — B
1.10	9.86	17.46	28.75	42.72	50.52	53.91	0.12~0.24	H2BP 13L — B
1.69	14.89	26.08	42.31	60.79	71.47	77.02	0.12~0.24	H2BP 15R — B
1.09	17.02	20.00	72.31	00.79	/ 1.7/	77.02	0.12 -0.27	H2BP 15L — B
4.00	33.79	57.51	88.73	121.59	139.25	147.87	0.12~0.24	H2BP 20R — B
								H2BP 20L — B H2BP 26R — B
8.74	70.55	116.25	171.70	225.92	251.39	264.94	0.12~0.24	H2BP 26L — B
						<u> </u>		

기 어 박 스

평 기 어

베 벨 기 어

마 이 터 기 어

에 , 에 <u>헤</u>

H3BP 15R - B

H3BP 15L - B

H3BP 20R - B

H3BP 20L - B

H3BP 26R - B

H3BP 26L - B

베벨 기어

헬리컬 기어 (청색 POM)

치직각 모듈 2.5/3 (보통이)

구멍

전장

단위: mm

정밀도②	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1702-1 N9~N10급	청색 POM	20도	45도	_	_	표 참조

잇수

★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.

모듈

★조립 방법 및 허용 전달 동력: 엇갈림축(교차하거나 평행하지 않는 축)으로 조립하는 경우의 허용전달동력표입니다. 이때의 치면은 점접촉입니다.

기준원

이끝원

- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. 백래시는 원주 방향 백래시입니다. ②제작 시의 정밀도입니다.

나선 방향

R

L

R

R

L

3

3

3

3

3

3

15

15

20

20

26

26

φ 63.64

 ϕ 63.64

φ 84.85

 ϕ 84.85

φ110.31

φ110.31

φ 69.6

φ 69.6

φ 90.9

 ϕ 90.9

φ116.3

φ116.3

25

25

25

25

25

25

 ϕ 15

 ϕ 15

φ15

 ϕ 15

φ18

φ18

φ50

 ϕ 50

φ60

φ60

φ80

φ80

18

18

18

18

18

18

43

43

43

43

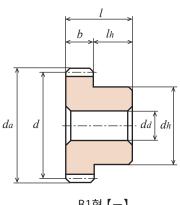
43

43

151.2

151.2

260.3


260.3

449.0

449.0

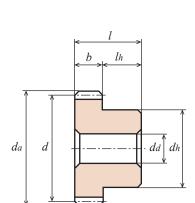
상품 기호		_		직 경	직 경		직경	외경	길이		
		m	z	d	da	b	dd	dh	lh	l	W(g)
H2.5BP 10R — B	R	2.5	10	φ 35.36	φ 40.4	22	φ10	ø 26	16	38	38.2
H2.5BP 10L — B	L	2.5	10	φ 35.36	φ 40.4	22	φ10	φ 26	16	38	38.2
H2.5BP 13R — B	R	2.5	13	φ 45.96	φ 50.9	22	φ12	ø 38	16	38	71.0
H2.5BP 13L — B	L	2.5	13	φ 45.96	φ 50.9	22	φ12	ø 38	16	38	71.0
H2.5BP 15R — B	R	2.5	15	φ 53.03	φ 58.0	22	φ12	 \$40	16	38	90.8
H2.5BP 15L — B	L	2.5	15	φ 53.03	φ 58.0	22	φ12	 \$\phi 40\$	16	38	90.8
H2.5BP 20R — B	R	2.5	20	φ 70.71	φ 75.7	22	φ12	 \$60	16	38	179.5
H2.5BP 20L — B	L	2.5	20	φ 70.71	φ 75.7	22	φ12	 \$60	16	38	179.5
H2.5BP 26R — B	R	2.5	26	φ 91.92	φ 96.9	22	ø 16	 <i>ϕ</i> 70	16	38	281.9
H2.5BP 26L — B	L	2.5	26	φ 91.92	φ 96.9	22	φ 16	φ 70	16	38	281.9
H3BP 10R — B	R	3	10	φ 42.43	φ 48.4	25	φ12	φ 34	18	43	66.0
H3BP 10L — B	L	3	10	φ 42.43	φ 48.4	25	φ12	φ34	18	43	66.0
H3BP 13R — B	R	3	13	φ 55.15	φ 61.2	25	φ 15	\$ 45	18	43	113.8
H3BP 13L — B	L	3	13	φ 55.15	φ 61.2	25	φ 15	φ 45	18	43	113.8

베벨 기어

마이터기어

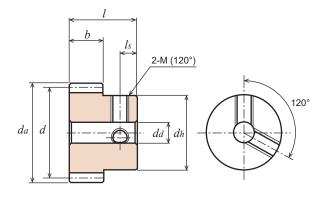
단위:mm

정밀도②	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1702-1 N9~N10급	백색 POM	20도	45도	_	_	표 참조


- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★조립 방법 및 허용 전달 동력: 평행축으로 조립하는 경우 허용전달동력표를 확인하십시오. 이때의 치면은 면접촉입니다. 엇갈림축(교차하거나 평행하지 않는 축) 조립의 경우에는 평행축에 비해 허용 전달 동력이 크게 떨어집니다. 이때의 치면은 점접촉입니다.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다. 백래시는 원주 방향 백래시입니다. ②제작 시의 정밀도입니다.

상품 기호	나선 방향	모듈	잇수	기준원 직 경	이끝원 직 경	치폭	구멍 직경	허브 외경	허브 길이	전장	중량
		m	z	d	da	b	dd	dh	lh	l	W(g)
H1D 13R — B	R	1	13	φ18.38	φ20.4	12	ø 8	φ 15	10	22	5.4
H1D 13L — B	L	1	13	φ18.38	φ20.4	12	ø 8	φ15	10	22	5.4
H1D 26R — B	R	1	26	φ36.77	φ38.8	12	φ 10	φ32	10	22	26.9
H1D 26L — B	L	1	26	φ36.77	φ38.8	12	φ 10	φ32	10	22	26.9
H1.5D 13R — B	R	1.5	13	φ27.58	φ30.6	15	φ 10	φ23	10	25	15.7
H1.5D 13L — B	L	1.5	13	φ27.58	φ30.6	15	φ10	φ23	10	25	15.7

【*】는 나사 구멍을 2곳 가공한 상품입니다. 세트 스크류가 2개 포함되어 있습니다.


상품 기호	나선 방향	모듈	잇수	기준원 직 경	이끝원 직 경	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	중량
		m	z	d	da	b	dd	dh	lh	l	2-M(120°)	ls	W(g)
H1.5D 13R * B	R	1.5	13	φ27.58	φ30.6	15	φ10	φ 23	10	25	2-M4	5	15.5

웜, 웜 휠

B1형【一】

	회전속	도별 허용전달	동력표(평행축		평행축 백래시	상품 기호		
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	(단위: mm)	영품 기오
2.00	20.75	FO 46	110.70	227.06	254.00	442.76	0.06, 0.13	H1D 13R — B
2.98	29.75	59.46	118.79	237.06	354.80	442.76	0.06~0.12	H1D 13L — B
5.05	FO 46	110.70	227.06	472.02	704.00	075.10	0.06, 0.13	H1D 26R — B
5.95	59.46	118.79	237.06	472.02	704.88	875.19	0.06~0.12	H1D 26L — B
4.71	47.10	04.13	107.03	274.61	560.04	600.30	0.00 0.10	H1.5D 13R — B
4.71	47.10	94.12	187.93	374.61	560.04	698.30	0.09~0.18	H1.5D 13L — B

B1형【*】

	회전속	도별 허용전달	평행축 백래시	상품 기호					
10rpm	100rpm	200rpm	400rpm	800rpm	1,200rpm	1,500rpm	(단위: mm)	영품 기오	
4.71	47.10	94.12	187.93	374.61	560.04	698.30	0.09~0.18	H1.5D 13R * B	

204

치면 연마 마이터 기어 마이터 기어

MG 시리즈 MGE 시리즈 ML 시리즈 M 시리즈

MGH 시리즈 ML-N 시리즈

※외관은 이미지입니다.

상품 기호 읽는 방법

MG 1.5 S 3008 H 20 R

기어 종류	모듈	재질	잇수	잇줄 형상	구멍 가공	조립 거리	구멍 직경	타입
MG : 치면 연마 스파이 럴 마이터 (정밀도 등급 : JIS 1급) MGE : 치면 연마 스파이 럴 마이터 (정밀도 등급 : JIS 2급) ML : B-LOCK 마이터 M : 마이터	모듈 크기를 표현. 모듈 1 보다 아래인 경 우 표기 숫자는 실제 모듈의 100 배 . 예: 모듈 0.5 는 "50" 모듈 0.8 은 "80"	MG 시리즈 S: SCM440 MGE 시리즈 S: SCM435, 440 ML, M 시리즈 S: S45C B: 황동 C3604B SU: 스테인리스 SUS304 SUM: 스테인리스 SUS304 BP: 아세탈 청색 POM D: 아세탈 백색 POM	예:	없음 : 스트레이트 R : 오른쪽 나선 스파이럴 L : 왼쪽 나선 스 파이럴	MG, MGE 시리즈 연삭 가공 [-]:나사 구멍 없음, 키홈 없음 [=]:키홈 있음 ML, M 시리즈 절삭 가공 [-]:나사 구멍 없음, 키홈 없음 [+]:나사 구멍 1개 있음 [*]:나사 구멍 2개 있음 [=]:키홈 있음 [#]:키홈 있음	단위 : mm	단위 : mm	H: 치부 고주파 열처 리 HB: 치부 고주파 열 처리 + 흑색 염색 처 리

8

MGH R

기어 종류	잇줄 형상	구멍 가공	허브 길이
MGH: 마이터	없음 : 스트레이트 R: 오른쪽 나선 스파이럴 L: 왼쪽 나선 스파이럴	연마 가공 【+】: 나사 구멍 1 개 있음 【=】: 키 홈 있음	단위 : mm

MGH 시리즈의 특징

치부 고주파 열처리 및 구멍의 연삭가공이 되어 있고, 키 재료와 세트 스크류가 포함되어 있기 때문에 가공하지 않고 그대로 사 용하실 수 있는 완제품입니다. [주의] 모듈등의 자세한 내용은 상품 페이지를 참조하십시오.

상품 기호	MG	MGE 신상품	М	M	M	MGH
형상						
페이지	P. 212	P. 214	P. 216	P. 218	P. 220	P. 222
재질	SCM440	SCM435 • 440	S45C	S45C	S45C	S45C
모듈	m1.5~3	m1.5~3	m0.8~3	m1~3	m1~3	m1~2
잇줄 형상	스파이럴	스파이럴	스파이럴	스파이럴	스파이럴	스파이럴
정밀도 등급	JIS 1급	JIS 2급	JIS 3급	JIS 4급	JIS 4급	JIS 4급
치부 처리	치부 고주파 열처리, 연마	치부 고주파 열처리, 연마	절삭	절삭,치부고주파 열처리, 흑색염색	절삭,치부 고주파 열처리	절삭,치부 고주파 열처리

상품 기호	ML-N 신상품	ML	M	M	MGH	M
형상						
페이지	P. 224	P. 224	P. 226	P. 228	P. 230	P. 232
재질	S45C	SUS304	S45C	S45C	S45C	SUS304
모듈	m1~2.5	m0.8~2	m0.5~4	m1.5~4	m2.5~3	m0.8~3
잇줄 형상	스트레이트	스트레이트	스트레이트	스트레이트	스트레이트	스트레이트
정밀도 등급	JIS 3급	JIS 4급	JIS 3급	JIS 4급	JIS 4급	JIS 4급
치부 처리	절삭	절삭	절삭	절삭,치부 고주파 열처리	절삭,치부 고주파 열처리	절삭

상품 기호	М	M	M	M
20/12	171	171	171	- 44-
형상				· m
페이지	P. 232	P. 234	P. 234	P. 236
재질	SUS304L	황동	백색 POM	청색 POM
모듈	m0.5~1	m0.5~1	m1	m0.8~3
잇줄 형상	스트레이트	스트레이트	스트레이트	스트레이트
정밀도 등급	_	JIS 4급	_	_
치부 처리	MIM 사출 성형	절삭	절삭	절삭

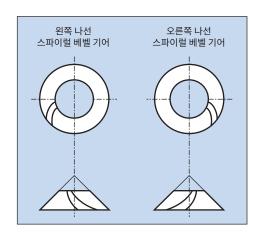
마이터 기어 인포메이션

1. 마이터 기어란

1) 마이터 기어와 베벨 기어의 설명

당사 규격품 베벨 기어의 기어비(피니언축 P:기어축 G)가 1:1인 것을 마이터 기어라고 부릅니다.

	마이터 기어		베벨 기어						
기어비 (P:G)	1:1	1:	1.5	1	: 2	1	: 3		
피치각	45°	피니언	33° 41′	피니언	26° 34'	피니언	18° 26'		
피시각	43	기어	56° 19'	기어	63° 26'	기어	71° 34'		
축각				90°					


2) 스트레이트 마이터 기어와 스파이럴 마이터 기어의 차이

	잇줄	치면 연마	고속 회전	피치원주 속도 ※	감합율	회전의 원활	스러스트
스트레이트 마이터 기어	직선형	불가	0	5.5m/s 미만	저	0	소
스파이럴 마이터 기어	곡선형	가능	0	5.5m/s 이상 15m/s 이상인 경우는 치면 연마품 사용을 권장합니다 .	고	0	대

%원주 속도 [m/s] = $\frac{\pi \times \text{ 피치원 직경 [mm]} \times \text{회전수 [rpm]}}{1000 \times 60}$

스파이럴 마이터 기어: ①감합률이 높아 정숙한 성능을 기대할 수 있습니다.

②나선 방향이 오른쪽인 것과 왼쪽인 것을 조합하십시오.

! 오른쪽 나선

2. 조립 시의 주의점

1) 장착 방법

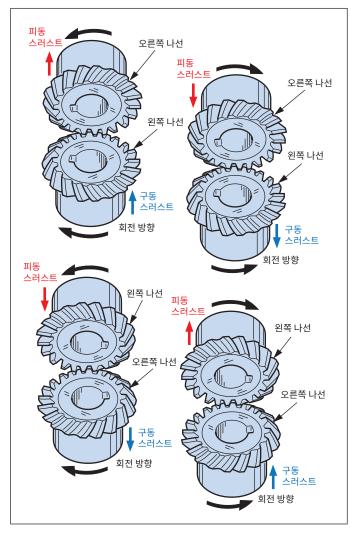
마이터 기어의 경우 특히 주의해야 할 것은 그 장착 방법입니다. 많은 경우 마이터 기어의 베어링은 기어의 한쪽부분에만 있기 때 문에 하중을 받으면 축이 휘어지기 쉬운 결점이 있습니다. 그로 인해 기어의 치면 닿는 부분이 싱글 접촉이 되어 나빠집니다. 기 어축 및 베어링은 충분히 튼튼하게 하고 기어 근처에 베어링을 설치하도록 하십시오. 조립 시 마이터 기어를 축 방향으로 조정 할 수 있도록 하고 허브의 단면에 심을 넣으면 기어 치면닿는 부 분의 조정이 용이합니다.

2) 상대 기어에 대하여

타사 상품과 조합하여 사용할 수 없습니다. 규격품 이외의 사양 으로 설계하는 경우 당사의 특별 주문품 서비스를 이용하십시오. 치면 연마품은 치면 연마품과, 절삭품은 절삭품과 맞물리십시오.

3) 윤활에 대하여

회전수나 부하 조건에 따라 적정한 윤활 방법을 선정하십시오. 자세한 내용은 참고 자료 '기어의 윤활'을 참조하십시오.


4) 기어축과 백래시

이상적인 맞물림을 얻기 위해 기어축의 축각은 가능한 한 정확하 게, 백래시도 적정하게 주어 조립하십시오. 치면 연마품·절삭품 모두 축각 ±15', 축심 높이의 시프트 양은 ±0.015mm 이하를 권장합니다.

백래시: 카탈로그에 기재된 조립 거리로 구성 시 표1이 되도록 설계했습니다.

참고자료 '백래시 측정법'을 참고하십시오.

스파이럴 마이터 기어에 걸리는 스러스트

표 1 마이터 기어의 백래시 (한 쌍의 맞물림, 스트레이트 / 스파이럴 공통)

치면 연마 마이터 기어의 백래시

모듈	백래시 [mm] SCM440
m =1.5	0.03~0.06
m =2	0.04~0.08
m =2.5	0.05~0.1
m =3	0.06~0.12

절삭 마이터 기어의 백래시

п=	백래시 [mm]	
모듈	SCM435·440, S45C, SUS304, C3604B	백색/청색 POM
m=0.9 이하	0.02~0.08	0.03~0.10
0.9 초과 , 2 이하	0.05~0.12	0.05~0.16
2 초과 , 4 이하	0.06~0.15	-
4 초과 , 6 이하	0.08~0.20	-

- 조정: 허브 단면에 심을 넣음으로써 조립 거리, 백래시, 및 기어 치면닿는 부분의 조정이 간단해집니다.
- 원주 방향 백래시 변화량(마이터 기어를 축 방향으로 움직인 경우) 스트레이트 마이터 기어: $Jt = Jx \times 0.51$ 스파이럴 마이터 기어: $Jt = Jx \times 0.63$

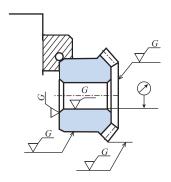
Jt: 원주 방향 백래시 변화량

Jx: 축 방향 이동량

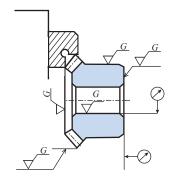
※가공이나 조립의 정밀도에 따라 계산대로 되지 않을 수 있습니다.

목차

마이터 기어 인포메이션


치면 연마 스파이럴 마이터 기어의 특징 (MG 시리즈)

정밀도 등급	열처리	치면 가공	연마 부분	모듈	기어비	백래시	고속 회전	정숙 성능	치면 경도
JIS B 1704 1 급	고주파	연삭	구멍 직경 허브 측면 허브 외주 이끝 외주 이 측면	m = 1.5 2.0 2.5 3.0	u = 1:1	30 μ m 이하까지 설정 가능	0	높음	HRC52~60


※치면 연마품은 치부 절삭품과 물리지 마십시오.

치면 연마 스파이럴 마이터 기어의 추가 가공 주의점

- 1) 고객의 추가 가공 시 정밀도 유지와 가공성을 중시하며 허브 외주 및 치끝 외주는 연마 가공으로 되어 있습니다. (치끝 외주는 축심과 평행하게 모따기를 하여 정밀도 좋게 척킹할 수 있습니다.) 추가 가공 시 유의사항은 그림 1 및 KG 종합 카탈로그 '추가 가공의 주의점'을 참조하십시오.
- 2) 반드시 생죠와 스크롤 척을 이용하십시오. 그림1 의 측정하는 부분의 흔들림을 최대한 0에 가깝게 하십시오. (0.003mm 이하가 바람직)

고정밀도로 추가 가공을 하기 위해 허브 외주 및 단면 을 연마 가공했습니다.

고정밀도로 추가 가공을 하기 위해 치끝 외주 및 단면을 연마 가공했습니다.

그림1 추가 가공 설명도

치면 연마 스파이럴 마이터 기어의 특징 (MGE 시리즈)

정밀도 등급	열처리	치면 가공*	연마 부분	모듈	기어비	백래시	고속 회전	정숙 성능	치면 경도	코스트 밸런스
JIS B 1704 2 급	고주파	연삭	구멍 직경 허브 측면	m = 1.5 2.0 2.5 3.0	u = 1:1	상품 페이지 참조	0	높음	HRC49~55	좋음

1) 소형화를 위해 특화된 설계

- (1) 잇수: 19매와 23매. 소형 설계에 매우 적합합니다.
- (2) 베어링과 오일씰의 규격을 고려하였습니다.

일반적인 잇수 20매, 25매의 스파이럴 마이터 기어와 비교하여 베어링 크기 등의 기어 주변 설계를 포함한 크기 축소가 가능합니다.

2) 조립 예

기어박스 등의 조립에서는 미리 조립한 기어 유닛(기어, 베어링, 샤프트 등)을 기어박스의 베어링 하우징의 구멍을 통해 조립하는 방법이 자주 사용됩니다.

따라서 그림2와 같이 기어의 외경은 베어링 및 오일씰의 외경보다 작아야 합니다.

각 부분치수의 조건 (기어 외경) ≒ (피치원 직경) A=(1+r) mm 이상 (베어링 직경 D) ≧ (기어 외경) + (2×A)

이상의 조건에서 다음 표에 잇수 19매와 20매에서의 베어링과 오일씰 규격 유무를 참고로 보여줍니다.

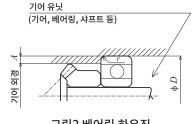


그림2 베어링 하우징

표 기어 외경과 베어링 직경, 오일씰 직경

	OLA	7010174	* 17	베어링	l 직경	00111171		OLA	7010174	* 17	베어링	l 직경	O 이 씨 되 거
m	잇수	기어 외경	축 직경	ϕD	r	오일씰 직경	m	잇수	기어 외경	축 직경	ϕD	r	오일씰 직경
	19	φ28.5	φ12	φ32	0.6	φ32		19	φ47.5	φ 20	φ 52	1.1	_
1.5	19	Ψ20.5	φ 15	ø 32	0.3	φ32	2.5	19	ψ47.5	ø 25	φ 52	1.0	φ52
1.5	20	φ30.0	φ12	ø 37	1.0	_	2.5	20	φ50.0	φ 20	_	_	_
	20	ψ30.0	φ 15	ø 35	0.6	φ35		20	ψ50.0	ø 25	ø 62	1.1	_
	19	φ38.0	ø 15	ø 42	1.0	_		19	φ57.0	ø 25	φ62	1.1	_
2.0	19	Ψ36.0	φ 20	 4 2	0.6	φ42	3.0	19	ψ 57.0	ø 28	ø 68	1.1	_
2.0	20	φ40.0	ø 15	_	_	_	3.0	20	φ60.0	ø 25	_	_	_
	20	Ψ40.0	φ 20	 4 7	1.0	φ47		20	ψ 00.0	ø 28	ø 68	1.1	_

기어 외경을 피치원 직경으로 한 수치입니다 .

차

포 메 이 션

기 어 박 스

노백래시 기어

평 기 어

랙

필리컬 스크류 기어

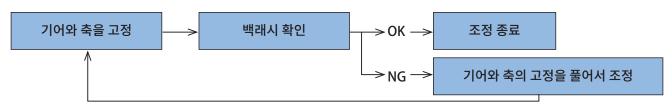
이 터 기 어

마이터 기어 인포메이션

간이 록 (B-LOCK) 마이터 기어의 특징 (ML 시리즈, 신 ML-N 시리즈)

허브부 체결기구에 의해 다음과 같은 특징이 있습니다.

축과 체결 방법	축에 대한 손상	맞물림 미조정	축에 대한 가공 (키 홈, 축의 D 커트 등)
마찰 체결	적음	최적	불필요



당사의 규격 스트레이트 마이터 기어와 호환되므로 규격품의 상대 기어로도 사용할 수 있습니다.

1) 백래시 조정 방법

간이 록 (B-LOCK) 은 기어의 보스부 체결기구에 의해 기어와 축을 고정하므로 세트 스크류에 의한 고정 등과 같이 축에 움푹 패인 자국이 잘 생기지 않습니다.

백래시 양의 조정은 일반적으로 다음과 같은 작업순서로 실시합니다.

2) 주의 사항

(1) 선정: 상품 선정은 사용상 최대 토크가 허용전달동력표의 토크값 이하인 상품을 선정하십시오.

사고 방지를 위해 모터의 기동 토크를 고려하십시오.

(2) 장착축의 정밀도: 축 직경 공차는 h7 이상, 면 거칠기는 Ra1.6(6.3S) 이상의 정밀도 축을 사용하십시오.

(3) 경부하 길들이기 운전: 조립 후 즉시 실부하를 건 작동은 피하고 경부하에 의한 작동 확인 후 실부하 작동을 하십시오. 경부

하에 의한 길들이기 운전을 실시한 후 조임 나사를 다시 토크 렌치를 사용하여 지정된 조임 토크값

으로 다시 조여 확인하십시오.

(4) 추가 가공과 열처리에 대하여: 체결력에 지장이 없는 범위 내에서 하십시오.

구멍 길이, 구멍 직경, 허브 직경의 추가 가공 및 열처리는 하지 마십시오.

(5) 기동 횟수가 많은 경우: B-LOCK 마이터 기어 이외의 키 홈이 있는 상품 사용을 권장합니다.

(6) 기어가 공전한 경우: 반드시 다른 기계요소 부품의 점검 및 청소를 실시하십시오.

기어끼리 맞물림이 빠질 때 기어의 이가 손상될 수 있습니다. 손상된 조각이 다른 기계요소 부품에

영향을 미칠 수 있습니다.

본 제품은 기능상 지장이 없는 범위에서 예고없이 치수 변경하는 경우가 있습니다. 미리 양해 부탁드립니다.

3) 기어 장착 시 주의사항

- (1) 보스부 체결에는 JIS의 강도구분 10.9급 이상의 볼트를 사용하십시오.
- (2) 조임 토크 확인 및 조임 나사 풀림 방지
 - ①나사부에 풀림 방지제 사용을 권장합니다.
 - ②조임 나사를 조일 때는 토크 렌치를 사용하여 지정 토크로 장착하십시오.

목 차

인포메 메 션

기 어 박 스

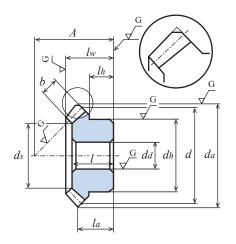
노백래시 기어

평 기 어

단위:mm

정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 1급	SCM440	20도	35도	치부 고주파	HRC52~60	표 참조

- ★표면처리는 하지 않았습니다.
- ★허용전달동력표는 L 나선 기어가 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	이끝각	스폿페이싱 직경 (참고치)	중량														
	и	z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	δa	ds	W(g)														
MG1.5S 20R - 3008H		20	φ30	φ31.92) φ30.5	30	φ 8	ø 26	13	19	21.11	15.96	8	50°08′	φ15.37	74.4														
MG1.5S 20L - 3008H		20	φ30	φ31.92) φ30.5	30	φ 8	ø 26	13	19	21.11	15.96	8	50°08′	φ15.37	74.4														
MG1.5S 25R - 3410H		25	φ37.5	φ39.43) φ 38	34	φ10	φ32	12.5	19	22.1	16.21	9	49°18′	φ19.54	118.2														
MG1.5S 25L — 3410H		25	φ37.5	φ39.43) φ 38	34	φ10	φ32	12.5	19	22.1	16.21	9	49°18′	φ19.54	118.2														
MG1.5S 30R - 4310H		30	φ45	φ46.81) φ 45.2	43	φ10	 \$\phi 40	18	25	28.13	21.41	10	47°48′	φ25.72	240.6														
MG1.5S 30L - 4310H		30	φ45	φ46.81) φ45.2	43	φ10	 \$\phi 40	18	25	28.13	21.41	10	47°48′	φ25.72	240.6														
MG2S 20R - 3712H		20	<i>φ</i> 40	φ42.53) φ 41	37	<i>φ</i> 12	\$ 35	14.5	22	24.71	18.27	10	50°04′	φ21.72	152.3														
MG2S 20L - 3712H		20	φ40	φ42.53) φ41	37	φ12	φ35	14.5	22	24.71	18.27	10	50°04′	φ21.72	152.3														
MG2S 25R - 4012H		25	φ50	φ52.58) φ 51	40	φ12	φ44	12	20	24.12	16.29	12	49°25′	φ26.06	238.4														
MG2S 25L - 4012H	1:1	25	φ50	φ52.58) φ 51	40	φ12	φ44	12	20	24.12	16.29	12	49°25′	φ26.06	238.4														
MG2S 30R - 5012H		30	φ60	φ62.41) φ60.8	50	φ12	φ52	16	25	29.12	21.21	12	47°52′	φ36.06	427.8														
MG2S 30L — 5012H		30	φ60	φ62.41) φ60.8	50	φ12	φ52	16	25	29.12	21.21	12	47°52′	φ36.06	427.8														
MG2.5S 20R – 4814H																	20	φ50	φ53.22) φ51.5	48	φ14	φ44	20	29	32.28	24.61	12	50°32′	φ28.06
MG2.5S 20L – 4814H		20	φ50	φ53.22) φ51.5	48	φ14	φ44	20	29	32.28	24.61	12	50°32′	φ28.06	321.2														
MG2.5S 25R – 5016H		25	φ62.5	φ65.61) φ 64	50	φ16	φ54	14.5	26	30.21	20.31	15	48°49′	φ34.57	456.8														
MG2.5S 25L — 5016H		25	φ62.5	φ65.61) φ 64	50	φ16	φ54	14.5	26	30.21	20.31	15	48°49′	φ34.57	456.8														
MG2.5S 30R – 6216H		30	φ 75	φ _{78.03)} φ _{76.5}	62	φ16	ø 66	20	32	36.08	26.01	15	47°56′	φ47.57	848.3														
MG2.5S 30L - 6216H		30 ø	φ 75	φ78.03) φ 76.5	62	ø 16	ø 66	20	32	36.08	26.01	15	47°56′	φ47.57	848.3														
MG3S 20R – 5816H		20	φ60	φ63.8) φ 62	58	ø 16	φ52	24	35	39.57	29.9	15	50°04′	φ31.57	556.1														
MG3S 20L — 5816H		20	ø 60	φ63.8) φ 62	58	ø 16	φ 52	24	35	39.57	29.9	15	50°04′	φ31.57	556.1														

목 차

인포메 이션

기 어 박 스

평 기 어

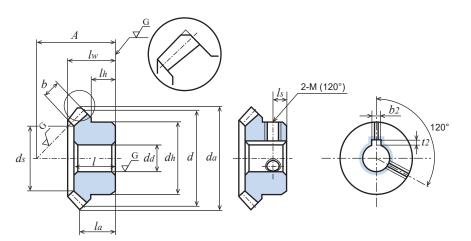
Š	회전속도	E별 허용	용전달동	등력표	휨강.	도 (단	위: kW)	회	전속도	별 허용	전달동	력표 :	치면깅	당 (단위: kV	V)	백래시	ALT 71÷
250 rpm	500 rpm	800 rpm	1,000 rpm	1,500 rpm	2,000 rpm	2,500 rpm	3,000 rpm	4,000 rpm	250 rpm	500 rpm	800 rpm	1,000 rpm	1,500 rpm	2,000 rpm	2,500 rpm	3,000 rpm	4,000 rpm	(단위: mm)	상품 기호
0.15	0.31	0.48	0.50	0.86	1.11	1 26	1.61	2 00	0.08	0.17	0.27	0.33	0.40	0.64	0.79	0.94	1 2/	0.03~0.06	MG1.5S 20R — 3008H
0.13	0.51	0.40	0.59	0.00	1.11	1.50	1.01	2.09	0.00	0.17	0.27	0.55	0.43	0.04	0.79	0.54	1.24	0.03~0.00	MG1.5S 20L — 3008H
0.23	0.47	0.72	n 89	1.27	1.66	2 03	2.40	3.11	0.15	0.32	0.50	0.62	0.91	1.20	1 48	1.76	2 3 2	0.03~0.06	MG1.5S 25R — 3410H
0.23	0.47	0.72	0.07	1.27	1.00	2.03	2.70	5.11	0.13	0.52	0.50	0.02	0.51	1.20	1.70	1.70	2.52	0.03 0.00	MG1.5S 25L — 3410H
0.33	0.65	1.01	1 23	1 77	2.30	283	3 33	4.26	0.26	0.53	0.84	1 04	152	2.00	2 48	2.95	3 82	0.03~0.06	MG1.5S 30R — 4310H
0.55	0.03	1.01	1.23	1.77	2.50	2.03	3.33	1.20	0.20	0.55	0.01	1.01	1.52	2.00	2.10	2.55	5.02		MG1.5S 30L — 4310H
0.35	0.69	1.07	1 31	1 88	2.45	3.00	3 5 5	4.58	0.19	0.39	0.61	0.76	1 11	1.46	1 80	2.15	2 81	0.04~0.08	MG2S 20R — 3712H
0.55	0.03	1107		1,00	2.1.5	3.00	0.00		0115	0.00	0.01	0.70			1,00	25	2.0		MG2S 20L — 3712H
0.55	1.08	1.66	2.03	2.93	3.80	4.66	5.49	6.95	0.37	0.76	1.19	1.47	2.16	2.84	3.51	4.17	5.35	0.04~0.08	MG2S 25R — 4012H
				, -						• •					-				MG2S 25L — 4012H
0.72	1.41	2.16	2.63	3.80	4.95	6.05	7.04	8.79	0.59	1.19	1.86	2.29	3.37	4.44	5.49	6.43	8.13	0.04~0.08	MG2S 30R — 5012H
					0														MG2S 30L — 5012H
0.66	1.29	1.99	2.43	3.50	4.55	5.58	6.57	8.32	0.37	0.74	1.17	1.44	2.12	2.78	3.44	4.09	5.24	0.05~0.1	MG2.5S 20R — 4814H
																			MG2.5S 20L — 4814H
1.07	2.07	3.16	3.86	5.58	7.26	8.86	10.28	_	0.74	1.49	2.32	2.86	4.21	5.55	6.83	7.99	_	0.05~0.1	MG2.5S 25R — 5016H
																			MG2.5S 25L — 5016H
1.41	2.69	4.09	5.02	7.27	9.43	11.33	13.08	_	1.18	2.33	3.61	4.48	6.59	8.66	10.51	12.23	-	0.05~0.1	MG2.5S 30R — 6216H
																			MG2.5S 30L — 6216H
1.16	2.25	3.44	4.19	6.07	7.90	9.66	11.23	14.03	0.66	1.32	2.06	2.53	3.74	4.92	6.08	7.13	9.01	0.06~0.12	MG3S 20R — 5816H
																		.,	MG3S 20L — 5816H

스파이럴 마이터 (SCM435 · 440) MGE치면 연마

기어비 1:1

(구) 상품 MF 시리즈와 동일 치수이고 치면을 연삭 가공한 상품입니다.

단위:mm


정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 2급	SCM435 • 440	20도	35도	치부 고주파	HRC49~55	표 참조

- ★표면처리는 하지 않았습니다.
- ★허용전달동력표는 L 나선 기어가 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다.
- ★【#】에는 키홈, 키 재료와 나사 구멍2곳, 세트 스크류가 2개가 포함되어 있습니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

①농송품, 동새실, 안 쌍의 날	720	시의 이	근시합니	151.														
상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	키홈	나/	ተ	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	$b_2 \times t_2$	M	ls	δa	ds	W(g)
MGE1.5S 19R — 2810H		19	φ28.5	φ _{30.34)} φ _{28.5}	28	φ10	ø 25	12	16	18.19	14.67	5.5	-	-	-	50°23′	φ17.4	54.7
MGE1.5S 19L — 2810H		19	φ28.5	φ30.34) φ 28.5	28	φ10	φ25	12	16	18.19	14.67	5.5	-	-	-	50°23′	φ17.4	54.7
MGE2S 19R — 3512H		19	φ38	φ40.43) φ38.0	35	φ12	φ32	13	19	22.09	17.21	7.5	-	-	-	49°39′	φ22.8	113.4
MGE2S 19L — 3512H		19	φ38	φ40.43) φ 38.0	35	φ12	φ32	13	19	22.09	17.21	7.5	-	-	-	49°39′	φ22.8	113.4
MGE2S 23R — 4015H		23	ø 46	φ48.52) φ 46.0	40	ø 15	φ40	14	21	24.43	18.26	9.5	-	-	-	49°39′	φ27.1	191.9
MGE2S 23L — 4015H		23	<i>ф</i> 46	φ48.52) φ 46.0	40	ø 15	φ40	14	21	24.43	18.26	9.5	-	-	-	49°39′	φ27.1	191.9
MGE2S 23R # 4020H		23	ø 46	φ48.52) φ 46.0	40	φ20	φ40	14	21	24.43	18.26	9.5	6 × 2.8	2-M5	9	49°39′	φ27.1	166.5
MGE2S 23L # 4020H	1:1	23	<i>ф</i> 46	φ48.52) φ46.0	40	φ20	φ40	14	21	24.43	18.26	9.5	6 × 2.8	2-M5	9	49°39′	φ27.1	166.5
MGE2.5S 19R — 4215H	1 • 1	19	φ47.5	φ50.55) φ 47.5	42	ø 15	φ40	14.5	23	25.93	19.78	9.5	-	-	-	49°48′	φ30.1	210.8
MGE2.5S 19L — 4215H		19	φ47.5	φ50.55) φ 47.5	42	ø 15	φ40	14.5	23	25.93	19.78	9.5	-	-	-	49°48′	φ30.1	210.8
MGE2.5S 23R — 4815H		23	φ57.5	φ60.63) φ 57.5	48	ø 15	φ 50	15.5	24	28.30	20.81	11.5	-	-	-	49°30′	φ34.5	363.9
MGE2.5S 23L — 4815H		23	φ57.5	^(φ60.63) φ 57.5	48	ø 15	φ50	15.5	24	28.30	20.81	11.5	-	-	-	49°30′	φ34.5	363.9
MGE3S 19R — 5020H		19	φ 57	φ60.68) φ 57.0	50	φ20	φ48	17	27	31.09	23.34	12.0	-	-	-	49°56′	φ34.1	347.8
MGE3S 19L — 5020H		19	φ57	φ60.68) φ 57.0	50	φ20	<i>ф</i> 48	17	27	31.09	23.34	12.0	-	-	_	49°56′	φ34.1	347.8
MGE3S 23R — 5520H		23	φ69	φ72.73) φ 68.0	55	φ20	φ60	16	27	31.51	22.36	14.0	-	-	-	49°22′	φ42.4	571.3
MGE3S 23L — 5520H		23	ø 69	φ _{72.73}) φ _{68.0}	55	φ20	φ60	16	27	31.51	22.36	14.0	-	-	-	49°22′	φ42.4	571.3

스파이럴 마이터 (SCM435 • 440) 모듈 1.5/2/2.5/3 MGE치면 연마

기어비 1 : 1

회견	전속도별	허용전달	동력표	휨강도	(단위: k	W)	회전	속도별 하	용전달동	력표 大	면강도	- (단위:	kW)	백래시	WE 31+
100 rpm	250 rpm	500 rpm	800 rpm	1,000 rpm	1,500 rpm	2,000 rpm	100 rpm	250 rpm	500 rpm	800 rpm	1,000 rpm	1,500 rpm	2,000 rpm	(단위: mm)	상품 기호
0.054	0.137	0.274	0.432	0.525	0.736	0.922	0.025	0.067	0.138	0.223	0.273	0.391	0.495	0.05~0.12	MGE1.5S 19R — 2810H
0.034	0.137	0.274	0.432	0.525	0.730	0.922	0.023	0.007	0.130	0.223	0.273	0.591	0.493	0.03**0.12	MGE1.5S 19L — 2810H
0.133	0.334	0.668	1.014	1.223	1.685	2.150	0.064	0.167	0.344	0.533	0.649	0.911	1.178	0.05~0.12	MGE2S 19R — 3512H
0.133	0.551	0.000	1.011	1.223	1.005	2.130	0.001	0.107	0.511	0.555	0.015	0.511	1.170	0.03 0.12	MGE2S 19L — 3512H
															MGE2S 23R — 4015H
0.215	0.539	1.060	1.587	1.901	2.640	3.359	0.123	0.320	0.648	0.991	1.199	1.694	2.183	0.05~0.12	MGE2S 23L — 4015H
0.213	0.555	1.000	1.507	1.501	2.040	3.337	0.123	0.520	0.040	0.551	1.155	1.054	2.103	0.03 0.12	MGE2S 23R # 4020H
															MGE2S 23L # 4020H
0.264	0.662	1.298	1.939	2.321	3.228	A 103	0.128	0.335	0.678	1.034	1.250	1.769	2.278	0.06~0.15	MGE2.5S 19R — 4215H
0.204	0.002	1.290	1.939	2.321	3.220	4.103	0.120	0.555	0.076	1.034	1.230	1.709	2.270	0.00 -0.13	MGE2.5S 19L — 4215H
0.414	1.036	1.980	2.923	3.474	4.897	6.240	0.240	0.624	1.230	1.853	2.224	3.192	4.119	0.06~0.15	MGE2.5S 23R — 4815H
0.414	1.030	1.900	2.923	3.77	4.037	0.240	0.240	0.024	1.230	1.033	2.22	3.192	7.119	0.00 -0.13	MGE2.5S 23L — 4815H
0.472	1.188	2.274	3.360	3.995	5.626	7.166	0.233	0.608	1.201	1.812	2.176	3.119	4.023	0.06~0.15	MGE3S 19R — 5020H
0.472	1.100	2.2/4	5.500	3.993	3.020	7.100	0.233	0.000	1.201	1.012	2.170	3.113	4.023	0.00.90.13	MGE3S 19L — 5020H
0.726	1.815	3.374	4.916	5.923	8 3 1 0	10.061	0.425	1.108	2.123	3.157	3.841	5.493	7.098	0.06~0.15	MGE3S 23R — 5520H
0.720	1.013	3.374	7.210	3.923	0.515	10.001	0.723	1.100	2.123	J.1J/	J.U+1	J.793	7.090	0.00 -0.13	MGE3S 23L — 5520H

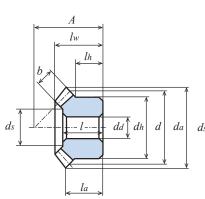
목 차

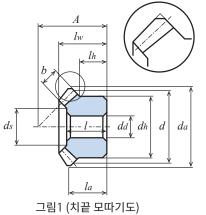
인포메이션

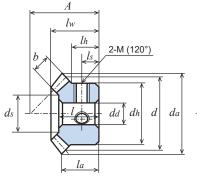
기 어 박 스

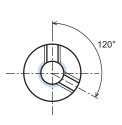
평 기 어

베 벨 기 어


정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 3급	S45C	20도	35도	_	_	표 참조

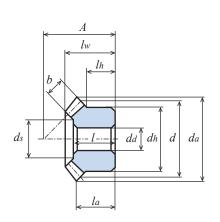

- ★표면처리는 하지 않았습니다.
- ★허용전달동력표는 L 나선 기어가 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조) ★【*】에는 나사 구멍 2곳, 세트 스크류 2개가 포함되어 있습니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

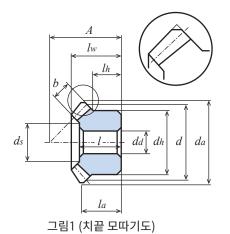

(인동송품, 동재실, 안 쌍의 상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나시	ŀ	이끝각	스폿페이싱 직경 (참고치)	중량
	u	z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	M	ls	δa	ds	W(g)
M80S20R — 1605		20	ø 16	φ17.06	16	\$\phi\$ 5	φ12	6	10	10.86	8.53	3.7	-	-	51°15′	φ 9.54	10.5
M80S20L — 1605		20	ø 16	φ17.06	16	φ 5	φ12	6	10	10.86	8.53	3.7	-	-	51°15′	φ 9.54	10.5
M80S25R — 1805		25	φ 20	φ21.05	18	\$\phi\$ 5	ø 16	6	10.5	11.56	8.53	4.7	-	-	49°56′	φ11.71	18.5
M80S25L — 1805		25	φ 20	φ21.05	18	\$\phi\$ 5	ø 16	6	10.5	11.56	8.53	4.7	-	-	49°56′	φ11.71	18.5
M80S30R — 2006		30	φ24	φ25.06	20	ø 6	 \$18	6	11	12.2	8.53	5.6	-	-	49°13′	φ14.16	25.5
M80S30L — 2006		30	φ24	φ25.06	20	ø 6	ø 18	6	11	12.2	8.53	5.6	-	-	49°13′	φ14.16	25.5
M1S 20R — 2106		20	φ20	φ21.12	21	ø 6	ø 16	9	13	14.43	11.56	4.5	-	-	50°31′	φ11.3	19.7
M1S 20L — 2106		20	φ 20	φ21.12	21	ø 6	ø 16	9	13	14.43	11.56	4.5	-	-	50°31′	φ11.3	19.7
M1S 20R * 2108		20	ø 20	φ21.12	21	ø 8	φ16	9	13	14.43	11.56	4.5	2-M4	4.5	50°31′	φ11.3	16.9
M1S 20L * 2108		20	φ20	φ21.12	21	ø 8	ø 16	9	13	14.43	11.56	4.5	2-M4	4.5	50°31′	φ11.3	16.9
M1S25R — 2306		25	φ 25	φ26.3	23	φ 6	φ 20	8	13	14.58	11.15	5.30	-	-	49°47′	φ15.0	32.9
M1S25L - 2306		25	φ 25	φ26.3	23	ø 6	φ20	8	13	14.58	11.15	5.30	-	-	49°47′	φ15.0	32.9
M1S 30R — 2610		30	ø 30	φ31.09	26	φ10	<i>ф</i> 22	9	14.5	15.67	11.54	6.2	-	-	48°21'	φ19.4	43.0
M1S 30L — 2610	1:1	30	ø 30	φ31.09	26	φ10	<i>φ</i> 22	9	14.5	15.67	11.54	6.2	-	-	48°21'	φ19.4	43.0
M1.5S 20R — 2810	' ' '	20	ø 30	φ31.85	28	φ10	<i>ф</i> 24	10	16.5	18.44	13.93	7	-	-	50° 5′	φ17.2	54.7
M1.5S 20L — 2810		20	ø 30	φ31.85	28	φ10	<i>φ</i> 24	10	16.5	18.44	13.93	7	-	-	50° 5′	φ17.2	54.7
M1.5S25R — 3410		25	φ37.5	φ39.38	34	φ10	ø 30	11.5	19	21.10	16.19	7.5	-	-	49°12′	φ23.79	105.7
M1.5S25L - 3410		25	φ37.5	φ39.38	34	φ10	φ30	11.5	19	21.10	16.19	7.5	-	-	49°12′	φ23.79	105.7
M1.5S 30R — 3812		30	ø 45	ø 46.79	38	φ12	φ 33	12	21	22.64	16.4	9.3	-	-	47°54′	φ29.7	152.0
M1.5S 30L — 3812		30	ø 45	φ46.79	38	φ12	φ33	12	21	22.64	16.4	9.3	-	-	47°54′	φ29.7	152.0
M2S25R — 4012		25	φ 50	φ _{52.53)} φ _{51.33}	40	φ12	φ42	11	21	23.13	16.27	10.5	-	-	49°21′	φ32.3	224.9
M2S25L — 4012		25	φ 50	φ _{52.53)} φ _{51.33}	40	φ12	φ42	11	21	23.13	16.27	10.5	-	-	49°21′	φ32.3	224.9
M2S 30R — 5116		30	φ60	φ62.42) φ60.94	51	ø 16	<i>ф</i> 44	17	28	30.53	22.21	12.4	-	-	47°54′	ø 38.9	358.4
M2S 30L — 5116		30	φ60	φ62.42) φ 60.94	51	ø 16	ϕ 44	17	28	30.53	22.21	12.4	-	-	47°54′	φ38.9	358.4
M2.5S25R — 5016		25	φ62.5	φ65.69) φ 64.16	50	φ16	φ 52	13.5	27	29.14	20.35	13.5	-	-	49°30′	φ40.82	437.6
M2.5S25L - 5016		25	φ62.5	φ65.69) φ 64.16	50	ø 16	φ52	13.5	27	29.14	20.35	13.5	-	-	49°30′	φ40.82	437.6
M3S25R — 6020		25	φ 75	φ ^(φ78.66) φ77.0	60	φ20	φ 65	17.5	32	35.06	24.33	16.2	-	-	48°37′	φ48.18	777.6
M3S25L — 6020		25	φ 75	\$\\\phi^{(\phi78.66)} \\phi77.0 \end{array}\$	60	φ20	φ65	17.5	32	35.06	24.33	16.2	-	-	48°37′	φ48.18	777.6


인포메이션

기 어 박 스

ģ	티전속도별	! 허용전달	동력표	휨강도	(단위: W)	회 [:]	전속도별	허용전달	동력표 기	티면강도	- (단위:\	N)	백래시	UT 기수
300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	(단위: mm)	상품 기호
17.9	35.8	53.7	71.6	86.2	99.9	108.4	2.3	4.7	7.1	9.5	11.5	13.4	14.7	0.02~0.08	M80S20R — 1605 M80S20L — 1605
30.6	61.3	92.0	118.1	141.2	162.4	175.6	4.8	9.7	14.7	19.1	23.0	26.6	28.9	0.02~0.08	M80S25R — 1805 M80S25L — 1805
46.0	92.1	135.6	171.3	203.4	232.5	250.4	8.6	17.4	25.9	33.0	39.5	45.6	49.4	0.02~0.08	M80S30R — 2006 M80S30L — 2006
34.9	69.9	104.9	134.6	161.0	185.2	200.2	4.6	9.4	14.1	18.2	21.9	25.4	27.6	0.05 ~ 0.12	M1S 20R - 2106 M1S 20L - 2106 M1S 20R * 2108 M1S 20L * 2108
57.0	113.9	166.4	209.9	248.9	284.0	305.6	9.1	18.3	27.0	34.3	41.0	47.3	51.3	0.05~0.12	M1S25R — 2306 M1S25L — 2306
84.0	168.0	222.5	279.2	329.7	395.6	428.5	16.1	32.5	49.1	58.7	69.9	80.3	87.7	0.05~0.12	M1S 30R - 2610 M1S 30L - 2610
123.2	246.4	348.1	435.2	512.0	580.3	628.6	16.7	33.9	48.4	61.1	72.8	83.6	91.3	0.05~0.12	M1.5S 20R — 2810 M1.5S 20L — 2810
187.5	365.2	504.4	623.1	725.6	847.8	928.3	30.9	61.0	85.4	107.1	126.8	150.5	166.5	0.05~0.12	M1.5S25R — 3410 M1.5S25L — 3410
286.5	539.5	735.8	899.5	1,079.8	1,262.1	1,378.5	57.1	109.2	151.4	188.7	231.0	274.0	303.9	0.05~0.12	M1.5S 30R — 3812 M1.5S 30L — 3812
0.462 (kW)	0.851 (kW)	1.152 (kW)	1.414 (kW)	1.716 (kW)	2.001 (kW)	2.188 (kW)	0.078 (kW)	0.147 (kW)	0.203 (kW)	0.254 (kW)	0.315 (kW)	0.375 (kW)	0.416 (kW)	0.05~0.12	M2S25R — 4012 M2S25L — 4012
0.682 (kW)	1.205 (kW)	1.607 (kW)	2.040 (kW)	2.463 (kW)	2.880 (kW)	3.154 (kW)	0.140 (kW)	0.253 (kW)	0.346 (kW)	0.450 (kW)	0.557 (kW)	0.669 (kW)	0.744 (kW)	0.05~0.12	M2S 30R — 5116 M2S 30L — 5116
0.923 (kW)	1.612 (kW)	2.143 (kW)	2.742 (kW)	3.306 (kW)	3.873 (kW)	4.238 (kW)	0.160 (kW)	0.286 (kW)	0.391 (kW)	0.513 (kW)	0.635 (kW)	0.764 (kW)	0.849 (kW)	0.06~0.15	M2.5S25R — 5016 M2.5S25L — 5016
1.557 (kW)	2.657 (kW)	3.615 (kW)	4.615 (kW)	5.591 (kW)	6.530 (kW)	- (kW)	0.276 (kW)	0.485 (kW)	0.681 (kW)	0.896 (kW)	1.122 (kW)	1.346 (kW)	- (kW)	0.06~0.15	M3S25R — 6020 M3S25L — 6020



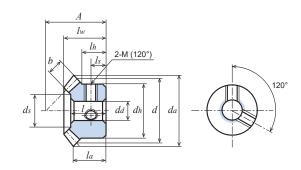

정밀도	재질	압력각	나선각	열처리	치면 경도	표면처리	백래시①
JIS B 1704 4급	S45C	20도	35도	치부 고주파	HRC47~53	흑색 염색	표 참조

- ★허용전달동력표는 L 나선 기어가 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조) ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	δa	ds	W(g)
M1S25R — 2306HB		25	φ 25	φ26.3	23	ø 6	φ 20	8	13	14.58	11.15	5.30	49°47′	φ15.01	32.9
M1S25L — 2306HB		25	φ25	φ26.3	23	ø 6	φ 20	8	13	14.58	11.15	5.30	49°47′	φ15.01	32.9
M1.5S25R — 3410HB		25	φ37.5	φ39.38	34	ø 10	ø 30	11.5	19	21.10	16.19	7.5	49°12′	φ23.79	105.7
M1.5S25L — 3410HB		25	φ37.5	φ39.38	34	ø 10	ø 30	11.5	19	21.10	16.19	7.5	49°12′	φ23.79	105.7
M2S25R — 4012HB	1:1	25	φ 50	φ52.53) φ51.33	40	φ12	φ42	11	21	23.13	16.27	10.5	49°21′	φ32.3	224.9
M2S25L — 4012HB	' ' '	25	φ50	φ52.53) φ51.33	40	φ12	φ42	11	21	23.13	16.27	10.5	49°21′	φ32.3	224.9
M2.5S25R — 5016HB		25	φ62.5	φ65.69) φ64.16	50	ø 16	φ52	13.5	27	29.14	20.35	13.5	49°30′	φ40.82	437.6
M2.5S25L — 5016HB		25	φ62.5	φ65.69) φ 64.16	50	ø 16	φ52	13.5	27	29.14	20.35	13.5	49°30′	φ40.82	437.6
M3S25R — 6020HB		25	φ 75	φ ^(φ78.66) φ77.0	60	φ 20	φ 65	17.5	32	35.06	24.33	16.2	48°37′	φ48.18	777.6
M3S25L — 6020HB		25	φ 75	φ ^(φ78.66) φ77.0	60	φ20	φ 65	17.5	32	35.06	24.33	16.2	48°37′	φ48.18	777.6

기어비 1 : 1

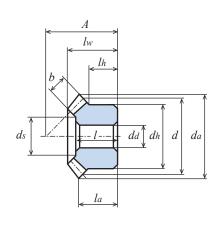
기 어 박 스

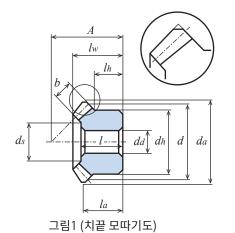

목 차

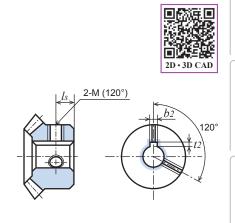
인포메 이션

평 기 어

상품 기호	백래시	(W)	E (단위:	티면강되	등력표 기	허용전달동	선속도별 혀	회전	N)	(단위: \	휨강도	동력표	허용전딜	전속도별	회
성품 기호	(단위: mm)	2,000 rpm	1,800 rpm	1,500 rpm	1,200 rpm	900 rpm	600 rpm	300 rpm	2,000 rpm	1,800 rpm	1,500 rpm	1,200 rpm	900 rpm	600 rpm	300 rpm
M1S 25R — 2306HB	0.050.12	1477	136.3	118.0	98.1	76.5	51.3	24.9	271.4	251.7	219.6	184.4	145.6	99.4	49.7
M1S 25L — 2306HB	0.03~0.12	147.7 0.05~0	130.3	110.0	90.1	/0.5	31.3	24.9	2/1.4	231./	219.0	104.4	143.0	99.4	49.7
M1.5S 25R — 3410HB	0.05 0.12	461.0	419.4	355.5	300.7	238.9	168.7	83.8	829.3	756.7	646.4	552.1	444.2	319.4	163.6
M1.5S 25L — 3410HB	0.05~0.12	461.9 0.05~0.	419.4	333.3	300.7	230.9	100.7	03.0	029.3	/30./	040.4	332.1	444.2	319.4	103.0
M2S 25R — 4012HB	0.05~0.12		1.011	0.859	0.699	0.559	0.403	0.210		1.791	1.533	1.261	1.021	0.748	0.403
M2S 25L — 4012HB	0.05~0.12	-	(Kw)	(Kw)	(Kw)	(Kw)	(Kw)	(Kw)	_	(Kw)	(Kw)	(Kw)	(Kw)	(Kw)	(Kw)
M2.5S 25R — 5016HB	0.06~0.15		_	1.685	1.380	1.062	0.778	0.427			2.961	2.449	1.909	1.423	0.805
M2.5S 25L — 5016HB	0.00~0.15	-	_	(Kw)	(Kw)	(Kw)	(Kw)	(Kw)	_	_	(Kw)	(Kw)	(Kw)	(Kw)	(Kw)
M3S 25R - 6020HB	0.06 0.15				2.360	1.820	1.305	0.732				4.131	3.226	2.354	1.362
M3S 25L — 6020HB	0.06~0.15	-	-	-	(Kw)	(Kw)	(Kw)	(Kw)	_	-	-	(Kw)	(Kw)	(Kw)	(Kw)






정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 4급	S45C	20도	35도	치부 고주파	HRC47~53	표 참조

- ★표면처리는 하지 않았습니다.
- ★허용전달동력표는 L 나선 기어가 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함.【#】에는 키 홈, 키 재료와 나사구멍, 세트 스크류가 포함되어 있습니다.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조) ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다

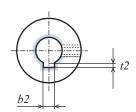
①동종품, 동재질, 한		1																
상품 기호	기어비	<u> </u>	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	키홈	나시	ŀ	이끝각	스폿페이싱 직경 (참고치)	중량
	u	z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	$b_2 \times t_2$	M	ls	δa	ds	W(g)
M1S25R — 2306H		25	ø 25	φ26.3	23	ø 6	φ 20	8	13	14.58	11.15	5.30	-	-	-	49°47′	φ15.01	32.9
M1S25L — 2306H		25	\$ 25	φ26.3	23	ø 6	φ 20	8	13	14.58	11.15	5.30	-	-	-	49°47′	φ15.01	32.9
M1S 30R * 2610H		30	ø 30	φ31.09	26	 \$\phi 10\$	φ 22	9	14.5	15.67	11.54	6.2	-	2-M5	4.5	48°21′	φ19.4	41.5
M1S 30L * 2610H		30	ø 30	φ31.09	26	φ10	φ22	9	14.5	15.67	11.54	6.2	-	2-M5	4.5	48°21′	φ19.4	41.5
M1.5S 20R — 2810	H	20	ø 30	φ31.85	28	φ10	φ24	10	16.5	18.44	13.93	7	-	-	-	50° 5′	φ17.2	54.7
M1.5S 20L — 2810)H 1:1	20	ø 30	φ31.85	28	φ10	φ24	10	16.5	18.44	13.93	7	-	-	-	50° 5′	φ17.2	54.7
M1.5S 20R # 2812	2H ' ' '	20	ø 30	φ31.85	28	φ12	φ24	10	16.5	18.44	13.93	7	4 × 1.8	2-M4	5	50° 5′	φ17.2	49.1
M1.5S 20L # 2812	2H	20	ø 30	φ31.85	28	φ12	φ24	10	16.5	18.44	13.93	7	4 × 1.8	2-M4	5	50° 5′	φ17.2	49.1
M1.5S25R — 3410	Н	25	φ37.5	φ39.38	34	φ10	\$ 30	11.5	19	21.10	16.19	7.5	-	-	-	49°12′	φ23.79	105.7
M1.5S25L — 3410		25	φ37.5	φ39.38	34	φ10	ø 30	11.5	19	21.10	16.19	7.5	-	-	-	49°12′	φ23.79	105.7
M1.5S 30R — 3812		30	\$\phi 45	\$\phi 46.79	38	φ12	φ33	12	21	22.64	16.4	9.3	-	-	-	47°54′	φ29.7	152.0
M1.5S 30L — 3812	2H	30	\$\phi 45	\$\phi 46.79	38	φ12	ø 33	12	21	22.64	16.4	9.3	-	-	-	47°54′	φ29.7	152.0
			1	(442.20)				1					이록	후 아래의 경	중량은		단위의 수치	1입니다.
M2S 20R — 3712H		20	\$\phi 40	φ42.28) φ40.8 (φ42.28)	37	φ12	φ34	14	21	24.16	18.14	9	-	-	-	48° 3′	φ22.5	0.14
M2S 20L — 3712H		20	φ40	φ42.28) φ40.8 (φ42.28)	37	φ12	<i>φ</i> 34	14	21	24.16	18.14	9	-	-	-	48° 3′	φ22.5	0.14
M2S 20R # 3715H		20	\$\phi 40	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	37	φ15	<i>φ</i> 34	14	21	24.16	18.14	9	5 × 2.3	2-M5	7	48° 3′	φ22.5	0.13
M2S 20L # 3715F		20	φ40	\$\dphi 40.8\$ \$(\phi 42.28)\$ \$(\phi 42.28)\$	37	φ15	φ34	14	21	24.16	18.14	9	5 × 2.3	2-M5	7	48° 3′	φ22.5	0.13
M2S 20R — 2812H		20	<i>φ</i> 40	\$\overline{\phi 40.8}\$\$ (\phi 42.28)	28	φ12	φ34	5	12	15.16	9.14	9	-	-	-	48° 3′	φ22.5	0.09
M2S 20L — 2812H	1	20	φ40	φ40.8 (φ52.53)	28	φ12	φ34	5	12	15.16	9.14	9	-	-	-	48° 3′	φ22.5	0.09
M2S25R — 4012H		25	φ50	φ51.33 (φ52.53)	40	φ12	φ42	11	21	23.13	16.27	10.5	-	-	-	49°21′	φ32.3	0.23
M2S25L — 4012H	_	25	φ50	φ51.33 (φ62.42)	40	φ12	φ42	11	21	23.13	16.27	10.5	-	-	-	49°21′	φ32.3	0.23
M2S 30R — 5116H		30	φ60	φ60.94 (φ62.42)	51	φ16	φ44	17	28	30.53	22.21	12.4	-	-	-	47°54′	φ38.9	0.36
M2S 30L — 5116H		30	φ60	$ \phi 60.94 $	51	φ16	φ44	17	28	30.53	22.21	12.4	-	-	-	47°54′	φ38.9	0.36
M2.5S 20R — 4814		20	φ50	(\$53.02) \$\phi 51.14 (\$53.02)	48	φ14	φ42	19	28	31.77	24.51	11.1	-	-	-	49°20′	φ28.6	0.30
M2.5S 20L — 4814	1:1	20	φ50	φ51.14 (¢53.02)	48	φ14	φ42	19	28	31.77	24.51	11.1	- () 20	2 145	-	49°20′	\$28.6	0.30
M2.5S 20R # 4820 M2.5S 20L # 4820		20	φ50 φ50	φ51.14 (φ53.02)	48 48	<i>φ</i> 20 <i>φ</i> 20	φ42 φ42	19 19	28 28	31.77 31.77	24.51	11.1	6×2.8 6×2.8	2-M5 2-M5	9.5	49°20′ 49°20′	φ28.6 φ28.6	0.26
M2.5S25R — 5016		25	φ ₅₀ φ _{62.5}	φ51.14 (φ65.69)	50	φ20 φ16	φ42 φ52	13.5	27	29.14	20.35	13.5	0 ^ 2.0	2-1013	9.5	49°30′	φ20.0 φ40.82	0.20
M2.5S25L — 5016		25	ϕ 62.5	φ64.16 (φ65.69)	50	φ16 φ16	φ52 φ52	13.5	27	29.14	20.35	13.5	_	_	_		φ40.82	
M2.5S 30R — 6318		30	φ75	φ64.16 (φ78.05)	63	φ18	φ55 φ55	20	34.5	37.07	27.03	15.5	_	_	_	48° 3′		0.71
M2.5S 30L — 6318		30	φ75 φ75	φ76.2 (φ78.05)	63	φ18 φ18	φ55 φ55	20	34.5	37.07	27.03	15	_	_	_	48° 3′		0.71
M3S 20R — 5816		20	φ60	φ76.2 (φ63.66)	58	φ16 φ16	φ50 φ50	23	35	38.95	29.83	14	_	_	_	49°30′		0.52
M3S 20L — 5816		20	φ60	φ61.39 (φ63.66) φ61.30	58	φ16 φ16	φ50 φ50	23	35	38.95	29.83	14	-	-	_	49°30′		0.52
M3S25R - 6020		25	φ75	φ61.39 (φ78.66) φ77.0	60	<i>φ</i> 20	φ65	17.5	32	35.06	24.33	16.2	-	-	-			
M3S25L - 6020		25	φ75	φ77.0 (φ78.66) φ77.0	60	φ20	φ65	17.5	32	35.06	24.33	16.2	-	_	-		φ48.18	
M3S 30R — 7522		30	φ90	φ93.46) φ91.28	75	<i>φ</i> 22	φ66	24	40	44.38	31.73	18.6	-	-	-	47°11′		1.19
M3S 30L — 7522		30	φ90	φ93.46) φ91.28	75	<i>φ</i> 22	φ66	24	40		31.73	18.6	-	-	-	47°11′		1.19
			<u> </u>	1471.20			· ·											

회	전속도별	허용전달	동력표	휨강도	(단위: V	V)	회전	!속도별 ⁶	허용전달동	등력표 기	티면강 5	E (단위:	(W)	백래시	
300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	(단위: mm)	상품 기호
49.7	99.4	145.6	184.4	219.6	251.7	271.4	24.9	51.3	76.5	98.1	118.0	136.3	147.7	0.05~0.12	M1S25R — 2306H
	,,,,	1 1310		21710	23 117	2,		3 1.13	7 0.0	7011		130.5	, .,		M1S25L — 2306H
73.3	146.6	198.1	254.5	298.5	348.7	387.5	43.6	90.0	130.7	167.2	200.4	230.8	250.8	0.05~0.12	M1S 30R * 2610H
															M1S 30L * 2610H M1.5S 20R — 2810H
															M1.5S 20L — 2810H
107.5	215.1	306.9	387.5	460.0	525.5	568.4	45.5	93.8	136.2	174.2	208.8	240.5	261.4	0.05~0.12	M1.5S 20R # 2812H
															M1.5S 20L # 2812H
163.6	319.4	444.2	552.1	646.4	756.7	829.3	83.8	168.7	238.9	300.7	355.5	419.4	461.9	0.05~0.12	M1.5S25R — 3410H
103.0	319.4	444.2	332.1	040.4	/30./	029.3	03.0	100.7	230.9	300.7	333.3	419.4	401.9	0.03~0.12	M1.5S25L — 3410H
250.1	475.6	658.2	814.5	966.1	1.108 9	1,197.3	152.8	299.7	422.1	529.0	633.7	733.1	795.3	0.05~0.12	M1.5S 30R — 3812H
					1,100.5	1,157.5	132.0	255.7	122.1	323.0	033.7	7 33.1	7 7 3 . 3	0.03 0.12	M1.5S 30L — 3812H
이후 아리	배는 모두 k	W 단위의	수치입니	다. I											M2C 20D 2742H
															M2S 20R — 3712H
0.251	0.488	0.680	0.847	0.998	1.150	1.245	0.108	0.216	0.307	0.387	0.460	0.535	0.581	0.05~0.12	M2S 20L — 3712H M2S 20R # 3715H
															M2S 20L # 3715H
															M2S 20R — 2812H
0.251	0.488	0.680	0.847	0.998	1.150	1.245	0.108	0.216	0.307	0.387	0.460	0.535	0.581	0.05~0.12	M2S 20L — 2812H
0.403	0.740	1 021	1 261	1.522	1 701		0.210	0.403	0.550	0.600	0.050	1.011		0.05 0.12	M2S25R — 4012H
0.403	0.748	1.021	1.261	1.533	1.791	-	0.210	0.403	0.559	0.699	0.859	1.011	-	0.05~0.12	M2S25L — 4012H
0.596	1.073	1.455	1.814	2.139	_	_	0.371	0.690	0.952	1.202	1.432	_	_	0.05~0.12	M2S 30R — 5116H
0.570	1.073	1.433	1.017	2.133			0.571	0.000	0.552	1.202	1.432			0.03 0.12	M2S 30L — 5116H
															M2.5S 20R — 4814H
0.491	0.916	1.259	1.556	1.850	2.115	-	0.214	0.411	0.576	0.721	0.865	0.997	-	0.06~0.15	M2.5S 20L — 4814H
															M2.5S 20R # 4820H
															M2.5S 20L # 4820H M2.5S25R — 5016H
0.805	1.423	1.909	2.449	2.961	-	-	0.427	0.778	1.062	1.380	1.685	-	-	0.06~0.15	M2.5S25L — 5016H
															M2.5S 30R — 6318H
1.117	1.953	2.647	3.281	-	-	-	0.709	1.278	1.763	2.213	-	-	-	0.06~0.15	M2.5S 30L — 6318H
0.070	1.500	2116	2671	2.155			0.20=	0.710	0.000	1 252	1 400			0.06.015	M3S 20R — 5816H
0.878	1.582	2.146	2.674	3.155	-	-	0.387	0.719	0.993	1.253	1.493	-	-	0.06~0.15	M3S 20L — 5816H
1.362	2.354	3.226	4.131	_		-	0.732	1.305	1.820	2.360	_	_	_	0.06~0.15	M3S25R — 6020H
1.302	2.334	5.220	4.131	_	_	_	0.732	1.505	1.020	2.500	_	_	_	0.00,~0.13	M3S25L — 6020H
1.922	3.291	4.481	_	_	_	-	1.237	2.184	3.026	_	_	_	_	0.06~0.15	M3S 30R — 7522H
							0,								M3S 30L — 7522H

스파이럴 마이터 (S45C) MGH열처리 • 구멍연삭

기어비 1:1


단위:mm


정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①	전체 기어 잇수
JIS B 1704 4급	S45C	20도	35도	치부 고주파	HRC47~53	표 참조	20

- ★표면처리는 하지 않았습니다.
- ★허용전달동력표는 L 나선 기어가 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수 치입니다.
- ★MGH시리즈는 치부 고주파 열처리, 구멍 연삭 가공, 키 재료와 세트 스크류가 포함되어 있습니다. 추가 가공 없이 사용할 수 있는 완제품입니다.
- ★【+】에는 나사 구멍1곳, 세트 스크류가 1개 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	모듈	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 치끝의 거리	치폭	키홈	나	사	이끝각	중량
	и	m	d	da	A	dd(H7)	dh	lh	l	lw	la	b	$b_2 \times t_2$	M	ls	δa	W(g)
MGH R+8		1	φ20	φ21.12	20	ø 8	φ16	8	12	13.43	10.56	4.5	-	M4	4	50°31′	16.0
MGHL+8		1	<i>φ</i> 20	φ21.12	20	ø 8	ø 16	8	12	13.43	10.56	4.5	-	M4	4	50°31′	16.0
MGH R+ 10		1.25	\$ 25	φ26.42	25	φ10	φ 20	10	15.5	17.13	13.21	6	-	M4	5	49°22′	32.0
MGH L + 10		1.25	\$ 25	φ26.42	25	φ10	φ20	10	15.5	17.13	13.21	6	-	M4	5	49°22′	32.0
MGH R= 12	1:1	1.5	ø 30	φ31.85	30	φ12	φ24	12	18.5	20.44	15.93	7	4 × 1.8	M5	6	50° 5′	54.9
MGH L = 12		1.5	\$ 30	φ31.85	30	φ12	<i>φ</i> 24	12	18.5	20.44	15.93	7	4 × 1.8	M5	6	50° 5′	54.9
MGH R= 14		2	φ40	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	40	φ14	φ32	16	24	27.16	21.14	9	5 × 2.3	M5	8	48° 3′	137.6
MGH L = 14		2	φ40	φ40.88	40	φ14	φ32	16	24	27.16	21.14	9	5 × 2.3	M5	8	48° 3′	137.6

인포메 이션

호	전속도별	허용전달	동력표	휨강도	(단위: kW	/)	회간	전속도별 혀	허용전달동	력표	면강도	(단위: k	W)	백래시	상품 기호
300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	(단위: mm)	영품 기호
0.030	0.061	0.091	0.118	0.142	0.164	0.179	0.012	0.026	0.040	0.052	0.063	0.074	0.081	0.05~0.12	MGH R + 8 MGH L + 8
0.062	0.125	0.184	0.234	0.280	0.322	0.348	0.026	0.054	0.081	0.104	0.126	0.146	0.158	0.05~0.12	MGH R+ 10 MGH L+ 10
0.107	0.215	0.297	0.387	0.460	0.525	0.568	0.045	0.093	0.136	0.174	0.208	0.240	0.261	0.05~0.12	MGH R= 12 MGH L= 12
0.251	0.488	0.680	0.847	0.998	1.150	1.245	0.108	0.216	0.307	0.387	0.460	0.535	0.581	0.05~0.12	MGH R= 14 MGH L = 14

기어비 1:1

신상품

(구) ML 시리즈(S45C) 타입의 후속 기 종 ML-N 시리즈입니다.

단위 : mm

정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 3급	S45C	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다. 조임 나사는 본체에 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★본 상품은 조임 나사를 조임으로써 마찰력에 의해 축과 체결하므로 축을 손상시키는 것을 피할 수 있습니다.

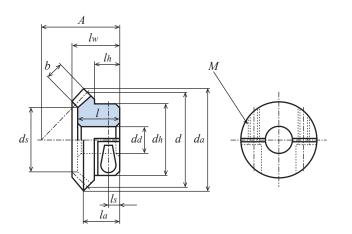
①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나	·사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	M	ls	δa	ds	W(g)
ML1S 20 — 2108N		20	φ20	φ21.41	21	ø 8	ø 18	10	13	14.48	11.71	4.3	МЗ	4	49° 3′	φ11.8	19.5
ML1.5S 20 — 3010N		20	φ30	φ32.12	30	φ10	φ24	12	18.5	20.38	16.06	6.8	M4	5	49° 3′	φ17.7	54.6
ML1.5S 25 — 3412N	1:1	25	φ37.5	φ39.62	34	φ12	φ30	12.5	19	21.11	16.31	7.5	M5	5.5	48°51′	φ23.8	93.4
ML2S 20 — 3715N		20	φ40	φ41.32	37	ø 15	φ34	14	21	23.85	18.41	8.5	M5	6	49° 3′	φ23.9	119.2
ML2.5S 20 — 4820N		20	φ50	φ51.66	48	φ 20	φ42	19	28	31.86	24.77	11.1	M6	7.5	49° 3′	φ28.5	236.6

ML 간이 록 스트레이트 마이터 (SUS304) 모듈 0.8/1/1.5/2

기어비 1:1

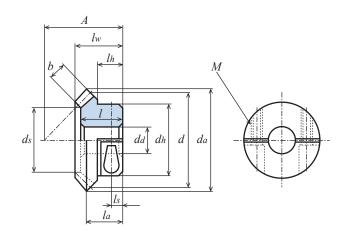
단위:mm


정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	SUS304	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다. 조임 나사는 본체에 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★본 상품은 조임 나사를 조임으로써 마찰력에 의해 축과 체결하므로 축을 손상시키는 것을 피할 수 있습니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 치끝의 거리	치폭	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	M	ls	δa	ds	W(g)
ML80SU 20 — 1605		20	ø 16	φ17.13	16	φ 5	φ14.5	7.25	10	10.95	8.57	3.7	M2.5	3	49° 3′	ø 9.5	10.2
ML1SU 20 — 2106		20	φ20	φ21.41	21	ø 6	ø 16	9	13	14.48	11.71	4.3	МЗ	4	49° 3′	φ11.8	18.6
ML1SU 30 — 2808	1:1	30	φ 30	φ31.41	28	ø 8	φ24	11	16.5	17.84	13.71	6.2	M4	5	47°42′	φ19.4	54.3
ML1.5SU 20 — 3010	.	20	φ30	φ32.12	30	φ10	φ24	12	18.5	20.38	16.06	6.8	M4	5	49° 3′	φ17.7	57.3
ML1.5SU 25 — 3412		25	φ37.5	φ39.62	34	φ12	φ30	12.5	19	21.11	16.31	7.5	M5	5.5	48°51′	φ23.8	94.0
ML2SU 20 — 3715		20	\$\phi 40	φ41.32	37	ø 15	φ34	14	21	23.85	19.07	8.5	M5	6	49° 3′	φ23.9	121.5

인포메 이션


기 어 박 스

3	회전속도빌	를 허용전달	. 동력표	휨강도	(단위: W)		나사의 권장 조임 토크	권장 상대 기어 (KG 상품)	백래시	상품 기호
10 rpm	50 rpm	100 rpm	250 rpm	500 rpm	800 rpm	1,000 rpm	(단위: N • m)	전성 성내 기어 (NG 성품)	(단위: mm)	성품 기오
1.0	5.1	10.2	25.6	51.3	82.2	102.0	1.17	M1S 20 — 2106	0.05~0.12	ML1S 20 — 2108N
3.5	17.9	35.8	89.7	179.4	277.3	332.8	2.54	M1.5S 20 — 2810	0.05~0.12	ML1.5S 20 — 3010N
5.5	27.9	55.8	139.5	279.1	414.4	493.4	5.09	M1.5S 25 — 3410	0.05~0.12	ML1.5S 25 — 3412N
8.1	40.8	81.6	204.0	405.4	597.9	710.2	5.09	M2S 20 — 3712	0.05~0.12	ML2S 20 — 3715N
16.3	81.9	163.9	409.8	786.6	1141.2	1343.2	7.84	M2.5S 20 — 4814	0.06~0.15	ML2.5S 20 — 4820N

스트레이트 마이터 (SUS304) 모듈 0.8/1/1.5/2 ML 간이 록

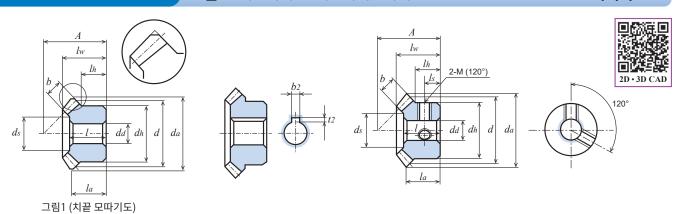
기어비 1 : 1

3	회전속도별	를 허용전달	동력표	휨강도	(단위: W))	나사의 권장 조임 토크	권장 상대 기어 (KG 상품)	백래시	상품 기호
10 rpm	50 rpm	100 rpm	250 rpm	500 rpm	800 rpm	1,000 rpm	(단위: N • m)	전영 영대 기 에 (MG 영 점)	(단위: mm)	요목 기호
0.2	1.3	2.6	6.5	13.1	20.9	26.2	0.68	M80SU 20 * 1605	0.02~0.08	ML80SU 20 - 1605
0.4	2.4	4.8	12.1	24.4	39.1	48.5	0.98	M1SU 20 * 2106	0.05~0.12	ML1SU 20 — 2106
1.2	6.1	12.2	30.5	61.1	94.5	113.5	2.45	M1SU 30 * 2608	0.05~0.12	ML1SU 30 — 2808
1.6	8.5	17.0	42.7	85.4	132.0	158.4	2.45	M1.5SU 20 — 2810	0.05~0.12	ML1.5SU 20 — 3010
2.6	13.2	26.5	66.4	132.9	197.3	234.9	3.92	M1.5SU 25 — 3410	0.05~0.12	ML1.5SU 25 — 3412
3.8	19.4	38.8	97.1	193.0	284.7	338.1	3.92	M2SU 20 — 3712	0.05~0.12	ML2SU 20 — 3715

평 기 어

스트레이트 마이터 (S45C)

모듈 0.5/0.8/1/1.25/1.5/2/2.5/3/4


기어비 1:1

정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 3급	S45C	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★【*】에는 나사 구멍2곳 , 세트 스크류가 2개 포함. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수 치입니다.(그림1 참조)
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

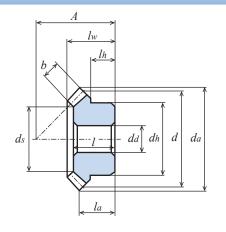
상품 기호	기어비 <i>u</i>	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	키홈	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	$b_2 \times t_2$	2-M	ls	δa	ds	W(g)
M50S 20 - 1103		20	φ10	φ10.71	11	φ3(H8)	φ 8	5	7	8	6.35	2.5	-	-	-	49° 3′	φ 4.9	2.7
M50S 20 * 1103		20	φ10	φ10.71	11	φ3(H8)	ø 8	5	7	8	6.35	2.5	-	2-M2.5	2.5	49° 3′	φ 4.9	2.5
M50S 25 - 1204		25	φ12.5	φ13.21	12	φ4(H8)	φ11	5	7	8.11	6.10	3.0	-	-	-	48°14′	φ 6.5	5.2
M50S 25 * 1204		25	φ12.5	φ13.21	12	φ4(H8)	φ11	5	7	8.11	6.10	3.0	-	2-M3	3	48°14′	φ 6.5	4.6
M50S 30 — 1404		30		φ15.71	14	φ4(H8)	φ12	5	8	9.21	6.85	3.5	-	-	-	47°42′	φ 8.1	7.4
M50S 30 * 1404		30	φ15	φ15.71	14	φ4(H8)	φ12	5	8	9.21	6.85	3.5	-	2-M3	3	47°42′	φ 8.1	7.0
M80S 20 — 1605		20	ø 16	φ17.13	16	ø 5	φ12	6	10	11	8.57	3.7	-	-	-	49° 3′	φ 9.5	8.7
M80S 20 * 1605		20	φ16	φ17.13	16	φ 5	φ12	6	10	11	8.57	3.7	-	2-M3	3	49° 3′	φ 9.5	8.4
M80S 25 — 1805		25	φ20	φ21.13	18	ø 5	ø 16	6	10.5	11.67	8.57	4.7	-	-	-	48°51′	φ11.7	16.8
M1S 20 — 2106		20	φ20	φ21.41	21	ø 6	ø 16	9	13	14.53	11.71	4.3	-	-	-	49° 3′	φ11.8	19.7
M1S 20 * 2106		20	φ 20	φ21.41	21	ø 6	ø 16	9	13	14.53	11.71	4.3	-	2-M4	4.5	49° 3′	φ11.8	18.9
M1S 20 * 2108		20	φ20	φ21.41	21	ø 8	ø 16	9	13	14.53	11.71	4.3	-	2-M4	4.5	49° 3′	φ11.8	16.9
M1S 20 — 1406		20	φ20	φ21.41	14	ø 6	ø 16	2	6	7.53	4.71	4.3	-	-	-	49° 3′	φ11.8	10.2
M1S 20 = 1408	1:1	20	φ20	φ21.41	14	ø 8	ø 16	2	6	7.53	4.71	4.3	3 × 1.4	-	-	49° 3′	φ11.8	9.0
M1S 25 — 2306		25	φ 25	φ26.41	23	ø 6	φ20	8	13	14.7	11.21	5.3	-	-	-	48°51′	φ15.0	33.2
M1S 25 * 2308		25	φ 25	φ26.41	23	ø 8	φ20	8	13	14.7	11.21	5.3	-	2-M4	4	48°51′	φ15.0	30.0
M1S 25 * 2310		25	φ 25	φ26.41	23	ø 10	φ20	8	13	14.7	11.21	5.3	-	2-M4	4	48°51′	φ15.0	27.3
M1S 30 — 2608		30	φ30	φ31.41	26	ø 8	φ22	8.9	14.5	15.89	11.71	6.2	-	-	-	47°42′	φ19.4	46.4
M1S 30 * 2608		30	φ30	φ31.41	26	ø 8	φ22	8.9	14.5	15.89	11.71	6.2	-	2-M5	4.5	47°42′	φ19.4	44.7
M1S 30 * 2610		30	φ30	φ31.41	26	ø 10	φ22	8.9	14.5	15.89	11.71	6.2	-	2-M5	4.5	47°42′	φ19.4	41.8
M1S 30 * 2612		30	φ30	φ31.41	26	φ 12	φ22	8.9	14.5	15.89	11.71	6.2	-	2-M5	4.5	47°42′	φ19.4	38.3
M1S 30 — 2008		30	φ30	φ31.41	20	ø 8	φ22	2.9	8.5	9.89	5.71	6.2	-	-	-	47°42′	φ19.4	30.9
M1.25S 20 — 2408		20	φ25	φ26.77	24	ø 8	φ20	8.99	14	16	12.38	5.5	-	-	-	49° 3′	φ14.4	33.1
M1.25S 30 — 3210		30	φ37.5	φ39.27	32	ø 10	φ28	10	17	18.85	14.13	7	-	-	-	47°42′	φ25.2	88.6
M1.5S 20 — 2810		20	φ30	φ32.12	28	\$10	<i>φ</i> 24	10	16.5	18.53	14.06	6.8	-	-	-	49° 3′	φ17.7	54.9
M1.5S 20 — 2110		20	φ30	φ32.12	21	ø 10	<i>φ</i> 24	3	9	11	7.06	6	-	-	-	49° 3′	φ19.0	32.8
M1.5S 25 — 3410		25	φ37.5	φ39.62	34	ø 10	φ30	11.5	19	21.26	16.31	7.5	-	-	-	48°51′	<i>φ</i> 23.7	106.5
M1.5S 30 — 3812		30	φ45	<i>φ</i> 47.12	38	φ12	φ33	12.34	21	22.83	16.56	9.3	-	-	-	47°42′	<i>φ</i> 29.6	152.0
				(442.02)									0 3	후 아래의	중량은		단위의 수치	
M2S 20 — 3712		20	φ40	φ42.83) φ41.32	37	φ12	φ34	14	21	24	18.41	8.5	-	-	-	49° 3′		0.14
M2S 20 — 2812		20	φ40	φ42.83) φ41.32	28	φ12	φ34	5	12	15	9.41	8.5	-	-	-	49° 3′		0.09
M2S 25 — 4012		25	φ50	φ52.83) φ51.33	40	φ12	φ42	10.99	21	23.34		10.5	-	-	-	48°51′		0.23
M2S 30 — 5116		30	φ60	φ62.83) φ61.36	51	φ16	φ44	16.79	28	30.77	22.41	12.4	-	-	-	47°42′	-	0.36
M2.5S 20 — 4814		20	φ50	φ53.54) φ51.66	48	φ14	φ42	19	28	32.06		11.1	-	-	-	49° 3′		0.30
M2.5S 20 — 3514	1:1	20	φ50	φ53.54) φ51.66	35	φ14	φ42 452	6	15	19.06	11.77	11.1	-	-	-	49° 3′		0.17
M2.5S 25 — 5016		25	φ62.5	(φ66.04) φ64.16	50	φ16	φ52	13.5	27	29.42	20.52	13.5	-	-	-	48°51′		0.44
M2.5S 30 — 6318		30	φ75	φ78.54) φ76.7 (φ78.54)	63	φ18	φ55	20.5	34.5	37.71	27.27	15.5	-	-	-	47°42′		0.71
M2.5S 30 — 5016		30	φ75	φ78.54) φ76.7 (φ64.24)	50	φ16	φ55	7.5	21.5	24.71	14.27	15.5	-	-	-	47°42′	,	0.51
M3S 20 — 5816		20	φ60	φ64.24) φ61.99	58	φ16	φ50	23	35	39.06	30.12	13.6	-	-	-	49° 3′		0.52
M3S 20 — 4216		20	φ60	φ64.24) φ61.99	42	φ16	φ50	7	19	23.06		13.6	-	-	-	49° 3′	-	0.30
M4S 20 — 7520		20	φ 80	φ85.66) φ82.65	75	<i>φ</i> 20	<i>φ</i> 64	27	45	50.05	37.83	18.6	-	-	-	49° 3′	φ4/.3	1.14

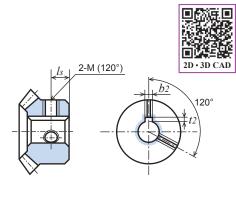
회:	전속도별	허용전달	동력표	휨강도	(단위: V	V)	회전	속도별 혀	허용전달동	등력표 기	디면강 5	E (단위:	(W)	백래시	
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호
0.1	1.5	3.1	6.2	9.3	12.4	15.5	-	-	-	-	-	-	-	0.02~0.08	M50S 20 - 1103 M50S 20 * 1103
0.2	2.5	5.0	10.0	15.0	20.1	25.1	-	-	-	-	-	-	-	0.02~0.08	M50S 25 — 1204
0.3	3.8	7.6	15.2	22.9	30.5	38.1	-	-	-	-	-	-	-	0.02~0.08	M50S 25 * 1204 M50S 30 - 1404
0.6	6.0	12.1	24.2	36.3	48.4	60.6	_	-	-	-	-	-	-	0.02~0.08	M50S 30 * 1404 M80S 20 - 1605
1.0	10.2	20.6	41.2	(1.0	02.6	102.2								0.02.000	M80S 20 * 1605
1.0	10.3	20.6	41.3	61.9	82.6	103.3	-	-	-	-	-	-	-	0.02~0.08	M80S 25 — 1805
1.0	10.5	21.2	42.3	63.5	84.7	104.7	-	-	-	-	-	-	-	0.05~0.12	M1S 20 - 2106 M1S 20 * 2106 M1S 20 * 2108
1.0	10.5	21.2	42.3	63.5	84.7	104.7	-	-	-	-	-	-	-	0.05~0.12	M1S 20 - 1406 M1S 20 = 1408
1.7	17.5	35.0	70.0	105.0	139.9	169.1	-	-	-	-	-	-	-	0.05~0.12	M1S 25 - 2306 M1S 25 * 2308 M1S 25 * 2310
2.6	26.2	52.4	104.7	157.2	202.7	241.9	-	-	-	-	-	-	-	0.05~0.12	M1S 30 - 2608 M1S 30 * 2608 M1S 30 * 2610 M1S 30 * 2612
2.6	26.2	52.4	104.7	157.2	202.7	241.9	-	_	-	-	-	-	-	0.05~0.12	M1S 30 — 2008
2.0	20.9	41.9	83.9	125.9	167.1	206.7	-	_	-	-	-	-	-	0.05~0.12	M1.25S 20 — 2408
4.6	46.9	93.9	187.7	274.3	347.8	414.3	-	-	-	-	-	-	-	0.05~0.12	M1.25S 30 — 3210
3.7	37.1	74.4	148.9	223.3	287.6	344.7	0.2	2.8	5.7	11.7	18.1	23.4	27.6	0.05~0.12	M1.5S 20 — 2810
3.3	33.5	67.0	134.1	201.1	259.2	310.8	0.2	2.6	5.3	10.6	15.5	20.8	25.1	0.05~0.12	M1.5S 20 — 2110
5.6	56.5	113.1	226.3	331.5	419.3	499.1	0.5	5.1	10.5	21.3	31.4	40.2	48.4	0.05~0.12	M1.5S 25 — 3410
8.8	88.3	176.7	353.5	501.8	630.0	744.7	0.9	9.5	19.1	38.7	55.6	70.7	84.4	0.05~0.12	M1.5S 30 — 3812
이후 아리	l는 모두 k	W 단위의	수치입니	라.											
0.008	0.083	0.167	0.334	0.484	0.611	0.726	0.0006	0.006	0.013	0.027	0.040	0.051	0.061	0.05~0.12	M2S 20 — 3712
0.008	0.083	0.167	0.334	0.484	0.611	0.726	0.0006	0.006	0.013	0.027	0.040	0.051	0.061	0.05~0.12	M2S 20 — 2812
0.013	0.139	0.279	0.554	0.777	0.971	1.143	0.001	0.013	0.026	0.054	0.076	0.097	0.115	0.05~0.12	M2S 25 — 4012
0.020	0.209	0.418	0.809	1.121	1.388	1.637	0.002	0.023	0.047	0.092	0.129	0.163	0.195	0.05~0.12	M2S 30 — 5116
0.016	0.169	0.338	0.672	0.941	1.177	1.385		0.013	0.028	0.056	0.080	0.101	0.121	0.06~0.15	M2.5S 20 — 4814
0.016	0.169	0.338	0.672	0.941	1.177	1.385		0.013	0.028	0.056	0.080	0.101	0.121	0.06~0.15	M2.5S 20 — 3514
0.027	0.279	0.558	1.069	1.480	1.829	2.171		0.027	0.055	0.107	0.150	0.189	0.229	0.06~0.15	M2.5S 25 — 5016
0.040	0.408	0.817	1.517	2.070		3.109		0.046	0.094	0.177	0.247	0.312	0.387	0.06~0.15	M2.5S 30 — 6318
0.040	0.408	0.817	1.517	2.070	2.557	3.109		0.046	0.094	0.177	0.247	0.312	0.387	0.06~0.15	M2.5S 30 — 5016
0.029	0.297	0.594	1.148	1.591	1.971	2.323	0.002	0.025	0.050	0.098	0.139	0.175	0.209	0.06~0.15	M3S 20 — 5816
0.029	0.297	0.594	1.148	1.591	1.971	2.323	0.002	0.025	0.050	0.098	0.139	0.175	0.209	0.06~0.15	M3S 20 — 4216
0.071	0.719	1.438	2.634	3.577	4.465	5.421	0.006	0.062	0.126	0.236	0.327	0.418	0.516	0.06~0.15	M4S 20 — 7520

M열처리

모듈 1.5/2/2.5/3/4

스트레이트 마이터 (S45C)


기어비 1:1



정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	S45C	20도	치부 고주파	HRC47~53	표 참조

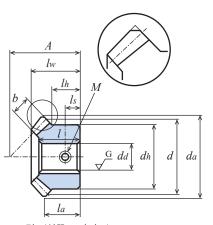
- ★표면처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★ 【#】에는 키 홈, 키 재료와 나사 구멍2곳 , 세트 스크류가 2개 포함 ; 【=】에는 키 홈, 키 재료가 포함되어 있습니다. ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조) ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	키홈	나	사	이끝각	스폿페이싱 직경	중량
	и	Z	d	da	A	da(H8)	dh	lh	1	lw	la	b	$b_2 \times t_2$	2-M	ls	δ_a	(참고치) ds	W(g)
M1.5S 20 — 2810H	и	20	φ 30	φ32.12	28	<i>φ</i> 10	<i>φ</i> 24	10	16.5	18.53	14.06	6.8	-	- Z-IVI	-	49° 3′	ϕ 17.7	54.9
M1.5S 20 # 2810H		20	φ 30	φ32.12	28	φ10	φ24	10	16.5	18.53	14.06	6.8	3 × 1.4	2-M4	5	49° 3′	φ17.7	53.7
M1.5S 20 # 2812H		20	φ 30	φ32.12	28	φ12	φ24	10	16.5	18.53	14.06	6.8	4 × 1.8	2-M4	5	49° 3′	φ17.7	49.0
M1.5S 20 — 2110H		20	φ 30	φ32.12	21	φ10	<i>φ</i> 24	3	9	11	7.06	6	-	-	-	49° 3′	φ19.0	32.8
M1.5S 20 = 2110H	1:1	20	φ 30	φ32.12	21	φ10	φ24	3	9	11	7.06	6	3 × 1.4	-	-	49° 3′	φ19.0	32.5
M1.5S 25 - 3410H		25	φ 37.5	φ39.62	34	φ10	φ30	11.5	19	21.26	16.31	7.5	-	-	-	48°51′	φ23.7	106.5
M1.5S 30 — 3812H		30	φ 45	φ47.12	38	φ12	φ33	12.34	21	22.83	16.56	9.3	-	-	-	47°42′	φ29.6	152.0
M1.5S 30 # 3812H		30	φ 45	φ47.12	38	φ12	φ33	12.34	21	22.83	16.56	9.3	4 × 1.8	2-M4	6.5	47°42′	φ29.6	150.1
M1.5S 30 # 3815H		30	φ 45	φ47.12	38	ø 15	φ33	12.34	21	22.83	16.56	9.3	5 × 2.3	2-M4	6.5	47°42′	φ29.6	139.0
													0 3	후 아래의	중량은	모두 kg 단	단위의 수치	1입니다.
M2S 20 — 3712H		20	φ 40	φ42.83) φ41.32	37	φ12	φ34	14	21	24	18.41	8.5	-	-	-	49° 3′	φ23.9	0.14
M2S 20 # 3712H		20	φ 40	φ42.83) φ41.32	37	φ12	φ34	14	21	24	18.41	8.5	4 × 1.8	2-M5	7	49° 3′	φ23.9	0.14
M2S 20 # 3715H		20	φ 40	φ42.83) φ41.32	37	ø 15	<i>ф</i> 34	14	21	24	18.41	8.5	5 × 2.3	2-M5	7	49° 3′	φ23.9	0.13
M2S 20 — 2812H		20	φ 40	φ42.83) φ41.32	28	φ12	φ34	5	12	15	9.41	8.5	-	-	-	49° 3′	φ23.9	0.085
M2S 20 = 2812H		20	φ 40	φ42.83) φ41.32	28	φ12	φ34	5	12	15	9.41	8.5	4 × 1.8	-	-	49° 3′	φ23.9	0.084
M2S 20 = 2816H		20	φ 40	φ42.83) φ41.32 (φ52.83)	28	ø 16	<i>ф</i> 34	5	12	15	9.41	8.5	5 × 2.3	-	-	49° 3′	φ23.9	0.076
M2S 25 — 4012H		25	φ 50	\$\overline{\psi_52.83}\$\$\overline{\phi_51.33}\$	40	φ12	<i>φ</i> 42	10.99	21	23.34	16.41	10.5	-	-	-	48°51′	φ32.3	0.23
M2S 30 — 5116H		30	φ 60	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	51	φ16	φ44	16.79	28	30.77	22.41	12.4	-	-	-	47°42′	φ38.9	0.36
M2S 30 # 5120H		30	φ 60	φ61.36 (φ53.54)	51	φ20	φ44	16.79	28	30.77	22.41		6 × 2.8	2-M5	8.5	47°42′	φ38.9	0.33
M2.5S 20 — 4814H		20	φ 50	φ51.66 (φ53.54)	48	φ14	φ42	19	28	32.06	24.77	11.1	-	-	-	49° 3′	φ28.5	0.29
M2.5S 20 # 4815H		20	φ 50	φ51.66 (φ53.54)	48	φ15	φ42	19	28	32.06	24.77	11.1	5 × 2.3	2-M5	9.5	49° 3′	φ28.5	0.29
M2.5S 20 # 4816H		20	φ 50	φ51.66 (φ53.54)	48	φ16	φ42	19	28	32.06	24.77	11.1	5 × 2.3	2-M5	9.5	49° 3′	φ28.5	0.28
M2.5S 20 # 4818H		20	φ 50	φ51.66 (φ53.54)	48	φ18	φ42	19	28	32.06	24.77	11.1	6 × 2.8	2-M5	9.5	49° 3′	φ28.5	0.27
M2.5S 20 # 4820H M2.5S 20 — 3514H	1 • 1	20	φ 50	φ51.66 (φ53.54)	48	φ20	φ42	19	28	32.06	24.77	11.1	6 × 2.8	2-M5	9.5	49° 3′ 49° 3′	φ28.5	0.25
M2.5S 20 = 3514H M2.5S 20 = 3515H	1:1	20	φ 50φ 50	φ51.66 (φ53.54)	35 35	φ14 φ15	φ42 φ42	6	15 15	19.06 19.06	11.77	11.1	5 × 2.3	-	-	49° 3′	ϕ 28.5 ϕ 28.5	0.17
M2.55 20 = 3515H M2.55 20 = 3518H		20	ϕ 50	φ51.66 (φ53.54)	35	φ13 φ18	φ42 φ42	6	15	19.06	11.77	11.1	6×2.8	_	-	49° 3′	ϕ 28.5	0.16
M2.5S 20 = 3510H		20	φ 50	φ51.66 (φ53.54)	35	φ20	φ42	6	15	19.06	11.77	11.1	6×2.8	_	-	49° 3′	φ28.5	0.15
M2.5S 25 — 5016H		25	1'	φ51.66 (φ66.04) φ64.16	50	φ26 φ16	φ52	13.5	27	29.42	20.52	13.5	-	_	_	48°51′	φ40.8	0.44
M2.5S 30 — 6318H		30	φ 75	φ04.10 (φ78.54) φ76.7	63	φ18	φ55	20.5	34.5	37.71	27.27	15.5	-	_	-	47°42′		0.71
M2.5S 30 — 5016H		30	φ 75	φ76.7 φ78.54) φ76.7	50	φ16	φ55	7.5	21.5	24.71	14.27	15.5	-	_	-		φ49.1	0.50
M3S 20 — 5816H		20	φ 60	φ64.24) φ61.99	58	φ16	φ50	23	35	39.06	30.12	13.6	-	-	-	49° 3′	φ35.5	0.52
M3S 20 # 5820H		20	φ 60	φ64.24) φ61.99	58	φ20	φ50	23	35	39.06	30.12	13.6	6 × 2.8	2-M6	11.5	49° 3′		0.49
M3S 20 # 5825H		20	φ 60	φ64.24) φ61.99	58	φ 25	φ 50	23	35	39.06	30.12	13.6	8 × 3.3	2-M6	11.5	49° 3′	φ35.5	0.43
M3S 20 = 4220H		20	φ 60	φ64.24) φ61.99	42	φ20	φ 50	7	19	23.06	14.12	13.6	6 × 2.8	-	-		φ35.5	0.28
M3S 25 — 6020H		25	φ 75	φ79.24) φ77	60	φ20	ø 65	17.5	32	35.31	24.62	16.2	-	-	-	48°51′	φ48.1	0.79
M3S 30 — 7522H		30	ø 90	φ94.24) φ92.04	75	φ22	ø 66	23.64	40	44.65	32.12	18.6	-	-	-	47°42′	φ57.3	1.20
M3S 30 # 7530H		30	ø 90	φ94.24) φ92.04	75	ø 30	ø 66	23.64	40	44.65	32.12	18.6	8× 3.3	2-M6	12	47°42′	φ57.3	1.09
M4S 20 — 7520H		20	φ 80	φ85.66) φ 82.65	75	φ20	φ64	27	45	50.05	37.83	18.6	-	-	-	49° 3′	φ47.3	1.14

회	전속도별	허용전딜	동력표	휨강도	(단위: \	N)	회전	!속도별 ⁶	허용전달동	등력표 기	치면강되	- - (단위:	: W)	백래시	
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호
3.4	34.4	68.9	137.8	206.7	267.0	321.6	0.7	8.0	16.5	34.0	52.0	68.0	82.8	0.05~0.12	M1.5S 20 — 2810H M1.5S 20 # 2810H M1.5S 20 # 2812H
3.1	31.7	63.5	127.0	190.5	246.2	296.4	0.6	7.4	15.2	31.4	48.0	62.8	76.4	0.05~0.12	M1.5S 20 - 2110H M1.5S 20 = 2110H
5.3	53.6	107.2	214.4	314.6	400.3	478.5	1.3	14.7	30.4	62.7	93.6	120.6	145.6	0.05~0.12	M1.5S 25 — 3410H
8.3	83.2	166.5	333.1	475.1	599.9	712.1	2.3	26.4	54.5	112.5	163.3	208.9	250.4	0.05~0.12	M1.5S 30 — 3812H M1.5S 30 # 3812H M1.5S 30 # 3815H
이후 아리	∦는 모두 k	W 단위의	수치입니	다.										ı	
0.007	0.078	0.156	0.313	0.455	0.578	0.689	0.001	0.018	0.038	0.079	0.117	0.151	0.182	0.05~0.12	M2S 20 — 3712H M2S 20 # 3712H M2S 20 # 3715H
0.007	0.078	0.156	0.313	0.455	0.578	0.689	0.001	0.018	0.038	0.079	0.117	0.151	0.182	0.05~0.12	M2S 20 - 2812H M2S 20 = 2812H M2S 20 = 2816H
0.013	0.131	0.262	0.522	0.735	0.923	1.091	0.003	0.037	0.076	0.156	0.224	0.285	0.340	0.05~0.12	M2S 25 - 4012H
0.019	0.197	0.394	0.765	1.066	1.328	1.564	0.005	0.064	0.132	0.265	0.376	0.474	0.564	0.05~0.12	M2S 30 — 5116H M2S 30 # 5120H
0.015	0.157	0.314	0.626	0.881	1.108	1.309	0.003	0.038	0.079	0.162	0.232	0.295	0.353	0.06~0.15	M2.5S 20 — 4814H M2.5S 20 # 4815H M2.5S 20 # 4816H M2.5S 20 # 4818H M2.5S 20 # 4820H
0.015	0.157	0.314	0.626	0.881	1.108	1.309	0.003	0.038	0.079	0.162	0.232	0.295	0.353	0.06~0.15	M2.5S 20 - 3514H M2.5S 20 = 3515H M2.5S 20 = 3518H M2.5S 20 = 3520H
0.026	0.261	0.522	1.005	1.398	1.737	2.051	0.006	0.075	0.154	0.307	0.435	0.547	0.653	0.06~0.15	M2.5S 25 — 5016H
0.038	0.385	0.771	1.439	1.978	2.444	2.905	0.011	0.128	0.264	0.509	0.712	0.891	1.069	0.06~0.15	M2.5S 30 — 6318H
0.038	0.385	0.771	1.439	1.978	2.444	2.905	0.011	0.128	0.264	0.509	0.712	0.891	1.069	0.06~0.15	M2.5S 30 — 5016H
0.027	0.275	0.551	1.068		1.854	2.184	0.006	0.068	0.140	0.281		0.503	0.598	0.06~0.15	M3S 20 - 5816H M3S 20 # 5820H M3S 20 # 5825H
0.027	0.275	0.551	1.068	1.489	1.854	2.184	0.006	0.068	0.140	0.281	0.398	0.503	0.598	0.06~0.15	M3S 20 = 4220H
0.045	0.451	1.332			2.861 4.056	3.400 4.784	0.011	0.131	0.272	0.523		1.502	1.790	0.06~0.15 0.06~0.15	M3S 25 — 6020H M3S 30 — 7522H M3S 30 # 7530H
0.066	0.663	1.327	2.448	3.349	4.150	4.920	0.015	0.168	0.347	0.660	0.920	1.154	1.382	0.06~0.15	M4S 20 — 7520H

인포메이션

MGH열처리 • 구멍연삭 스트레이트 마이터 (S45C) 모듈 2.5/2.75/3


기어비 1:1

정밀도	재질	압력각	열처리	치면 경도	백래시①	전체 기어 잇수
JIS B 1704 4급	S45C	20도	치부 고주파	HRC47~53	표 참조	20

- ★표면처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다.
- ★MGH시리즈는 치부 고주파 열처리, 구멍 연삭 가공, 키 재료와 세트 스크류가 포함되어 있습니다. 추가 가공 없이 사용할 수 있는 완제품입니다. (그림1 참조)

상품 기호	기어비	모듈	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	키홈	나	사	이끝각	중량
	и	m	d	da	A	dd(H7)	dh	lh	l	lw	la	b	$b_2 \times t_2$	M	ls	δa	W(kg)
MGH = 18		2.5	φ 50	φ 51.66	50	ø 18	φ 40	20	30	33.54	26.77	10.3	6 × 2.8	M6	10	49° 3′	0.26
MGH = 20	1 · 1	2.75	φ 55	φ58.89) φ 56.82	54	ø 20	φ 44	21	32	35.54	28.45	10.8	6 × 2.8	M6	10.5	49° 3′	0.34
MGH = 22	•	3	φ 60	φ 61.99	58	φ 22	φ 48	22	34	38.01	30.12	12	6 × 2.8	M6	11	49° 3′	0.43
MGH = 25A		3	φ 60	φ 61.99	58	ø 25	φ 48	22	34	38.01	30.12	12	8 × 3.3	M8	11	49° 3′	0.40

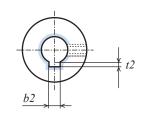


그림1 (치끝 모따기도)

회진	전속도별 전	선속도별 허용전달동력표 휨강도 (단위: kW)				W)	회전	속도별 하	용전달동	력표 大	면강도	: (단위:	kW)	백래시	사표 기술
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호
0.014	0.143	0.287	0.575	0.825	0.985	1.180	0.003	0.036	0.075	0.154	0.221	0.281	0.335	0.06~0.15	MGH = 18
0.018	0.186	0.373	0.743	1.016	1.273	1.509	0.004	0.047	0.097	0.198	0.282	0.358	0.426	0.06~0.15	MGH = 20
0.024	0.246	0.492	0.952	1.324	1.655	1.951	0.005	0.061	0.125	0.251	0.356	0.450	0.533	0.06~0.15	MGH = 22
0.024	0.246	0.492	0.952	1.324	1.655	1.951	0.005	0.061	0.125	0.251	0.356	0.450	0.533	0.06~0.15	MGH = 25A

인포메 메 연

평 기 어

스트레이트 마이터 (SUS304)

모듈 0.8/1/1.5/2/3

단위: mm

정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	SUS304	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★【*】에는 나사 구멍 2곳이 있습니다. 세트 스크류는 포함되어 있지 않습니다.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조)

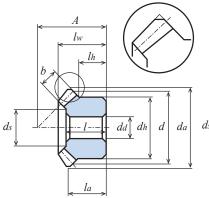
				11 - 11 - 11								<u> </u>					
상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	2-M(120°)	ls	δa	ds	W(g)
M80SU 20 - 1605		20	ø 16	φ17.13	16	φ 5	ø 12	6	10	11	8.57	3.7	-	-	49° 3'	ø 9.5	8.9
M80SU 20 * 1605		20	ø 16	φ17.13	16	φ 5	φ12	6	10	11	8.57	3.7	2-M3	3	49° 3′	φ 9.5	8.5
M80SU 25 — 1805		25	φ 20	φ21.13	18	φ 5	ø 16	6	10.5	11.67	8.57	4.7	-	-	48°51'	φ11.7	17.3
M80SU 25 * 1805		25	φ20	φ21.13	18	φ 5	ø 16	6	10.5	11.67	8.57	4.7	2-M3	3	48°51′	φ11.7	16.8
M80SU 30 — 2006		30	φ24	φ25.13	20	φ 6	ø 18	6	11	12.34	8.57	5.6	-	-	47°42'	φ14.1	24.8
M1SU 20 — 2106		20	φ20	φ21.41	21	φ 6	ø 16	9	13	14.53	11.71	4.3	-	-	49° 3'	φ11.8	19.9
M1SU 20 * 2106		20	φ 20	φ21.41	21	φ 6	ø 16	9	13	14.53	11.71	4.3	2-M4	4.5	49° 3′	φ11.8	19.1
M1SU 25 — 2306		25	φ25	φ26.41	23	ø 6	ø 20	8	13	14.70	11.21	5.3	-	-	48°51'	φ15.0	34.1
M1SU 25 * 2306	1:1	25	ø 25	φ26.41	23	ø 6	ø 20	8	13	14.70	11.21	5.3	2-M4	4	48°51′	φ15.0	32.9
M1SU 30 — 2608	1 • 1	30	ø 30	φ31.41	26	ø 8	φ 22	8.9	14.5	15.89	11.71	6.2	-	-	47°42'	φ19.4	47
M1SU 30 * 2608		30	ø 30	φ31.41	26	ø 8	φ 22	8.9	14.5	15.89	11.71	6.2	2-M5	4.5	47°42′	φ19.4	45.2
M1.5SU 20 — 2810		20	ø 30	φ32.12	28	ø 10	<i>φ</i> 24	10	16.5	18.53	14.06	6.8	-	-	49° 3′	φ17.7	55.4
M1.5SU 25 — 3410		25	φ37.5	φ39.62	34	\$10	ø 30	11.5	19	21.26	16.31	7.5	-	-	48°51′	φ23.7	107.6
M1.5SU 30 — 3812		30	ø 45	φ47.12	38	φ12	ø 33	12.34	21	22.83	16.56	9.3	-	-	47°42′	φ29.6	153.6
M2SU 20 — 3712		20	 \$\psi 40\$	φ41.32 φ41.32	37	φ12	ø 34	14	21	24	18.41	8.5	-	-	49° 3′	φ23.9	142.5
M2SU 25 — 4012		25	φ 50	φ _{52.83)} φ _{51.33}	40	φ12	φ42	11	21	23.34	17.07	10.5	-	-	48°51′	φ32.3	229.6
M2SU 30 — 5116		30	ø 60	φ62.83) φ 61.36	51	φ16	φ44	16.79	28	30.77	22.41	12.4	-	-	47°42′	φ38.9	364.9
M3SU 20 — 5816		20	φ60	φ64.24) φ 61.99	58	φ16	φ 50	23	35	39.06	30.12	13.6	-	-	49° 3′	φ35.5	525.6

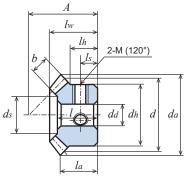
MIM금속사출 모듈 0.5/0.8/1

스트레이트 마이터 (SUS304L)

기어비 1:1

기어비 1:1




,					
정밀도	재질	압력각	열처리	치면 경도	백래시①
_	SUS304L	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다. 본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20 페이지를 확인하십시오.
- ★【*】에는 나사 구멍 2곳이 있습니다. 세트 스크류는 포함되어 있지 않습니다. ①동종품, 동재질, 한 쌍의 맞물림 시 의 이론치입니다.
- ★모듈 크기는 호칭값입니다. 성형 가공의 수축율에서 약간 치수가 다릅니다. MIM 마이터 기어끼리만 조합하십시오. 다른 시리즈의 상품과의 조합은 불가합니다.
- ★추가 가공의 주의점: 먼저 이끝원을 척킹하고 추가공을 하십시오. 가공시 원재료 냉각시 생긴 기포로 인한 구멍이 표면에 생길수 있습니다.

상품 기호	기어비	모듈	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	전장	단면에서 이끝의 거리	치폭	나	사	이끝각	중량
	и	m	z	d	da	A	dd(H8)	dh	lh	lw	la	b	2-M(120°)	ls	δa	W(g)
M50SUM 20 * 1103		0.5	20	ø 10	φ10.70	11	ø 3	ø 8	4.25	8	6.35	2.5	2-M2.5	2.5	49°48′	2.6
M80SUM 20 * 1605	1:1	0.8	20	ø 16	φ17.13	16	φ 5	φ12	4.5	10.96	8.57	3.7	2-M3	2.5	49°48′	10.2
M1SUM 20 * 2106		1.0	20	ø 20	φ21.41	21	φ 6	ø 16	7.5	14.49	11.71	4.3	2-M4	4.5	49°48′	22.0

2D • 3D CAD

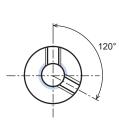
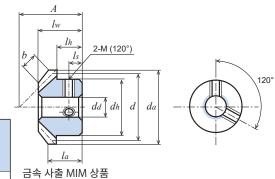


그림1 (치끝 모따기도)

	회전속도	별 허용전달	날동력표	휨강도	(단위: W)		백래시	11 T 71 +
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호
0.2	2.7	5.5	11.0	16.5	22.0	27.5	0.02~0.08	M80SU 20 - 1605 M80SU 20 * 1605
0.4	4.6	9.3	18.7	28.1	37.5	46.6	0.02~0.08	M80SU 25 - 1805 M80SU 25 * 1805
0.7	7.1	14.2	28.4	42.6	56.8	68.6	0.02~0.08	M80SU 30 — 2006
0.5	5.1	10.2	20.5	30.8	41.1	51.0	0.05~0.12	M1SU 20 - 2106 M1SU 20 * 2106
0.8	8.5	17.1	34.3	51.5	68.3	82.4	0.05~0.12	M1SU 25 — 2306 M1SU 25 * 2306
1.2	12.8	25.6	51.3	77.0	99.3	119.2	0.05~0.12	M1SU 30 - 2608 M1SU 30 * 2608
1.7	17.9	35.8	71.7	107.6	138.6	166.4	0.05~0.12	M1.5SU 20 — 2810
2.7	27.9	55.8	111.6	163.5	207.2	246.7	0.05~0.12	M1.5SU 25 — 3410
4.3	43.3	86.7	173.4	246.3	309.5	365.9	0.05~0.12	M1.5SU 30 — 3812
4.0	40.8	81.6	163.2	236.5	298.9	355.1	0.05~0.12	M2SU 20 — 3712
6.7	67.0	134.0	268.0	402.1	536.1	670.1	0.05~0.12	M2SU 25 — 4012
10.2	102.7	205.5	397.2	550.3	681.6	803.6	0.05~0.12	M2SU 30 — 5116
14.3	143.5	287.0	554.6	768.4	951.7	1122.0	0.06~0.15	M3SU 20 — 5816


스트레이트 마이터 (SUS304L) MIM금속사출

모듈 0.5/0.8/1

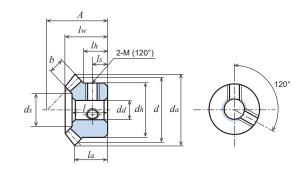
기어비 1 : 1

재질 강도 비교 S45C 1 1.67											
1.67											
1											
0.67											

회전	속도별 허용	용전달동력	표 휨깅	도 (단위	:W)	백래시	상품 기호
100 rpm	200 rpm	400 rpm	600 rpm	n rpm	1,000 rpm	(단위: mm)) 영남기오
0.5	1.1	2.2	3.3	4.4	5.6	0.02~0.08	M50SUM 20 * 1103
2.1	4.3	8.7	13.1	17.5	21.9	0.02~0.08	M80SUM 20 * 1605
3.7	7.6			30.6	37.8	0.05~0.12	M1SUM 20 * 2106

기 어 박 스

목 차


인포메이션

모듈 0.5/0.8/1

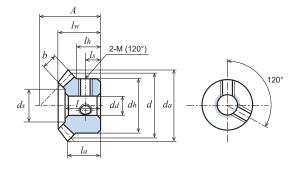
스트레이트 마이터 (C3604B) 황동

기어비 1:1

단위 : mm

정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	C3604B	20도	_	_	②참조

★표면처리는 하지 않았습니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개가 포함되어 있습니다. ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.②백래시 m0.5및m0.8: 0.02 ~ 0.08; m1: 0.05 ~ 0.12.


상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나.	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	2-M(120°)	ls	δa	ds	W(g)
M50B 20 - 1103		20	φ10	φ10.71	11	ø 3	ø 8	5	7	8	6.35	2.5	-	-	49° 3′	φ 4.9	2.9
M50B 20 * 1103		20	φ10	φ10.71	11	ø 3	ø 8	5	7	8	6.35	2.5	2-M2.5	2.5	49° 3′	φ 4.9	2.7
M50B 25 * 1204		25	φ12.5	φ13.21	12	ø 4	φ11	5	7	8.11	6.10	3.0	2-M3	3	48°14′	φ 6.5	4.9
M80B 20 - 1605	1:1	20	φ16	φ17.13	16	φ 5	φ12	6	10	11	8.57	3.7	-	-	49° 3′	φ 9.5	9.4
M80B 20 * 1605		20	ø 16	φ17.13	16	φ 5	φ12	6	10	11	8.57	3.7	2-M3	3	49° 3′	φ 9.5	9.1
M1B 20 * 2106		20	φ20	φ21.41	21	ø 6	ø 16	9	13	14.53	11.71	4.3	2-M4	4.5	49° 3′	φ11.8	18.1
M1B 25 * 2306		25	φ 25	φ26.41	23	ø 6	φ20	8	13	14.70	11.21	5.3	2-M4	4	48°51′	φ15.0	31.5

스트레이트 마이터 (白 POM)

모듈 1 기어비 1:1

M

L 11					
정밀도	재질	압력각	열처리	치면 경도	백래시①
_	백색 POM	20도	_	_	표 참조

- ★본 상품은 기계 가공품 입니다. 【*】에는 나사 구멍이 2곳, 세트 스크류 2개가 포함되어 있습니다.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd	dh	lh	l	lw	la	b	2-M(120°)	ls	δa	ds	W(g)
M1D 25 * 2306		25	ø 25	φ26.41	23	ø 6	ø 20	8	13	14.70	11.21	5.3	2-M4	4	48°51′	φ15.0	5.2
M1D 30 — 2608	1:1	30	φ30	φ31.41	26	ø 8	φ22	8.9	14.5	15.89	11.71	6.2	-	-	47°42′	φ19.4	8.3
M1D 30 * 2608		30	ø 30	φ31.41	26	ø 8	φ 22	8.9	14.5	15.89	11.71	6.2	2-M4	4.5	47°42′	φ19.4	8.1

스트레이트 마이터 (C3604B) 황동 모듈 0.5/0.8/1

기어비 1 : 1

M

스트레이트 마이터 (白 POM) 모듈 1

기어비 1 : 1

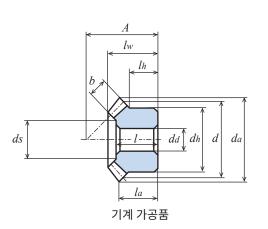
	회전속도	별 허용전	달동력표	휨강도	백래시	상품 기호		
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	영품 기오
0.34	3.50	7.00	14.00	21.00	27.98	33.82	0.05~0.12	M1D 25 * 2306
0.52	5.24	10.48	20.94	31.44	40.54	48.38	0.05~0.12	M1D 30 — 2608
0.52	5.24	10.48	20.94	31.44	40.54	48.38	0.05~0.12	M1D 30 * 2608

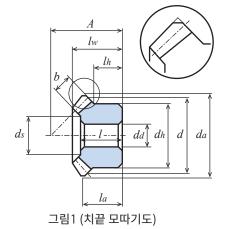
목 차

평 기 어

스트레이트 마이터 (청색 POM) 모듈 0.8/1/1.25/1.5/2/2.5/3

기어비 1:1


단위:mm


정밀도	재질	압력각	열처리	치면 경도	백래시①
_	청색 POM	20도	_	_	표 참조

- ★본 상품은 기계 가공품입니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조)
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

①농송품, 농재질, 한 쌍의 맞물						_									
상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd	dh	lh	l	lw	la	b	δa	ds	W(g)
M80BP 20 — 1604		20	ø 16	φ17.13	16	φ 4	φ12	6	10	11	8.57	3.7	49° 3′	φ 9.53	1.7
M80BP 25 — 1805		25	φ20	φ21.13	18	ø 5	ø 16	6	10.5	11.67	8.57	4.7	48°51′	φ11.70	3.0
M80BP 30 — 2005		30	<i>φ</i> 24	φ25.13	20	ø 5	φ 18	6	11	12.34	8.57	5.6	47°42′	φ14.16	4.5
M1BP 20 — 2105		20	φ20	φ21.41	21	ø 5	ø 16	9	13	14.53	11.71	4.3	49° 3′	φ11.83	3.7
M1BP 25 — 2306		25	φ25	φ26.41	23	ø 6	φ 20	8	13	14.7	11.21	5.3	48°51′	φ15.01	6.0
M1BP 30 — 2606		30	φ30	φ31.41	26	φ 6	φ 22	8.9	14.5	15.89	11.71	6.2	47°42′	φ19.46	8.8
M1.25BP 20 — 2406		20	φ25	φ26.77	24	ø 6	φ20	8.99	14	16	12.38	5.5	49° 3′	φ14.43	6.4
M1.25BP 25 — 2808		25	φ31.25	φ33.02	28	ø 8	φ 26	9.75	15.5	17.35	13.26	6.2	48°51′	φ19.96	11.5
M1.25BP 30 — 3208		30	φ37.5	φ39.27	32	<i>φ</i> 8	φ 28	10	17	18.85	14.13	7	47°42′	φ25.20	16.6
M1.5BP 20 — 2808		20	φ30	φ32.12	28	ø 8	φ24	10	16.5	18.53	14.06	6.8	49° 3′	φ17.75	10.5
M1.5BP 25 — 3410	1:1	25	φ37.5	φ39.62	34	φ 10	φ 30	11.5	19	21.26	16.31	7.5	48°51′	φ23.8	19.9
M1.5BP 30 — 3810		30	φ45	φ47.12	38	<i>φ</i> 10	φ33	12.34	21	22.83	16.56	9.3	47°42′	φ29.69	28.4
M2BP 20 — 3710		20	φ40	φ42.83) φ41.32	37	φ10	φ34	14	21	24	18.41	8.5	49° 3′	φ23.94	26.4
M2BP 25 — 4012		25	φ50	φ _{52.83)} φ _{51.33}	40	φ12	φ42	10.99	21	23.34	16.41	10.5	48°51′	φ32.30	41.7
M2BP 30 — 5112		30	φ60	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	51	φ 12	φ44	16.79	28	30.77	22.41	12.4	47°42′	φ38.92	68.4
M2.5BP 20 — 4812		20	φ50	φ53.54) φ51.66	48	φ12	φ42	19	28	32.06	24.77	11.1	49° 3′	φ28.58	54.4
M2.5BP 25 — 5014		25	φ62.5	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50	<i>φ</i> 14	φ 52	13.5	27	29.42	20.52	13.5	48°51′	φ40.82	81.0
M2.5BP 30 — 6316		30	φ 75	φ78.54) φ 76.7	63	φ16	φ 55	20.5	34.5	37.71	27.27	15.5	47°42′	φ49.15	130.5
M3BP 20 — 5814		20	φ60	φ64.24) φ61.99	58	φ14	φ 50	23	35	39.06	30.12	13.6	49° 3′	φ35.51	95.9
M3BP 25 — 6016		25	φ75	φ79.24) φ 77	60	ø 16	φ 65	17.5	32	35.31	24.62	16.2	48°51′	φ48.18	146.2
M3BP 30 — 7518		30	φ90	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	75	φ18	ø 66	23.64	40	44.65	32.12	18.6	47°42′	φ57.37	222.9

인포메 메 연

	회전속도	별 허용전'	달동력표	휨강도	(단위: W)		백래시	
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호
0.12	1.20	2.42	4.84	7.26	9.68	12.12	0.02~0.08	M80BP 20 — 1604
0.20	2.06	4.12	8.26	12.38	16.52	20.66	0.02~0.08	M80BP 25 — 1805
0.30	3.12	6.24	12.50	18.76	24.98	31.24	0.02~0.08	M80BP 30 — 2005
0.20	2.10	4.24	8.46	12.70	16.94	20.94	0.05~0.12	M1BP 20 — 2105
0.34	3.50	7.00	14.00	21.00	27.98	33.82	0.05~0.12	M1BP 25 — 2306
0.52	5.24	10.48	20.94	31.44	40.54	48.38	0.05~0.12	M1BP 30 — 2606
0.40	4.18	8.38	16.78	25.18	33.42	41.34	0.05~0.12	M1.25BP 20 — 2406
0.64	6.50	13.00	26.04	39.00	49.92	59.64	0.05~0.12	M1.25BP 25 — 2808
0.92	9.38	18.78	37.54	54.86	69.56	82.86	0.05~0.12	M1.25BP 30 — 3208
0.68	6.86	13.76	27.55	41.31	53.21	63.77	0.05~0.12	M1.5BP 20 — 2808
1.04	10.45	20.92	41.87	61.33	77.57	92.33	0.05~0.12	M1.5BP 25 — 3410
1.63	16.34	32.69	65.40	92.83	116.55	137.77	0.05~0.12	M1.5BP 30 — 3810
1.48	15.36	30.90	61.79	89.54	113.04	134.31	0.05~0.12	M2BP 20 — 3710
2.41	25.72	51.62	102.49	143.75	179.64	211.46	0.05~0.12	M2BP 25 — 4012
3.70	38.67	77.33	149.67	207.39	256.78	302.85	0.05~0.12	M2BP 30 — 5112
2.96	31.27	62.53	124.32	174.09	217.75	256.23	0.06~0.15	M2.5BP 20 — 4812
5.00	51.62	103.23	197.77	273.80	338.37	401.64	0.06~0.15	M2.5BP 25 — 5014
7.40	75.48	151.15	280.65	382.95	473.05	575.17	0.06~0.15	M2.5BP 30 — 6316
5.37	54.95	109.89	212.38	294.34	364.64	429.76	0.06~0.15	M3BP 20 — 5814
8.88	89.17	178.34	330.97	451.77	557.96	678.40	0.06~0.15	M3BP 25 — 6016
12.95	130.61	261.41	466.57	627.89	799.57	967.92	0.06~0.15	M3BP 30 — 7518

치면 연마 베벨 기어 베벨 기어

BG 시리즈 B 시리즈

※외관은 이미지 입니다.

상품 기호 읽는 방법

BG 1.5 S 20 L 30 R - 12 H

기어 종류	모듈	재질	잇수	잇줄 형상	상대기어 잇수	상대기어 잇줄 형상	구멍가공	구멍 직경	치부열처리
BG: 치면 연마 스파이럴 베벨	모듈 크기를 표현 .	S: SCM440	예 : 잇수 20 은 "20" 으로 표기 .	R: 오른쪽 나선 스파이럴 L: 왼쪽 나선 스파이럴	예 : 잇수 30 은 "30" 으로 표기 .	R: 오른쪽 나선 스파이럴 L: 왼쪽 나선 스파이럴	연삭가공	단위: mm	치부 고주파 열처리

B 1.5 S 45 R — 12 H

기어 종류	모듈	재질	잇수	잇줄 형상	구멍가공	구멍직경	치부열처리
B: 베벨	모듈 크기를 표현 . 모듈 1 보다 아래인 경우 표기 숫자는 실제 모듈의 100 배 . 예 : 모듈 0.5 는 "50" 모듈 0.8 은 "80"	S : S45C SU : 스테인리스 SUS304 B : 황동 C3604B	예 : 잇수 45 는 "45" 으로 표기 .	없음 : 스트레이트 R : 오른쪽 나선 스파이럴 L : 왼쪽 나선 스파이럴	절삭 가공 【一】: 나사 구멍 없음, 키 홈없음 【十】: 나사 구멍 1곳 있음 【*】: 나사 구멍 2곳 있음 【=】: 키 홈 있음 【#】: 키 홈, 나사 구멍 2곳 있음	단위 : mm	치부 고주파 열처리

상품 기호	BG	В	В	В	В	В
형상	(2)					
페이지	P. 244	P. 246	P. 248	P. 250	P. 252	P. 254
재질	SCM440	S45C	S45C	S45C	S45C	SUS304
모듈	m 1.5~2.5	m 1~3	m 1~2.5	m 0.5~3	m 1.5~4	m 0.8~2
잇줄 형상	스파이럴	스파이럴	스파이럴	스트레이트	스트레이트	스트레이트
정밀도 등급	JIS 1급	JIS 3급	JIS 4급	JIS 3급	JIS 4급	JIS 4급
치부 처리	치부 고주파 열처리,연마	절삭	절삭,치부 고주파 열처리	절삭	절삭,치부 고주파 열처리	절삭

상품기호	В
형상	
페이지	P. 254
재질	황동
모듈	m 0.5~0.8
잇줄 형상	스트레이트
정밀도 등급	JIS 4급
치부처리	절삭

베벨 기어 인포메이션

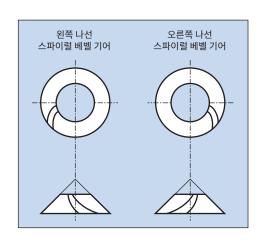
1. 베벨 기어의 특징과 선정의 주의점

베벨 기어는 기어비가 있기 때문에 잇수나 모듈이 같아도 마이터 기어 u=1:1로 사용할 수 없습니다. 설계 시에 기어비에 맞는 피치각이나 축각을 정하였습니다. 기어와 피니언을 한쌍으로 설계 및 제조하기 때문에 맞물릴 상대 기어를 올바르게 선정해야 합니다.

예: 기어비(피니언축 P:기어축 G)를 1:2로 설계한 베벨기어 1:3으로 설계한 베벨기어는 같은 모듈이라도 맞물리지 않습니다. 자세한 내용은 아래 표를 확인하십시오.

	마이터 기어 베벨 기어										
기어비 (P:G)	1:1	1:	1.5	1	: 2	1:3					
пI+I7Ь	45°	피니언	33° 41′	피니언	26° 34'	피니언	18° 26'				
피치각		기어	56° 19'	기어	63° 26'	기어	71° 34'				
축각				90°							

※설계 및 제작 시에 피치각 등이 기어비별로 다릅니다.


2. 스트레이트 베벨 기어와 스파이럴 베벨 기어의 차이

	잇줄	치면 연마	고속 회전	피치원주 속도 ※	감합율	회전의 원활	스러스트
스트레이트 베벨 기어	직선형	불가	0	5.5m/s 미만	저	0	소
스파이럴 베벨 기어	곡선형	가능	0	5.5m/s 이상 15m/s 이상인 경우는 치면 연마품을 사용하십시오 .	고	0	대

%원주 속도 [m/s] = $\frac{\pi \times \text{ 피치원 직경 [mm]} \times \text{ 회전수 [rpm]}}{\pi \times \text{ 기치원 직경 [mm]}}$ 1000×60

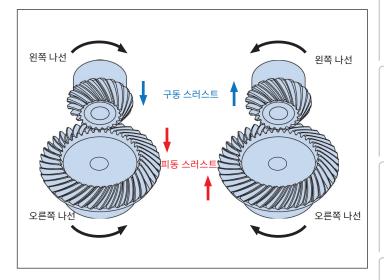
스파이럴 베벨 기어: ①감합률이 높아 정숙한 성능을 기대할 수 있습니다.

②나선 방향이 오른쪽인 것과 왼쪽인 것을 조합하십시오.

왼쪽 나선

오른쪽 나선

3. 조립 시의 주의점


1) 장착 방법

베벨 기어의 경우 특히 주의해야 할 것은 그 장착 방법입니다. 대부분의 경우 베벨 기어의 베어링은 기어의 한쪽부분에만 있 기 때문에 하중을 받으면 축이 휘어지기 쉬운 결점이 있습니다. 그로 인해 기어의 치면 닿는 부분이 싱글 접촉이 되어 나빠집니 다. 기어축 및 베어링은 충분히 튼튼하게 하고 기어 근처에 베 어링을 설치하도록 하십시오. 조립 시 베벨 기어를 축 방향으로 조정할 수 있도록 하고 허브의 단면에 심을 넣으면 기어 치면닿 는 부분의 조정이 용이합니다.

2) 상대 기어에 대하여

타사 상품과 조합하여 사용할 수 없습니다. 규격품 이외의 사양으로 설계하는 경우 당사의 특별 주문품 서비스를 이용하십시오. 치면 연마품은 치면 연마품과, 절삭품은 절삭품과 맞물리십시오.

스파이럴 베벨 기어에 걸리는 스러스트

3) 윤활에 대하여

회전수나 부하 조건에 따라 적정한 윤활 방법을 선정하십시오. 자세한 내용은 참고 자료 '기어의 윤활'을 참조하십시오.

4) 기어축과 백래시

이상적인 맞물림을 얻기 위해 기어축의 축각은 가능한 한 정확하게, 백래시도 적정하게 주어 조립하십시오. 치면 연마품·절삭품 모두 축각 ±15', 축심 높이의 시프트 양은 ±0.015mm 이하를 권장합니다.

백래시: 카탈로그에 기재된 조립 거리로 구성 시 표1이 되도록 설계했습니다.

참고자료 '백래시 측정법'을 참고하십시오.

표 1 베벨 기어의 백래시 (한 쌍의 맞물림, 스트레이트 / 스파이럴 공통)

치면 연마 베벨 기어의 백래시

모듈	백래시 [mm]
工五	SCM440
m =1.5	0.03~0.06
m =2	0.04~0.08
m =2.5	0.05~0.1
m =3	0.06~0.12

절삭 베벨 기어의 백래시

모듈	백래시 [mm]	
工五	SCM435 · 440, S45C, SUS304, C3604B	백색/청색 POM
m=0.9 이하	0.02~0.08	0.03~0.10
0.9 초과 , 2 이하	0.05~0.12	0.05~0.16
2 초과 , 4 이하	0.06~0.15	-
4 초과 , 6 이하	0.08~0.20	-

- 조정: 허브 단면에 심을 넣음으로써 조립 거리, 백래시, 및 기어 치면닿는 부분의 조정이 가능해집니다.
- 원주 방향 백래시 변화량(베벨 기어를 축 방향으로 움직인 경우): 표2

표2 베벨 기어의 원주 방향 백래시 변화량

		스트레이트 베벨 기어			스파이럴 베벨 기어	
기어비 (P:G)	1:1.5	1:2	1:3	1:1.5	1:2	1:3
피니언 Jt = Jx ×	0.40	0.33	0.23	0.49	0.40	0.28
기어: Jt = Jx ×	0.61	0.65	0.69	0.74	0.79	0.84

Jt: 원주 방향 백래시 변화량

Jx: 축 방향 이동량

※가공이나 조립의 정밀도에 따라 계산대로 되지 않을 수 있습니다.

목 차

포 메 이 션

기 어 박 스

노백래시 기어

기어

랙

컬 스크류 기어

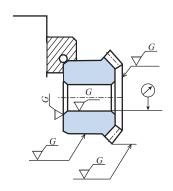
마 이 터 기 어

> 베 벨 기 어

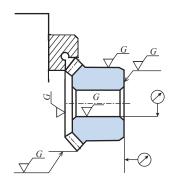
에 , 에 해

참 고 자 료

베벨 기어 인포메이션


4. 치면 연마 스파이럴 베벨 기어의 특징 (BG 시리즈)

정밀도 등급	열처리	치면 가공	연마 부분	모듈	기어비	백래시	고속 회전	정숙 성능	치면 경도
JIS B 1704 1 급	고주파	연삭	구멍 직경 허브 측면 허브 외주 치끝 외주 이 측면	m = 1.5 2.0 2.5	u = 1:1.5 1:2 1:3	30 μ m 이하까지 설정 가능	0	높음	HRC52~60


※치면 연마품은 치부 절삭품과 물리지 마십시오.

추가 가공의 주의점

- 1) 고객의 추가 가공 시 정밀도 유지와 가공성을 중시하며 허브 외주 및 치끝 외주는 연마 가공으로 되어 있습니다. (이끝 외주는 축심과 평행하게 모따기를 하여 정밀도 좋게 척킹할 수 있습니다.) 추가 가공 시 유의사항은 그림 1 및 KG 종합 카탈로그 '추가 가공의 주의점'을 참조하십시오.
- 2) 반드시 생죠와 스크롤 척을 이용하십시오. 그림1 의 측정하는 부분의 흔들림을 최대한 0에 가깝게 하십시오. (0.003mm 이하가 바람직)

고정밀도로 추가 가공을 하기 위해 허브 외주 및 단면 을 연마 가공했습니다.

고정밀도로 추가 가공을 하기 위해 이끝 외주 및 단면을 연마 가공했습니다.

그림1 추가 가공 설명도

정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 1급	SCM440	20도	35도	치부 고주파	HRC52~60	표 참조

- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언(L 나선)이 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조)
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

(000B) 0ME, 0 0H XE	기어비	잇수	기준원	이끝원	조립	구멍	허브	허브	구멍	전장	단면에서	치폭	이끝각	스폿페이싱	중량
상품 기호			직 경	직 경	거리	직경	외경	길이	길이		이끝의 거리			직경 (참고치)	
	и	Z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	δa	ds	W(g)
BG1.5S 20L30R — 8H	1:1.5	20	φ 30	φ ^(φ32.96) φ 31.5	37	ø 8	φ26	13.16	20	22.49	15.48	9	39°08′	φ14.07	79.0
BG1.5S 30R20L — 8H	1 . 1.5	30	φ 45	φ 44.6	26	<i>φ</i> 8	φ32	8	14	16.39	11.77	9	59°11′	φ27.45	112.8
BG1.5S 20L40R — 8H	1:2	20	φ 30	φ ^(φ33.45)	45	<i>φ</i> 8	φ26	14	24	25.29	15.87	11	31°21′	φ16.80	90.5
BG1.5S 40R20L — 10H	1 . 2	40	φ 60	φ ^(φ60.69) φ 59.5	30	φ10	φ40	10	18	20.27	15.69	11	65°24′	φ38.40	247.9
BG1.5S 15L45R — 8H	1:3	15	φ 22.5	φ ^(φ26.37) φ 25.2	45	φ 8	φ20	10.83	21	22.03	11.89	11	23°19′	φ11.45	42.3
BG1.5S 45R15L — 12H	1 . 3	45	φ 67.5	φ ^(φ67.92)	30	<i>φ</i> 12	φ45	12	20	22.56	19.38	11	73°13′	φ45.14	350.3
BG2S 20L30R — 10H	1:1.5	20	φ 40	φ 42.2	45	φ10	φ34	12.99	22	24.87	16.31	11	39°12′	φ21.36	153.4
BG2S 30R20L — 12H	1 . 1.5	30	φ 60	φ 60 60	40	<i>φ</i> 12	φ40	15	23	26.66	21.02	11	59°12′	φ37.55	294.8
BG2S 20L40R — 12H	1:2	20	φ 40	φ 43.2	60	<i>φ</i> 12	φ35	18.75	32	34	21.17	15	31°36′	φ20.91	175.8
BG2S 40R20L — 12H	1 . 2	40	φ 80	φ ^(φ80.93) φ 79.5	45	<i>φ</i> 12	φ50	18	27	32.16	25.93	15	65°29′	φ48.46	616.2
BG2S 15L45R — 10H	1:3	15	φ 30	φ 33.8	60	φ10	φ24.5	14.08	29	29.69	15.85	15	23°07′	φ19.16	94.4
BG2S 45R15L — 12H	1 . 3	45	ø 90	φ 89.5	40	<i>φ</i> 12	φ60	17	26	30.18	25.83	15	73°07′	φ59.04	815.4
BG2.5S 20L30R — 12H	1:1.5	20	φ 50	φ 53.5	55	<i>φ</i> 12	φ44	15.49	28	30.81	19.16	15	39°24′	φ27.44	311.0
BG2.5S 30R20L — 15H	1 . 1.5	30	φ 75	φ ^(φ76.72) φ 75	50	ø 15	φ50	18	30	33.97	26.3	15	59°17′	φ45.6	605.3
BG2.5S 20L40R — 12H	1:2	20	φ 50	φ 54.2	75	φ12	φ44	23.5	40	43.66	26.39	20	30°31′	φ20.54	441.2
BG2.5S 40R20L — 15H	1 . 2	40	φ100	φ 100.1)	55	ø 15	φ65	20	34	39.55	31.1	20	65°01′	φ59.28	1294.1
BG2.5S 15L45R — 12H	1:3	15	φ 37.5	φ 42.5	75	φ12	φ33	18	37	38.34	19.75	20	21°57′	φ20.54	206.6
BG2.5S 45R15L — 15H	1 . 3	45	φ112.5	φ ^(φ113.15) φ 112.2	50	φ 15	φ 75	22	35	38.16	32.22	20	72°43′	φ72.84	1655.6

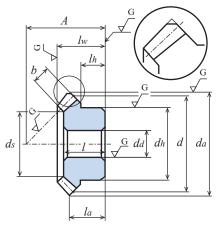


그림1 (이끝 모따기도)

Š	회전속도	별 허용	용전달동	등력표	휨강	도 (단	위: kW)	회	전속도'	별 허용	전달동i	력표 :	치면깅	도 (단위: kV	V)	백래시	사프 기수
250 rpm	500 rpm	800 rpm	1,000 rpm	1,500 rpm	2,000 rpm	2,500 rpm	3,000 rpm	4,000 rpm	250 rpm	500 rpm	800 rpm	1,000 rpm	1,500 rpm	2,000 rpm	2,500 rpm	3,000 rpm	4,000 rpm	(단위: mm)	상품 기호
0.19	0.37	0.59	0.72	1.04	1.34	1.65 -	1.95	2.53	0.11	0.23	0.37	0.46	0.68	0.89	1.10	1.31	1.73 -	0.03~0.06	BG1.5S 20L30R — 8H -
0.24	0.47	0.75	0.92	1.33	1.72	2.11	2.49	3.24	0.15	0.30	0.49	0.61	0.89	1.17	1.45	1.72	2.26	0.03~0.06	BG1.5S 20L40R — 8H -
0.18	0.36	0.58	0.71	1.04	1.35 -	1.64	1.94	2.52	0.08	0.17	0.28	0.35	0.53	0.69	0.85	1.01	1.33	0.03~0.06	BG1.5S 15L45R — 8H -
0.41	0.83	1.28	1.57 -	2.25	2.94	3.59	4.25	5.48 -	0.26	0.53	0.84	1.04	1.52	2.00	2.48	2.95	3.86	0.04~0.08	BG2S 20L30R — 10H -
0.56	1.13	1.75	2.14	3.07	4.00	4.89 -	5.78 -	7.47 -	0.36	0.74	1.18	1.46 -	2.13	2.81	3.47	4.13	5.41	0.04~0.08	BG2S 20L40R — 12H -
0.42	0.85	1.34	1.65	2.39	3.08	3.78 -	4.46	5.80	0.21	0.43	0.69	0.86	1.26	1.65	2.04	2.43	3.20	0.04~0.08	BG2S 15L45R — 10H -
0.85	1.68	2.59	3.16	4.56	5.91	7.26 -	8.55	10.82 -	0.54	1.10	1.73	2.13	3.14	4.12	5.11	6.06	7.77	0.05~0.1	BG2.5S 20L30R — 12H -
1.14	2.24	3.45	4.21	6.08	7.89	9.68	11.40	14.43	0.75	1.52	2.39	2.94	4.32	5.68	7.04	8.36	10.71	0.05~0.1	BG2.5S 20L40R — 12H -
0.85	1.71	2.66	3.26	4.67	6.08	7.44 -	8.80	11.41	0.43	0.89	1.41	1.74	2.54	3.35	4.14	4.93	6.48	0.05~0.1	BG2.5S 15L45R — 12H -

스파이럴 베벨 (S45C) 모듈 1/1.5/2/3

기어비 1:2、1:3

정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 3급	S45C	20도	35도	_	_	표 참조

- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언(L 나선)이 입력 측인 것을 전제로 한 수치입니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조) ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	δa	ds	W(g)
B1S 20L — 8	1:2	20	φ 20	φ 21.87	29.6	φ 8	φ16	8.6	14	15	10.07	5.7	30°13'	φ12.1	18.8
B1S 40R — 10	1 • 2	40	φ 40	φ 40.41	21.8	φ10	φ 25	8	13	14.57	12.21	5.7	65°36′	φ28.4	66.9
B1S 15L — 6	1 . 2	15	φ 15	φ 17.07	31	φ 6	φ13	8.17	14.4	15.07	8.85	6.7	21°53'	φ 8.0	12.1
B1S 45R — 10	1:3	45	φ 45	φ 45.25	20	φ10	φ 25	8	12.9	14.8	12.88	6.7	73°21′	φ31.1	80.6
B1.5S 18L — 8	1:2	18	φ 27	φ 30.09	40.74	ø 8	φ22	12.49	21	22.96	14.51	9.8	30°44′	φ12.2	59.6
B1.5S 36R — 10	1 • 2	36	φ 54	φ 54.76	26.75	φ10	φ30	9	15.5	18.01	14.01	9.8	65°57′	φ34.3	143.0
B1.5S 15L — 8	1:3	15	φ 22.5	φ 25.99	46	ø 8	φ19.5	11.75	21.1	22.19	12.83	10.1	22°28′	φ11.7	41.9
B1.5S 45R — 12	1 . 3	45	φ 67.5	φ 68.01	30	φ12	φ37.5	12	19.4	22.31	19.51	10.1	73°56′	φ46.6	283.0
B2S 18L — 10	1:2	18	φ 36	φ 38.35	53.12	φ10	φ28	15.12	27	29.36	18.17	13	30°53′	φ17.4	130.3
B2S 36R — 12	1 • ∠	36	φ 72	φ 71.41	35.21	φ12	φ36	12	21	23.54	18.26	13	66° 6′	φ46.7	318.4
B2S 15L — 10	1 . 2	15	φ 30	φ (\$\psi_34.66) φ 33.35	62	φ10	φ26	16.33	28.9	30.2	17.78	13.4	22°19′	φ16.6	104.0
B2S 45R — 14	1:3	45	φ 90	φ 89.16	40	φ14	φ 50	16	25.9	29.76	26.02	13.4	73°47′	φ62.3	680.6
B3S 18L — 15	1:2	18	φ 54	φ (φ60.07) φ 57.37	75.27	φ15	φ41	18.02	37	40.12	22.79	20	30° 9′	φ27.5	390
B3S 36R — 16	1 • 2	36	φ108	φ109.47) φ107.0	52.32	φ16	φ60	18	31	35.13	26.79	20	65°22′	φ68.9	1,130

1.230

(kW)

2.228

(kW)

2.997

(kW)

3.729

(kW)

4.517

(kW)

5.262

(kW)

5.769

(kW)

0.206

(kW)

0.381

(kW)

0.524

(kW)

0.668

(kW)

0.808

(kW)

0.986

(kW)

1.098

(kW)

0.06~0.15

dd dh

그림1 (이끝 모따기도)

d da

B3S 18L - 15

B3S 36R - 16

회	전속도별	허용전딜	동력표	휨강도	(단위: \	V)	회전	선속도별 혀	허용전달등	등력표 기	디면강S	E (단위:	(W)	백래시	사표 기술
300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	(단위: mm)	상품 기호
46.5	93.0	139.5	179.1	214.1	246.3	266.3	7.9	16.0	24.2	31.3	36.4	42.7	47.5	0.05~0.12	B1S 20L — 8
40.3	93.0	139.3	179.1	214.1	240.3	200.3	7.9	10.0	24.2	31.3	30.4	42.7	47.3	0.03~0.12	B1S 40R — 10
35.7	71.5	107.3	143.1	174.2	202.1	219.7	5.0	10.1	15.2	20.4	25.0	29.2	31.8	0.05~0.12	B1S 15L — 6
33.7	/1.5	107.5	145.1	174.2	202.1	219.7	5.0	10.1	13.2	20.4	23.0	23.2	31.0	0.05/~0.12	B1S 45R — 10
149.1	298.3	430.0	540.3	638.6	726.7	780.6	23.5	47.4	69.0	87.5	104.5	120.3	130.2	0.05~0.12	B1.5S 18L — 8
149.1	290.3	430.0	340.3	036.0	720.7	760.0	23.3	47.4	09.0	07.3	104.5	120.3	130.2	0.03~0.12	B1.5S 36R — 10
126.2	252.5	375.3	475.5	566.1	648.5	699.4	17.8	36.0	53.9	68.9	82.6	95.5	103.6	0.05~0.12	B1.5S 15L — 8
120.2	232.3	3/3.3	473.3	300.1	040.5	099.4	17.0	30.0	33.9	00.9	02.0	93.3	103.0	0.05/~0.12	B1.5S 45R — 12
0.355	0.697	0.966	1.196	1.396	1.617	1.771	0.057	0.114	0.160	0.200	0.238	0.280	0.309	0.05~0.12	B2S 18L — 10
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	0.05.20.12	B2S 36R — 12
0.304	0.608	0.859	1.074	1.264	1.433	1.552	0.043	0.088	0.125	0.159	0.189	0.217	0.237	0.05~0.12	B2S 15L — 10
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	0.05~0.12	B2S 45R — 14

인포메이션

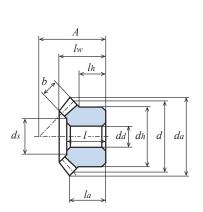
목 차

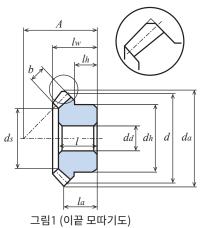
노백래시 기어

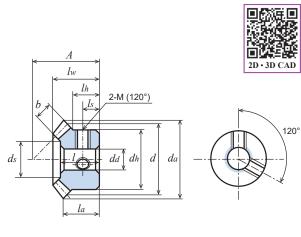
헬리컬 스크류 기어

마 이 터 기 어

단위:mm


정밀도	재질	압력각	나선각	열처리	치면 경도	백래시①
JIS B 1704 4급	S45C	20도	35도	치부 고주파	HRC47~53	표 참조


- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언(L 나선)이 입력 측인 것을 전제로 한 수치입니다..
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조) ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.


상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나.	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	2-M	ls	δa	ds	W(g)
B1S 20L * 8H	1:2	20	φ 20	φ 21.87	29.6	ø 8	ø 16	8.6	14	15	10.07	5.7	2-M4	4	30°13′	φ12.1	18.2
B1S 40R * 10H	1 • 2	40	φ 40	φ 40.41	21.8	ø 10	φ 25	8	13	14.57	12.21	5.7	2-M5	4	65°36′	φ28.4	65.1
B1S 15L * 6H	1:3	15	φ 15	φ 17.07	31	ø 6	φ13	8.17	14.4	15.07	8.85	6.7	2-M4	4	21°53′	φ 8.0	11.5
B1S 45R * 10H	1.3	45	φ 45	φ 45.25	20	ø 10	φ 25	8	12.9	14.8	12.88	6.7	2-M5	4	73°21′	φ31.1	78.8
B1.5S 18L — 8H	1:2	18	φ 27	φ 30.09	40.74	ø 8	φ22	12.49	21	22.96	14.51	9.8	-	-	30°44′	φ12.2	59.6
B1.5S 36R — 10H	1 • 2	36	φ 54	φ 54.76	26.75	ø 10	ø 30	9	15.5	18.01	14.01	9.8	-	-	65°57′	φ34.3	143.0
B1.5S 15L — 8H	1:3	15	φ 22.5	φ 25.99	46	ø 8	ø 19.5	11.75	21.1	22.19	12.83	10.1	-	-	22°28′	φ11.7	41.9
B1.5S 45R — 12H	1 . 3	45	φ 67.5	φ 68.01	30	φ12	φ37.5	12	19.4	22.31	19.51	10.1	-	-	73°56′	φ46.6	283.0
B2S 18L — 10H	1:2	18	φ 36	φ ^(φ40.20) φ 38.35	53.12	ø 10	ø 28	15.12	27	29.36	18.17	13	-	-	30°53′	φ17.4	130.3
B2S 36R — 12H	1 • 2	36	φ 72	φ ^(φ73.05) φ 71.41	35.21	φ12	ø 36	12	21	23.54	18.26	13	-	-	66° 6′	φ46.7	318.4
B2.5S 18L - 12H	1:2	18	φ 45	\$\overline{\phi} \begin{pmatrix} \(\phi \) 50.25 \\ \overline{\phi} \) 48.63	64.29	φ12	ø 36	17.04	32	34.98	20.6	16.7	-	-	30°53′	φ21.2	250.0
B2.5S 36R — 14H	1 • 2	36	φ 90	φ ^(φ91.32) φ 89.88	42.55	φ14	φ50	14	25	28.14	21.37	16.7	-	-	66° 6′	φ57.6	640.0

120°

마 이 터 기 어

회전속도별 허용전달동력표 휨강도 (단위:W)								선속도별 혀	허용전달동	등력표 기	치면강되	백래시	11. T. T. T.		
300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	300 rpm	600 rpm	900 rpm	1,200 rpm	1,500 rpm	1,800 rpm	2,000 rpm	(단위: mm)	상품 기호 -
40.6	81.2	121.8	157.3	189.4	219.3	238.0	21.8	44.9	68.6	89.8	109.2	127.4	139.0	0.05~0.12	B1S 20L * 8H
	02	.2	137.5	. 0511	2.713	250.0	20		00.0	07.0	10712		.55.0	0.00 0.12	B1S 40R * 10H
31.2	62.4	93.7	124.9	152.8	178.2	194.4	13.8	28.6	43.7	59.0	72.9	85.7	93.9	0.05~0.12	B1S 15L * 6H
31.2	02.4	93.7	124.3	132.0	170.2	1 24.4	13.0	20.0	45.7	39.0	/ 2.3	05.7	33.9	0.05~0.12	B1S 45R * 10H
130.2	260.4	377.8	479.2	571.2	654.9	706.8	63.9	131.8	194.6	232.5	300.9	347.8	377.1	0.05~0.12	B1.5S 18L — 8H
130.2	200.4	377.0	7/ 7.2	371.2	054.9	700.0	03.9	131.0	194.0	232.3	300.9	347.0	3//.1	0.03/-0.12	B1.5S 36R — 10H
110.2	220.4	328.2	419.2	502.9	580.1	628.3	48.7	100.5	152.4	197.1	238.5	277.7	302.2	0.05~0.12	B1.5S 15L — 8H
110.2	220.4	320.2	419.2	302.9	360.1	020.3	40.7	100.5	132.4	197.1	230.3	2//./	302.2	0.05~0.12	B1.5S 45R — 12H
0.310	0.611	0.857	1.073	1.264	1.452	1.575	0.155	0.314	0.448	0.569	0.677	0.784	0.854	0.05~0.12	B2S 18L — 10H
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	0.05~0.12	B2S 36R — 12H
0.620	1.179	1.631	2.019	2.395	2.749	2.968	0.314	0.615	0.867	1.086	1.301	1.505	1.633	0.06~0.15	B2.5S 18L - 12H
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	0.00~0.13	B2.5S 36R — 14H

인포메이션

스트레이트 베벨 (S45C) 모듈 0.5/0.8/1/1.5/2/2.5/3

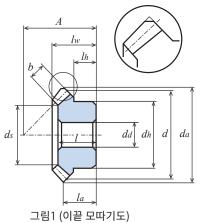
기어비 1:2、1:3

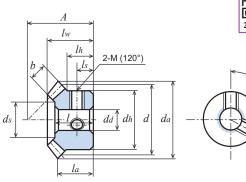
정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 3급	S45C	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언이 입력 측인 것을 전제로 한 수치입니다..
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조)
- ★ 【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H7)	dh	lh	l	lw	la	b	2-M	ls	δa	ds	W(g)
B50S 20		20	φ 10	φ 10.89	15.52	φ3(H8)	φ 8	5	8	8.54	5.74	3.2	-	-	29° 8′	φ 5.6	3.0
B50S 20 * 3	1:2	20	φ10	φ 10.89	15.52	φ3(H8)	ø 8	5	8	8.54	5.74	3.2	2-M2.5	2.5	29° 8′	φ 5.6	2.8
B50S 40		40	φ 20	φ 20.45	10.56	φ4(H8)	φ12	4	6.3	7.31	6.01	3.2	-	-	66° 0′	φ13.5	8.2
B50S 40 * 4		40	φ20	φ 20.45	10.56	φ4(H8)	φ12	4	6.3	7.31	6.01	3.2	2-M3	2	66° 0′	φ13.5	7.8
B80S 20	1:2	20	ø 16	φ 17.43	22.5	ø 5	φ12	5.5	10	10.79	6.86	4.5	-	-	29° 8′	φ 9.8	9.0
B80S 40	1 . 2	40	φ32	φ 32.72	16.46	ø 6	φ20	6	9.5	11.01	9.18	4.5	-	-	66° 0′	φ22.9	33.4
B1S 20 — 6		20	\$ 20	φ 21.79	29.6	ø 6	ø 16	8.6	14	15.03	10.05	5.7	-	-	29° 8′	φ12.1	21.3
B1S 20 * 6		20	φ 20	φ 21.79	29.6	ø 6	ø 16	8.6	14	15.03	10.05	5.7	2-M4	4	29° 8′	φ12.1	20.5
B1S 20 * 8	1:2	20	φ 20	φ 21.79	29.6	φ 8	ø 16	8.6	14	15.03	10.05	5.7	2-M4	4	29° 8′	φ12.1	18.3
B1S 40 — 8	1 · 2	40	φ40	φ 40.89	21.8	φ 8	φ 25	8	13	15.02	12.69	5.7	-	-	66° 0′	φ28.4	71.7
B1S 40 * 8		40	 \$\phi 40	φ 40.89	21.8	φ 8	ø 25	8	13	15.02	12.69	5.7	2-M5	4	66° 0′	φ28.4	69.6
B1S 40 * 10		40	 \$\phi 40	φ 40.89	21.8	φ10	ø 25	8	13	15.02	12.69	5.7	2-M5	4	66° 0′	φ28.4	67.0
B1S 15 — 6		15	ø 15	φ 17.67	31	ø 6	φ13	8.17	14.4	15.16	8.95	6.7	-	-	22°17′	φ 8.0	12.0
B1S 15 * 6	1:3	15	ø 15	φ 17.67	31	φ 6	φ13	8.17	14.4	15.16	8.95	6.7	2-M4	4	22°17′	φ 8.0	11.4
B1S 45 — 10	1.3	45	\$ 45	φ 45.37	20	φ10	\$ 25	8	12.9	14.97	13.06	6.7	-	-	73°27′	φ31.1	86.0
B1S 45 * 10		45	\$45	φ 45.37	20	φ10	φ 25	8	12.9	14.97	13.06	6.7	2-M5	4	73°27′	φ31.1	84.2
B1.5S 18 — 8	1:2	18	φ 27	φ 29.68	40.74	φ 8	φ22	12.5	21	22.96	14.41	9.8	-	-	29°25′	φ12.2	59.4
B1.5S 36 — 10	1 . 2	36	φ54	φ 55.34	26.75	φ10	φ30	10	15.5	18.54	14.59	9.8	-	-	66°17′	φ34.3	139.9
B1.5S 15 — 8	1 • 2	15	φ22.5	φ 26.51	46	φ 8	φ19.5	11.78	21.1	22.29	12.92	10.1	-	-	22°17′	φ11.7	41.8
B1.5S 45 — 12	1:3	45	φ67.5	φ 68.06	30	φ12	φ37.5	12	19.4	22.47	19.59	10.1	-	-	73°27′	φ46.6	300.8
B2S 18 — 10	1:2	18	ø 36	φ 39.58) φ 37.81	53.12	φ10	φ28	15.12	27	29	18.01	12.6	-	-	29°25′	φ19.1	129.6
B2S 36 — 12	1 • 2	36	φ 72	φ (φ73.79) φ 72.15	35.21	φ12	φ36	13	21	24.07	19	12.6	-	-	66°17′	φ47.6	313.0
B2S 15 — 10	1:3	15	ø 30	φ 34.19	62	φ10	φ 26	16.33	28.9	30.32	17.89	13.4	-	-	22°17′	φ16.6	103.8
B2S 45 — 14	1 . 3	45	ø 90	φ ^(φ90.75) φ 89.29	40	φ14	φ50	16	25.9	29.94	26.12	13.4	-	-	73°27′	φ62.3	722.7
B2.5S 18 — 12	1 . 2	18	\$ 45	φ ^(φ49.47) φ 47.27	64.29	φ12	φ36	17	32	34.97	20.41	16.7	-	-	29°25′	φ21.1	250
B2.5S 36 — 14	1:2	36	φ90	φ ^(φ92.24) φ 90.18	42.55	<i>φ</i> 14	φ 50	15	25	29.01	22.29	16.7	-	-	66°17′	φ57.5	640
B2.5S 15 — 10	1 . 2	15	φ37.5	φ ^(φ44.18) φ 42.74	77.93	φ10(H8)	φ32	20.8	38.5	40.41	22.79	19	-	-	22°17′	φ18.2	220
B2.5S 45 — 16	1:3	45	φ112.5	(\$113.44) \$\phi\$111.6	40.67	ø 16	φ60	14	24.5	28.74	23.32	19	-	-	73°27′	φ74.1	1,100
B3S 18 — 15	1 . 2	18	φ54	φ59.37) φ 56.72	75.27	φ15	φ41	18	37	40.06	22.61	20	-	-	29°25′	φ27.4	390
B3S 36 — 16	1:2	36	φ108	φ110.68) φ108.2	52.32	ø 16	φ60	19	31	36.06	28	20	-	-	66°17′	φ68.9	1,150

인포메 이션


기 어 박 스


노백래시 기어

평 기 어

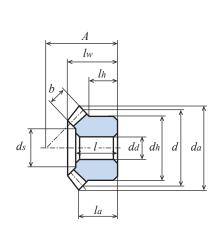
마 이 터 기 어

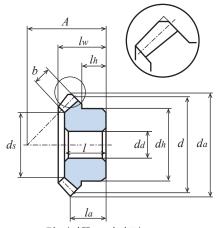
베 벨 기 어

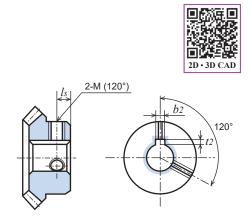
	2D · 3D CAD
←	
	120°

회전속도별 허용전달동력표 휨강도 (단위:W)							회전	소도별 혀	허용전달동	통력표 기	디면강 <u>5</u>	백래시	NT 71-			
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호	
															B50S 20	
0.2	2.0	4.1	8.2	12.4	16.5	20.7		_		_	_		_	0.02.000	B50S 20 * 3	
0.2	2.0	4.1	0.2	12.4	10.5	20.7	_	_	_	-	-	-	-	0.02~0.08	B50S 40	
															B50S 40 * 4	
0.7	7.7	15.5	31.0	46.5	62.0	77.6	_	_	_	_	_	_	_	0.02~0.08	B80S 20	
0.7	7.7	15.5	31.0	40.5	02.0	77.0								0.021-0.00	B80S 40	
															B1S 20 — 6	
															B1S 20 * 6	
1.3	13.8	27.7	55.5	83.3	111.1	138.0	_	_	_	_	_	_	_	0.05~0.12	B1S 20 * 8	
1.5	15.0	27.7	33.3	05.5	111.1	130.0								0.03/~0.12	B1S 40 — 8	
															B1S 40 * 8	
															B1S 40 * 10	
															B1S 15 — 6	
1.1	11.3	22.6	45.6	68.5 91.2 113.4	_	0.05~0.12	B1S 15 * 6									
'''	11.5	22.0	15.0	00.5	71.2	113.1								0.03 0.12	B1S 45 — 10	
															B1S 45 * 10	
4.4	44.4	88.8	1703	255.4	334.6	403.0	0.3	3.9	7.6	15.8	23.9	31.4	38.1	0.05~0.12	1 0.05~0.12	B1.5S 18 — 8
		00.0	170.5	233.1	33 1.0	103.0	0.5	3.5	7.0	13.0	23.5	31.1	30.1	0.03 0.12	B1.5S 36 — 10	
3.8	38.4	76.9	153.9	230.9	307.8	375.9	0.3	3.2	6.4	13.0	19.6	26.3	32.2	0.05~0.12	B1.5S 15 — 8	
3.0	30.1	7 0.5	155.5	230.3	307.0	373.3	0.5	3.2	0.1	15.0	15.0	20.5	32.2	0.03 0.12	B1.5S 45 — 12	
0.010	0.102	0.204	0.408	0.602	0.764	0.912	_	0.010	0.020	0.040	0.060	0.077	0.093	0.05~0.12	B2S 18 — 10	
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)		(kW)	(kW)	(kW)	(kW)	(kW)	(kW)		B2S 36 — 12	
0.009	0.091	0.182	0.364	0.546	0.703	0.844	_	0.007	0.015		0.047	0.062	0.075	0.05~0.12	B2S 15 — 10	
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)		(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	0.03 0.12	B2S 45 — 14	
0.020	0.209	0.418	0.837	1.189	1.494	1.767	0.002	0.021	0.042	0.085	0.122	0.155	0.186	0.06~0.15	B2.5S 18 — 12	
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)		B2.5S 36 — 14	
0.019	0.197	0.394	0.789	1.155	1.464	1.744	0.001	0.017	0.034	0.070	0.104	0.133	0.160	0.06~0.15	B2.5S 15 — 10	
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)		B2.5S 45 — 16	
0.036	0.361	0.722	1.419	1.979	2.465	2.892	0.003	0.037	0.074	0.148	0.209	0.264	0.315	0.06~0.15	B3S 18 — 15	
(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)	(kW)		B3S 36 — 16	

참고 자료


단위:mm


정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	S45C	20도	치부 고주파	HRC47~53	표 참조


- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언이 입력 측인 것을 전제로 한 수치입니다..
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조)
- ★【#】에는 키 홈,키 재료와 나사 구멍2곳 ,세트 스크류가 2개가 포함되어 있습니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

①동종품, 동재질, 안 정의																		
	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	키홈	나	사	이끝각	스폿페이싱 직경	중량
상품 기호			7 0	7 0	71-1	70	40	크이	크이		NEHVIH						ㄱㅇ (참고치)	
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	$b_2 \times t_2$	2-M	ls	δa	ds	W(g)
B1.5S 18 — 8H		18	φ 27	φ 29.68	40.74	φ 8	φ22	12.5	21	22.96	14.41	9.8	-	-	-	29°25′	φ 12.2	59.4
B1.5S 18 # 10H	4 . 0	18	φ 27	φ 29.68	40.74	φ10	<i>φ</i> 22	12.5	21	22.96	14.41	9.8	3 × 1.4	2-M4	6.5	29°25′	φ 12.2	54.5
B1.5S 36 — 10H	1:2	36	φ 54	φ 55.34	26.75	φ 10	ø 30	10	15.5	18.54	14.59	9.8	-	-	-	66°17′	φ 34.3	139.9
B1.5S 36 # 10H		36	φ 54	φ 55.34	26.75	φ 10	ø 30	10	15.5	18.54	14.59	9.8	3 × 1.4	2-M4	5	66°17′	φ 34.3	138.6
B1.5S 15 — 8H		15	φ 22.5	φ 26.51	46	ø 8	φ19.5	11.78	21.1	22.29	12.92	10.1	-	-	-	22°17′	φ 11.7	41.8
B1.5S 15 # 8H	1:3	15	φ 22.5	φ 26.51	46	φ 8	φ19.5	11.78	21.1	22.29	12.92	10.1	3 × 1.4	2-M4	6	22°17′	φ 11.7	40.6
B1.5S 45 — 12H		45	φ 67.5	φ 68.06	30	φ12	φ37.5	12	19.4	22.47	19.59	10.1	-	-	-	73°27′	φ 46.6	300.8
														아래	수치는	전부 kg 단	<u>-</u> 위의 수치	치입니다.
B2S 18 — 10H		18	φ 36	φ 37.81	53.12	 \$10\$	φ28	15.12	27	29	18.01	12.6	-	-	-	29°25′	φ 19.1	0.13
B2S 18 # 12H	1:2	18	φ 36	φ ^(φ39.58) 37.81	53.12	φ12	ø 28	15.12	27	29	18.01	12.6	4 × 1.8	2-M5	8	29°25′	φ 19.1	0.12
B2S 36 — 12H	1 . 2	36	φ 72	φ ^(φ73.79) 72.15	35.21	φ12	ø 36	13	21	24.07	19	12.6	-	-	-	66°17′	φ 47.6	0.31
B2S 36 # 18H		36	φ 72	φ ^(φ73.79) 72.15	35.21	ø 18	ø 36	13	21	24.07	19	12.6	6 × 2.8	2-M5	6.5	66°17′	φ 47.6	0.29
B2S 15 — 10H		15	φ 30	φ ^(φ35.35) φ 34.19	62	 \$10\$	ø 26	16.33	28.9	30.32	17.89	13.4	-	-	-	22°17′	φ 16.6	0.10
B2S 15 # 12H	1:3	15	φ 30	φ ^(φ35.35) 34.19	62	φ12	ø 26	16.33	28.9	30.32	17.89	13.4	4 × 1.8	2-M5	8.5	22°17′	φ 16.6	0.093
B2S 45 — 14H	1.5	45	ø 90	φ ^(φ90.75) φ 89.29	40	<i>φ</i> 14	ø 50	16	25.9	29.94	26.12	13.4	-	-	-	73°27′	φ 62.3	0.72
B2S 45 # 20H		45	φ 90	φ ^(φ90.75) φ 89.29	40	φ20	φ 50	16	25.9	29.94	26.12	13.4	6 × 2.8	2-M5	8	73°27′	φ 62.3	0.69
B2.5S 18 — 12H	1:2	18	φ 45	φ ^(φ49.47) 47.27	64.29	φ12	ø 36	17	32	34.97	20.41	16.7	-	-	-	29°25′	φ 21.1	0.25
B2.5S 36 — 14H	1 • 2	36	ø 90	φ ^(φ92.24) φ 90.18	42.55	<i>φ</i> 14	φ 50	15	25	29.01	22.29	16.7	-	-	-	66°17′	·	0.64
B2.5S 15 — 10H	1:3	15	φ 37.5	φ 42.74	77.93	φ 10	φ32	20.8	38.5	40.41	22.79	19	-	-	-	22°17′	,	0.22
B2.5S 45 — 16H	_	45		φ113.44) φ111.6	40.67	φ16	φ60	14	24.5	28.74	23.32	19	-	-	-	73°27′		1.10
B3S 18 — 15H		18	φ 54	φ 56.72	75.27	φ15	φ41	18	37	40.06	22.61	20	-	-	-			0.39
B3S 18 # 20H	1:2	18	φ 54	φ 56.72	75.27	<i>φ</i> 20	φ41	18	37	40.06	22.61	20	6 × 2.8	2-M6	9	29°25′		0.35
B3S 36 — 16H		36		φ110.68) φ108.2	52.32	φ16	φ60	19	31	36.06	28	20	-	-	-		,	1.15
B3S 36 # 25H		36	φ108	φ110.68) φ108.2 (φ53.02)	52.32	φ25	φ60	19	31	36.06	28	20	8 × 3.3	2-M6	9.5	66°17′	,	1.07
B3S 15 — 12H	1:3	15	φ 45	φ 53.02) φ 51.29 (φ136.12)	89.36	φ12	φ36	20.3	42	44.53	23.2	23	-	-	-	22°17′	,	0.34
B3S 45 — 18H		45	φ135	φ136.12) φ133.9 (φ79.16)	50.95	φ18	φ70	19	32	36.69	30.13	23	-	-	-	73°27′	·	1.95
B4S 18 — 20H	1:2	18	φ 72	φ ^(φ79.16) φ 75.63 (φ147.58)	99.73	φ20	φ55	23.5	48	52.02	29.52	25.8	-	-	-		,	0.94
B4S 36 — 22H		36	φ144 Φ 60	(φ147.58) φ144.3 (φ70.69)	71.56	-	φ75	23	42	49.53	39.14	25.8	- 6 V 2 0	- 140	1 /	66°17′	,	
B4S 15 # 20H	1:3	15	φ 60	φ (φ70.69) φ 68.38 (φ181.5)	119.14	φ20 430	φ52	27.8	57	59.67	30.92	31	6 × 2.8		14		φ 31.1	0.78
B4S 45 # 30H		45	φ180	φ ^{(φ} 181.5) φ178.6	65.47	φ30	ø 80	22	40	46.55	37.71	31	8 × 3.3	2-M8	11	73°27′	<i>φ</i> 11/.6	4.19

평 기 어

그림1 (이	끝 모따기도)
--------	---------

회	전속도별	허용전딜	동력표	휨강도	(단위: V	V)	회전	!속도별 t	허용전달동	등력표 기	치면강되	- - - (단위:	W)	백래시	
10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	10 rpm	100 rpm	200 rpm	400 rpm	600 rpm	800 rpm	1,000 rpm	(단위: mm)	상품 기호
4.1	41.1	82.2	164.4	246.6	323.5	390.8	1.0	11.6	24.0	49.6	75.7	100.6	122.7	0.05~0.12	B1.5S 18 — 8H B1.5S 18 # 10H B1.5S 36 — 10H B1.5S 36 # 10H
3.6	36.5	73.0	146.1	219.2	292.3	357.5	0.8	9.1	18.8	38.9	59.4	80.2	99.0	0.05~0.12	B1.5S 15 — 8H B1.5S 15 # 8H B1.5S 45 — 12H
아래 수치	i는 전부 k	W 단위의	수치입니	다.											
0.009	0.095	0.190	0.380	0.562	0.716	0.857	0.002	0.027	0.057	0.118	0.177	0.228	0.276	0.05~0.12	B2S 18 - 10H B2S 18 # 12H B2S 36 - 12H B2S 36 # 18H
0.008	0.086	0.172	0.345	0.518	0.669	0.805	0.002	0.022	0.045	0.094	0.144	0.188	0.229	0.05~0.12	B2S 15 — 10H B2S 15 # 12H B2S 45 — 14H B2S 45 # 20H
0.019	0.192	0.385	0.771	1.100	1.389	1.649	0.005	0.057	0.118	0.243	0.353	0.452	0.542	0.06~0.15	B2.5S 18 — 12H B2.5S 36 — 14H
0.018	0.183	0.366	0.732	1.074	1.366	1.633	0.004	0.047	0.098	0.203	0.304	0.392	0.473	0.06~0.15	B2.5S 15 — 10H B2.5S 45 — 16H
0.033	0.332	0.665	1.310	1.837	2.300	2.710	0.009	0.100	0.207	0.420	0.600	0.761	0.905	0.06~0.15	B3S 18 - 15H B3S 18 # 20H B3S 36 - 16H B3S 36 # 25H
0.031	0.317	0.635	1.271	1.814	2.290	2.718	0.007	0.084	0.174	0.359	0.522	0.667	0.800	0.06~0.15	B3S 15 — 12H B3S 45 — 18H
0.077	0.773	1.546	2.908	4.007	4.943	5.883	0.021	0.239	0.494	0.958	1.344	1.679	2.018	0.06~0.15	B4S 18 — 20H B4S 36 — 22H
0.075	0.758	1.517	2.940	4.099	5.104	6.013	0.018	0.207	0.427	0.853	1.210	1.526	1.816	0.06~0.15	B4S 15 # 20H B4S 45 # 30H

스트레이트 베벨 (SUS304)

모듈 0.8/1/1.5/2 기어비 1:2

단위 : mm

정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	SUS304	20도	_	_	표 참조

- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언이 입력 측인 것을 전제로 한 수치입니다..
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★이끝원 직경 da의 () 내 수치는 이론치입니다. 실제 최대 외경은 이 수치에서 축심과 평행하게 모따기한 후의 수치입니다. (그림1 참조)
- ★【*】에는 나사 구멍이 2곳 있고 세트 스크류는 포함되어 있지 않습니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

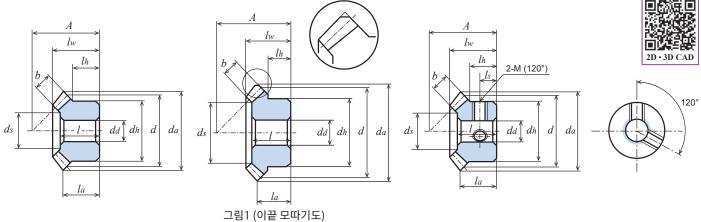
상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	2-M(120°)	ls	δa	ds	W(g)
B80SU 20 * 5		20	ø 16	φ17.43	22.5	ø 5	φ12	5.5	10	10.79	6.86	4.5	2-M3	2.5	29° 8′	φ 9.8	8.8
B80SU 40 * 6		40	φ32	φ32.72	16.46	ø 6	φ 20	6	9.5	11.01	9.18	4.5	2-M4	3.5	66° 0′	φ22.9	33.2
B1SU 20 — 6		20	φ 20	ø 21.79	29.6	ø 6	ø 16	8.6	14	15.03	10.05	5.7	-	-	29° 8'	φ12.1	21.6
B1SU 40 — 8		40	φ40	φ40.89	21.8	φ 8	φ 25	8	13	15.02	12.69	5.7	-	-	66° 0'	φ28.4	72.6
B1SU 20 * 6	1.2	20	φ 20	ø 21.79	29.6	ø 6	ø 16	8.6	14	15.03	10.05	5.7	2-M4	4	29° 8′	φ12.1	20.8
B1SU 40 * 8	1:2	40	φ40	φ40.89	21.8	ø 8	φ 25	8	13	15.02	12.69	5.7	2-M5	4	66° 0′	φ28.4	70.4
B1.5SU 18 — 8		18	φ 27	<i>ф</i> 29.68	40.74	ø 8	φ 22	12.5	21	22.96	14.41	9.8	-	-	29°25′	φ12.1	60.0
B1.5SU 36 — 10		36	φ54	\$\phi\$55.34	26.75	φ10	ø 30	10	15.5	18.54	14.59	9.8	-	-	66°17′	φ34.3	141.3
B2SU 18 — 10		18	ø 36	φ39.58) φ37.81	53.12	φ10	 \$\phi 28	15.12	27	29	18.01	12.6	-	-	29°25′	φ19.1	131.0
B2SU 36 — 12		36	<i>φ</i> 72	φ _{73.79} φ _{72.15}	35.21	φ12	ø 36	13	21	24.07	19	12.6	-	-	66°17′	φ47.6	316.2

B

스트레이트 베벨 (C3604B) 황동

모듈 0.5/0.8

기어비 1:2


단위:mm

정밀도	재질	압력각	열처리	치면 경도	백래시①
JIS B 1704 4급	C3604B	20도	_	_	0.02~0.08

- ★표면처리는 하지 않았습니다. 허용전달동력표는 피니언이 입력 측인 것을 전제로 한 수치입니다..
- ★【*】에는 나사 구멍이 2곳, 세트 스크류 2개 포함되어 있습니다.
- ①동종품, 동재질, 한 쌍의 맞물림 시의 이론치입니다.

상품 기호	기어비	잇수	기준원 직 경	이끝원 직 경	조립 거리	구멍 직경	허브 외경	허브 길이	구멍 길이	전장	단면에서 이끝의 거리	치폭	나	사	이끝각	스폿페이싱 직경 (참고치)	중량
	и	Z	d	da	A	dd(H8)	dh	lh	l	lw	la	b	2-M(120°)	ls	δa	ds	W(g)
B50B 20		20	φ10	φ10.89	15.52	ø 3	ø 8	5	8	8.54	5.74	3.2	-	-	29° 8′	φ 5.6	3.2
B50B 40		40	φ 20	φ20.45	10.56	ϕ 4	φ12	4	6.3	7.31	6.01	3.2	-	-	66° 0′	φ13.5	8.9
B50B 20 * 3	1:2	20	φ10	φ10.89	15.52	ø 3	ø 8	5	8	8.54	5.74	3.2	2-M2.5	2.5	29° 8′	φ 5.6	3.0
B50B 40 * 4	1 · 2	40	φ 20	φ20.45	10.56	ϕ 4	φ12	4	6.3	7.31	6.01	3.2	2-M3	2	66° 0′	φ13.5	8.5
B80B 20		20	ø 16	φ17.43	22.5	φ 5	φ12	5.5	10	10.79	6.86	4.5	-	-	29° 8′	φ 9.8	9.8
B80B 40		40	φ32	φ32.72	16.46	ø 6	φ 20	6	9.5	11.01	9.18	4.5	-	-	66° 0′	φ22.9	36.1

목 차

	회전속도	별 허용전	달동력표	휨강도	(단위: W	')	백래시	상품 기호
10rpm	100rpm	200rpm	400rpm	600rpm	800rpm	1,000rpm	(단위: mm)	9명시 <u>포</u>
0.3	3.5	7.0	14.1	21.1	28.2	35.2	0.02~0.08	B80SU 20 * 5 B80SU 40 * 6
0.6	6.9	13.9	27.8	41.7	55.6	69.1	0.05~0.12	B1SU 20 - 6 B1SU 40 - 8 B1SU 20 * 6 B1SU 40 * 8
2.1	21.3	42.7	85.5	128.3	168.1	202.5	0.05~0.12	B1.5SU 18 — 8 B1.5SU 36 — 10
4.9	49.5	99.1	198.3	292.2	370.9	442.4	0.05~0.12	B2SU 18 — 10 B2SU 36 — 12

<u>스트레이트 베벨</u> (C3604B) 황동 B

모듈 0.5/0.8

lw lh 2-M (120°) 120° ds $dd \int dh$ d da

기어비 1 : 2

웜 과 웜휠

W 웜 시리즈 G 웜 휠 시리즈

※외관은 이미지 입니다.

상품 기호 읽는 방법

W 1 S R 1 + B - 8

기어 종	류 모듈	재질	나선 방향	나사산 수	구멍 가공	형상	구멍 직경
W : 웜	모듈 크기를 표현 . 모듈 1 보다 아래인 경우 표 기 숫자는 실제 모듈의 100 바 예 : 모듈 0.5 는 "50"	S : S45C SU : 스테인리스 SUS304	R: 오론쪽 나선 L: 왼쪽 나선		절삭가공 【一】: 나사구멍 없음, 키홈 없음 【十】: 나사구멍 1 개 있음 【=】: 키홈 있음	A : 허브없음 B : 한쪽허브 C : 양쪽 허브 CF: 양쪽허브 (추가공용)	단위: mm
	모듈 0.8 은 "80"					L : 양쪽 축	

G 1 A 20 R 2 + 6

기어 종류	모듈	재질	잇수	나선 방향	상대 웜 나사산 수	구멍 가공	구멍 직경
G: 웜 휠	모듈 크기를 표현 . 모듈 1 보다 아래인 경우 표 기 숫자는 실제 모듈의 100 배 . 예 : 모듈 0.5 는 "50" 모듈 0.8 은 "80"	B : 황동 C3604B BP : 아세탈 청색 POM A : 알루미늄 청동주물 CAC702 알루미늄 청동 C6191BE D : 아세탈 백색 POM 항동 C3604 부시	예 : 잇수 20 은 "20" 으로 표기	R: 오론쪽 나선 L: 왼쪽 나선	1: 나사선 1 선 2: 나사선 2 선	절삭가공 [-]: 나사구멍 없음, 키홈 없음 [+]: 나사구멍 1 개 있음 [-]: 키홈 있음	단위 : mm

(기호체계는 재질에 따라 차이가 있습니다.)

상품기호	W50	W50	G50	G50	G50	W80	W80	G80	G80	G80
형상				0					0	0
페이지	P. 262	P. 263	P. 262	P. 262	P.262	P. 264	P. 265	P. 264	P. 264	P. 264
재질	SUS304	S45C	CAC702	황동	청색POM	SUS304	S45C	CAC702	청색POM	백색POM
모듈	m 0.5	m 0.5	m 0.5	m 0.5	m 0.5	m 0.8				
치부처리	성형압연	성형압연	절삭	절삭	절삭	성형압연	성형압연	절삭	절삭	절삭

상품기호	W1	W1	G1	G1	G1	W1.5	W1.5	G1.5	G1.5	G1.5
형상				0				0	0	0
페이지	P. 266	P. 267	P. 266	P. 266	P. 268	P. 270	P. 271	P. 270	P. 270	P. 272
재질	SUS304	S45C	백색POM/백색POM (황동부시)	청색POM	CAC702	SUS304	S45C	백색POM/백색POM (황동부시)	청색POM	CAC702
모듈	m 1	m 1	m 1	m 1	m 1	m 1.5	m 1.5	m 1.5	m 1.5	m 1.5
치부처리	성형압연	성형압연	절삭	절삭	절삭	성형압연	성형압연	절삭	절삭	절삭

상품기호	W2	G2	W2.5	G2.5	W3	G3
형상						
페이지	P. 274	P. 274	P. 276	P. 276	P. 277	P. 277
재질	S45C	CAC702	S45C	CAC702	S45C	CAC702
모듈	m 2	m 2	m 2.5	m 2.5	m 3	m 3
치부처리	성형압연	절삭	절삭	절삭	절삭	절삭

웜, 웜휠<u>인포메이션</u>

1. 웜, 웜 휠의 특징

가공 방법	모듈	웜 휠 치면에 대한 내마모성	치면 거칠기	치면 경도	열처리
성형압연	0.5~2.0	내마모성이 높음	성형압연면 Ra1.6	모재의 1.2~1.3 배	불가
절삭	2.5~3.0	내마모성이 낮음	절삭면 Ra4.5	모재 경도	가능

상대 기어를 당사 이외의 상품과 조합하여 사용하면 문제가 발생할 우려가 있습니다 . 규격품 이외의 사양으로 설계할 때는 당사와 상담해 주십시오 .

1) 성형압연 웜의 특징

①표면 경도:

냉간성형압연에 의한 가공이므로 나사면 <u>표면은 가공경화</u>에 의해 경도가 향상되고 금속 섬유 조직이 절단되지 않아 기계절삭의 웜에 비해 기계적 성질도 우수합니다 . 성형압연 후의 표면 경도는 모재 경도의 1.2 배 ~ 1.3 배가 되고 , "나사면의 경도는 HB240 ~ 260 " 이됩니다 .

②표면 거칠기:

나사면이 경면 (鏡面) 이 되고 나사산의 모서리는 성형압연 시 솟아 오르기 때문에 완전한 곡면으로 되어 있습니다.

③웜 휠의 수명 향상

나사면이 경면 (鏡面)이기 때문에 절삭한 웜을 사용한 경우와 비교하여 웜 휠의 수명이 길어집니다.

④폴리아세탈 웜 휠과의 상응성

위와 같은 특징이 있기 때문에 성형압연 웜은 폴리아세탈과 같은 연재질 웜 휠 치면의 마모가 작고 그 내구성은 매우 우수합니다 .

⑤최대 단일 피치 오차와 압력각 오차

단일 피치 오차 및 압력각 오차는 성형압연용 롤다이스의 정밀도에 따라 좌우되지만 성형압연된 웜의 단일 피치 최대 오차는 $18 \mu m$ 이며 압력각 오차는 ± 20 '입니다 .

⑥가성비

고가의 연삭 가공 웜에 비해 표면 거칠기가 뛰어나고 가성비가 높습니다.

성형압연 가공 설명:

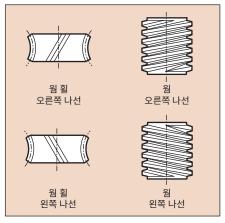
- ①소재의 소성변형 원리를 이용하여 한 쌍의 성형압연 롤 다이스 사이에 재료를 놓고 양쪽에서 유압력으로 강압 회전시켜 가공합니다.
- ②재료: S45C, SUS304. (비금속 및 기타 재질에 대해서는 문의바랍니다).
- ③나사 피치의 범위는 0.5mm~2mm 입니다.
- ④단일물은 외경 φ 40mm, 길이 80mm 까지입니다.
- ⑤특수한 치형 형상에 대해서는 당사에 문의바랍니다.

2) 치면 연마 웜의 특별 주문 제조

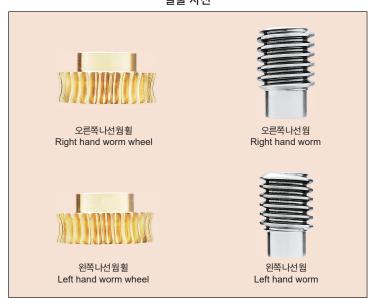
①전체 정밀도:

치면 연마 웜은 전체적인 정밀도가 매우 뛰어나 고정밀도 기계에 많이 사용됩니다.

②제작 흐름:


고객님의 도면을 받아 따로 견적을 드리겠습니다.

2. 서로 맞물리는 웜과 웜 휠의 선택 방법

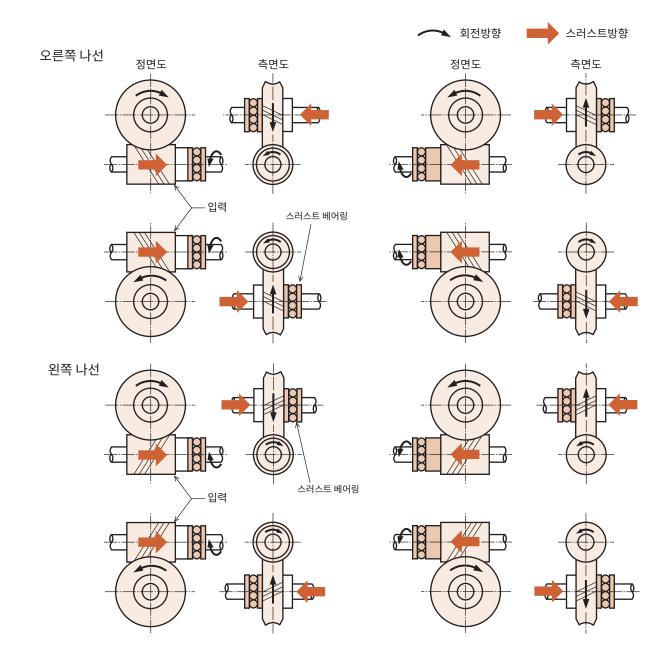

웜과 웜 휠의 나선 방향 및 나사산 수는 동일한 조합으로 사용하십시오.

맞물림 가능		Ę		
, 무물님 기 능	R1	R2	L1	L2
웜 휠	R1	R2	L1	L2

원과 웜 휠의 오른쪽 나선/왼쪽 나선 구분 방법

실물 사진

3. 웜과 웜 휠 조립 시 주의사항


- 1) 이상적인 맞물림을 얻기 위해서는 정확하게 직각도를 만드십시오.
- 2) 맞물림에 있어서 치면의 마찰이 크므로 윤활 방법에 대해서는 다음 페이지의 5.4)를 참조하십시오.
- 3) 웜축 및 웜휠축은 휘어지지 않도록 베어링은 가능한 기어에 가까운 곳에 견고하게 설계하십시오.
- 4) 웜에 작용하는 축방향 스러스트는 상당히 커지므로 주의하십시오. 축방향 스러스트에 대해서는 4의 그림을 참고하십시오.
- 5) 기어의 치면닿는 부분에 대해서는 참고자료 9 페이지의 ' 기어의 치면닿는 부분 ' 을 참고하십시오 .

참고자료

궘,참

웜,웜휠 인포메이션

4.웜에 작용하는 축방향 스러스트

5. 웜과 웜 휠의 기술 정보

1) 셀프 록

웜 휠에서 웜을 구동할 수 없는 현상을 말합니다. 이론상 진행각 4° 이하에서 셀프 록이 됩니다. 재질, 가공 정밀도, 윤활유, 진동 등의 영향을 받아 작용하지 않을 수 있습니다. ※확실하게 멈출 필요가 있는 경우는 다른 안전장치를 설치하십시오.

2) 전달 효율

당사의 웜기어의 이론상 전달 효율은 나사산 1 선 : 45%~55%; 나사산 2 선 : 55%~65% 입니다 . 그러나 전달 효율은 윤활유나 회전수 등의 영향을 받으므로 참고치로 사용하십시오 .

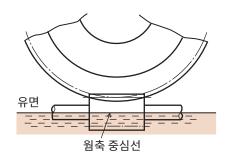
3) 백래시

당사의 기어는 카탈로그에 기재된 조립 거리로 구성 시, 상품 페이지에서의 게재 백래시가 되도록 설계했습니다. 맞물림 중심거리가 변화했을 때의 법선 방향 백래시 변화량은 아래의 계산식으로 계산할 수 있습니다. 당사 규격품의 압력각 20°일 때의 계산식입니다.

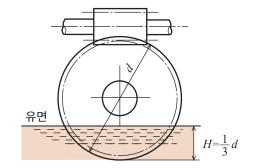
$Jn = \Delta a / 1.46$

Jn: 법선 방향 백래시 변화량 Δa: 맞물림 중심거리의 변화량

4) 윤활


윤활방법의 채용에는 원주속도가 하나의 기준이 됩니다 . 원주 속도는 아래와 같은 방법으로 계산할 수 있습니다 .

$$%$$
원주 속도 [m/s] = $\frac{\pi \times \text{ 피치원 직경 [mm]} \times \text{회전수 [rpm]}}{1000 \times 60}$


이하 바버		원주 속도(m/s)											
윤활 방법	0	5	10	15	20								
그리스 윤활법 스플래시 윤활법 강제 윤활법	> <	~	→	ı									

윤활유

- 목적: 치면의 금속 접촉을 피하고 치면의 마찰에 의해 발생하는 열을 제거하고 치면의 마모 가루를 제거합니다. 진동이나 소음이 억제될 수 있습니다.
- 적정 유량: 그림1에 기어가 오일에 잠기는 양의 기준을 나타냅니다. 잠기는 양이 크면 교반(攪拌) 저항이나 풍손(처닝 손실)이 증가합니다.

웜이 아래에 오는 경우에는 웜 직경의 반까지 오일에 넣으십시오.

웜이 위에 오는 경우에는 휠 직경의 1/3까지 오일에 넣으십시오.

그림1 윤활유량 기준

목 차

> 이 션

기어박스

노백래시 기어

평 기 어

랙

스크류 기어

이터기어

베 벨 기 어

면, 웜 휠

참고자료

치직각 모듈 0.5

교듈 0.5 (보통이)

단위 : mm

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	SUS304	20도	정밀 성형압연

- ★표면 처리는 하지 않았습니다.
- ★【+】에는 나사 구멍, 세트 스크류가 포함되어 습니다.세트 스크류의 재질은 스테인리스가 아닙니다.

	l s
	b lh M2.5
$da \mid d \mid -$	
<u> </u>	

B형【+】

상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	앞선각	중량
		z	d	da		b	dd(H8)	dh	lh	l	γ	W(g)
W50SU R1 + B	R	1	φ 9	ø 10	В	13	ø 3	φ7.6	5	18	3°11′	7.3

단위:mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	CAC702 (알루미늄 청동주물)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다. 【+】에는 나사 구멍, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	x	dT	da		b	dd(H8)	dh	lh	l	M	ls	а		W(g)
G50A 20 + R1	1:20	20	φ10	-0.015	φ11	φ11.45			ø 3	ø 9	6	11	МЗ	3	9.5		6.6
G50A 30 + R1	1:30	30	φ15	-0.023	ø 16	φ16.45			φ4	φ12	6	11	M3	3	12		12.0
G50A 40 + R1	1:40	40	φ20	-0.031	ϕ 21	φ21.45	1B	_	φ 5	φ 15	8	13	M4	4	14.5	R1	21.6
G50A 50 + R1	1:50	50	φ25	-0.038	ø 26	φ26.45	ID	ر	φ 5	φ20	8	13	M4	4	17	ΝI	34.8
G50A 60 + R1	1:60	60	ø 30	-0.046	φ 31	φ31.45			φ 5	φ 25	8	13	M4	4	19.5		54.5
G50A 80 + R1	1:80	80	φ40	-0.061	ϕ 41	φ41.45			φ 6	φ30	8	13	M4	4	24.5		86.0

단위 : mm

정밀도	재질	압력각	기어 가공 방법	백래시①	Ī
대응하는 JIS 규격 없음	C3604B	20도	절삭	표 참조	٦

- ★표면 처리는 하지 않았습니다.【+】에는 나사 구멍, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

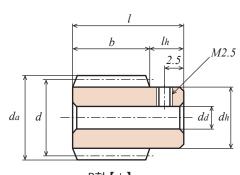
상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	х	dT	da		b	dd(H8)	dh	lh	l	M	ls	а		W(g)
G50B 20 + R1	1:20	20	φ10	-0.015	φ11	φ11.45			ø 3	ø 9	6	11	МЗ	3	9.5		5.9
G50B 30 + R1	1:30	30	ø 15	-0.023	φ16	φ16.45	1B	_	<i>φ</i> 4	φ12	6	11	МЗ	3	12.0	R1	11.2
G50B 40 + R1	1:40	40	<i>φ</i> 20	-0.031	<i>φ</i> 21	φ21.45	ID) 3	φ 5	ø 15	8	13	M4	4	14.5	KI	22.7
G50B 50 + R1	1:50	50	φ25	-0.038	φ26	φ26.45			φ 5	φ16	8	13	M4	4	17.0		29.8

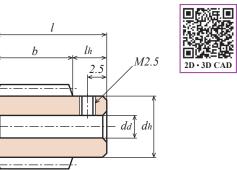
단위:mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	청색 POM	20도	절삭	표 참조

- ★본 허용전달동력표의 테이블은 LEWIS을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수 및 정밀도의 변화가 발생합니다.
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

		9-1-	4014	-1112 0 0	2-1 -10 -		1-1.								
상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	x	dΤ	da		b	dd	dh	lh	l	а		W(g)
G50BP 20 — R1	1:20	20	 \$\psi 10\$	-0.015	 ø 11	φ11.45			\$ 3	ø 9	6	11	9.5		1.0
G50BP 30 — R1	1:30	30	ø 15	-0.023	ø 16	φ16.45			ϕ 4	φ12	6	11	12.0		2.0
G50BP 40 — R1	1:40	40	φ 20	-0.031	φ 21	φ21.45	1B	_	φ 5	ø 15	8	13	14.5	R1	3.8
G50BP 50 — R1	1:50	50	\$ 25	-0.038	ø 26	φ26.45	ID)	φ 5	φ 20	8	13	17.0	ΝI	6.6
G50BP 60 - R1	1:60	60	ø 30	-0.046	ø 31	φ31.45			φ 5	\$ 25	8	13	19.5		10.2
G50BP 80 — R1	1:80	80	φ40	-0.061	φ41	φ41.45			φ 6	φ30	8	13	24.5		17.7

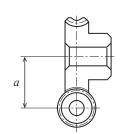


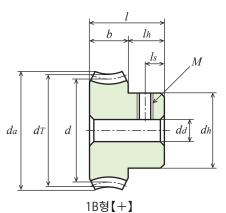


단위 : mm

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	정밀 성형압연

- ★표면 처리는 하지 않았습니다.
- ★ 【+】에는 나사 구멍, 세트 스크류가 포함되어 습니다.세트 스크류의 재 질은 스테인리스가 아닙니다.





B형【+】

상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	앞선각	중량
		Z	d	da		b	dd(H8)	dh	lh	l	γ	W(g)
W50S R1 + B	R	1	ø 9	φ10	В	13	ø 3	φ 7.6	5	18	3°11′	7.3

	웜 회전속도별	원월의 허용		백래시①	상품 기호			
100 rpm	250 rpm	500 rpm	1,000 rpm	1,200 rpm	1,500 rpm	1,800 rpm	(단위: mm)	9 문 시 조
30.83	26.26	21.94	18.00	17.02	15.87	14.95		G50A 20 + R1
66.07	57.03	48.36	39.95	37.87	35.39	33.44		G50A 30 + R1
112.86	98.36	84.54	70.15	66.58	62.34	58.99	0.06~0.15	G50A 40 + R1
170.92	150.05	129.89	108.41	103.00	96.57	91.46		G50A 50 + R1
239.89	211.80	183.56	154.60	146.99	137.94	130.76		G50A 60 + R1
409.47	362.63	316.59	270.27	257.25	241.75	229.44		G50A 80 + R1

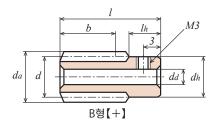
	웜 회전속도별	원월의 허용		백래시①	상품 기호			
100 rpm	250 rpm	500 rpm	1,000 rpm	1,200 rpm	1,500 rpm	1,800 rpm	(단위: mm)	영품 기오
21.687	18.482	15.435	12.661	11.975	11.162	10.515		G50B 20 + R1
46.452	40.111	34.015	28.096	26.636	24.892	23.520	0.06~0.15	G50B 30 + R1
79.380	69.188	59.466	49.343	46.834	43.855	41.493	0.00~0.15	G50B 40 + R1
120.226	105.546	91.365	76.263	72.451	67.923	64.337		G50B 50 + R1

$\downarrow b \downarrow lh \downarrow$	
da dT d dh	
1B형【一】	

상품 기호	백래시①		치면강도②	!위: N • cm) ⁷	전달토크(단	월월의 허용	웜 회전속도별	
요품 기호	(단위: mm)	1,800 rpm	1,500 rpm	1,200 rpm	1,000 rpm	500 rpm	250 rpm	100 rpm
G50BP 20 - R1		8.87	8.94	8.94	9.00	9.00	9.00	9.00
G50BP 30 — R1		13.31	13.41	13.41	13.41	13.50	13.50	13.50
G50BP 40 - R1	0.06 0.15	17.75	17.88	17.88	18.01	18.01	18.01	18.01
G50BP 50 — R1	0.06~0.15	22.19	22.34	22.34	22.50	22.50	22.50	22.50
G50BP 60 - R1		26.63	26.82	26.82	27.00	27.00	27.00	27.00
G50BP 80 — R1		31.92	31.92	32.03	32.03	32.15	32.15	32.15

W : 웜 G : 웜 §

치직각 모듈 0.8


(보통이)

단위 : mm

권미드	ᆔ	013171	기시 기고 바베
싱밀노	세실	입덕각	기어 가공 방법
대응하는 JIS 규격 없음	SUS304	20도	정밀 성형압연

- ★표면 처리는 하지 않았습니다.
- ★【+】에는 나사 구멍이 있고 세트 스크류는 포함되어 있지 않습니다.

상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이		허브 길이 전장		전장	앞선각	중량
		z	d	da		b	dd(H8)	dh	lhL	lhR	l	γ	W(g)		
W80SU R1 + B	R	1	φ10.4	φ12	В	14	φ 5	φ10.3	-	6	26	4°24′	18.0		
W80SU R1 — L	R	1	φ10.4	φ12	L	20	-	φ 8 (h9)	20	40	80	4°24′	40.0		

단위:mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	CAC702(알루미늄 청동주물) C6191BE(알루미늄 청동)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다. 【+】에는 나사 구멍, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	z	d	x	dΤ	da		b	dd(H8)	dh	lh	l	M	ls	а		W(g)
G80A 20 + R1	1:20	20	ø 16	-0.029	φ17.6	φ18.1			φ 5	φ12	6	12	МЗ	3	13.2		12.9
G80A 30 + R1	1:30	30	<i>φ</i> 24	-0.044	φ25.6	φ26.1			φ 5	φ16	6	12	МЗ	3	17.2		26.5
G80A 40 + R1	1:40	40	ø 32	-0.059	φ33.6	ø 34.1	1B	6	ø 6	φ 18	8	14	M4	4	21.2	R1	50.7
G80A 50 + R1	1:50	50	\$40	-0.074	φ41.6	φ42.1	ID	6	ø 6	φ 20	8	14	M4	4	25.2	ΝI	75.7
G80A 60 + R1	1:60	60	 \$\psi 48	-0.089	ø 49.6	φ50.2			ø 8	30	8	14	M4	4	29.2		121.1
G80A 80 + R1	1:80	80	φ64	-0.119	φ65.6	φ66.2			ø 8	40	8	14	M4	4	37.2		214.3

단위 : mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	청색 POM	20도	절삭	표 참조

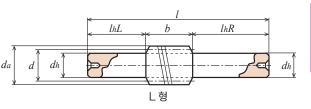
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	감합 중심거리	웜의 나선 방향 및 나사산 수	중량		
	u	Z	d	x	dт	da		b	dd	dh	lh	l	M	ls	a		W(g)		
G80BP 20 - R1	1:20	20	φ16	-0.029	φ17.6	φ18.1			<i>φ</i> 4	φ12	6	12	-	-	13.2		2.4		
G80BP 30 — R1	1:30	30	<i>φ</i> 24	-0.044	φ25.6	φ26.1			φ 5	φ18	6	12	-	-	17.2		5.6		
G80BP 40 — R1	1:40	40	φ32	-0.059	<i>φ</i> 33.6	<i>φ</i> 34.1	1 D	1 R	1B	6	ø 6	<i>φ</i> 20	8	14	-	-	21.2	R1	9.8
G80BP 50 — R1	1:50	50	\$40	-0.074	φ41.6	φ42.1	ID	6	ø 6	φ25	8	14	-	-	25.2	N I	15.5		
G80BP 60 — R1	1:60	60	\$48	-0.089	φ49.6	φ50.1			ø 8	φ30	8	14	-	-	29.2		22.2		
G80BP 80 — R1	1:80	80	φ64	-0.119	φ65.6	φ66.2			ø 8	<i>φ</i> 40	8	14	-	-	37.2		42.4		

<u>단위 : mm</u>

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	백색 POM	20도	절삭	표 확인

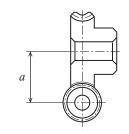
- ★【+】에는 나사 구멍, 세트 스크류가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★본 상품의 허용 토크값 및 백래시에 대해서는 청색 POM 상품의 상응하는 수치를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

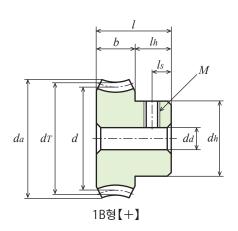

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	나	사	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	x	dT	da		b	dd	dh	lh	l	M	ls	a		W(g)
G80D 20 + R1	1:20	20	φ16	-0.029	φ17.6	φ18.1			φ 5	φ12	6	12	МЗ	3	13.2		2.5
G80D 30 + R1	1:30	30	<i>φ</i> 24	-0.044	φ25.6	φ26.1	1B	6	φ 5	ø 16	6	12	МЗ	3	17.2	R1	5.2
G80D 40 + R1	1:40	40	φ32	-0.059	φ33.6	φ34.1	ID	6	ø 6	ø 18	8	14	M4	4	21.2	ΚI	10.0
G80D 50 + R1	1:50	50	φ40	-0.074	φ41.6	φ42.1			ø 6	φ 20	8	14	M4	4	25.2		14.0

베 벨 기 어

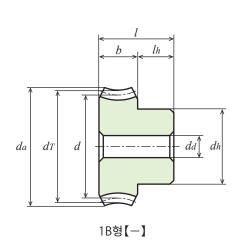
단위 : mm

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	정밀 성형압연




★표면 처리는 하지 않았습니다.

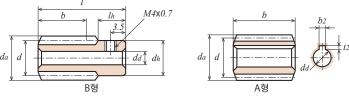
★【+】에는 나사 구멍, 세트 스크류가 포함되어 있습니다.세트 스크류의 재질은 스테인리스가 아닙니다.

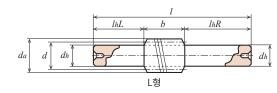

상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이		전장	앞선각	중량
		Z	d	da		b	dd(H8)	dh	lhL	lhR	l	γ	W(g)
W80S R1 + B	R	1	φ10.4	φ12	В	14	φ 5	φ10.3	-	6	26	4°24′	18.0
W80S R1 — L	R	1	φ10.4	φ 12	L	20	-	φ 8 (h9)	20	40	80	4°24′	40.0

백래시①		디면강도②	단위: N·m) 기	용전달토크(E	별 웜 휠의 허용	웜 회전속도팀	
(단위: mm)	1,800 rpm	1,500 rpm	1,200 rpm	1,000 rpm	500 rpm	250 rpm	100 rpm
	0.411	0.441	0.470	0.499	0.607	0.735	0.872
	0.931	0.989	1.058	1.117	1.352	1.597	1.871
0.06~0.15	1.646	1.744	1.862	1.960	2.371	2.763	3.194
0.00~0.13	2.557	2.704	2.891	3.038	3.645	4.223	4.841
	3.666	3.870	4.126	4.342	5.163	5.965	6.799
	6.433	6.782	7.221	7.590	8.904	10.213	11.606

상품 기호	백래시①		[면강도②	!위: N·m) 기	전달토크(E	별 웜 휠의 허용	웜 회전속도빌	
성품 기오	(단위: mm)	1,800 rpm	1,500 rpm	1,200 rpm	1,000 rpm	500 rpm	250 rpm	100 rpm
G80BP 20 - R1		0.27	0.27	0.27	0.27	0.28	0.28	0.28
G80BP 30 - R1		0.41	0.41	0.41	0.41	0.41	0.41	0.41
G80BP 40 - R1	0.06 0.15	0.55	0.55	0.55	0.55	0.55	0.55	0.55
G80BP 50 - R1	0.06~0.15	0.68	0.68	0.69	0.69	0.69	0.69	0.69
G80BP 60 - R1		0.82	0.82	0.82	0.82	0.83	0.83	0.83
G80BP 80 - R1		1.03	1.03	1.03	1.03	1.04	1.04	1.04

기어박스




치직각 모듈 1

(보통이)

단위:mm

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	SUS304	20도	정밀 성형압연

★표면 처리는 하지 않았습니다. 【+】에는 나사 구멍이 있고 세트 스크류는 포함되어 있지 않습니다.

상품 기호	나선 방향	나사산 수 <i>z</i>	기준원 직 경 <i>d</i>	이끝원 직 경 da	형	치폭 <i>b</i>	구멍 직경 dd(H8)	허브 외경 <i>dh</i>	허브 길이 <i>lh</i>	전장 <i>l</i>	앞선각 ^γ	중량 W(g)
W1SU R1 + B	R	1	ø 16	φ 18	В	15.5	ø 6	φ15.85	7	32	3°35′	42.0
W1SU R2 + B	R	2	ø 16	φ18	В	15	φ 6	φ15.85	7	32	7°11′	42.0

단위:mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	백색 POM③	20도	절삭	표 참조

- 【十】에는 나사 구멍, 세트 스크류가 포함되어 있습니다. ★소재 특성상 경년 변화. 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★본 상품의 허용 토크값 및 백래시에 대해서는 청색 POM 상품의 상응하는 수치를 확인하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임). ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.
- ③1B품은 흰색 POM으로만 구성되어 있습니다. OB 제품은 흰색 POM에 황동(C3604B) 부시가 들어 있습니다.

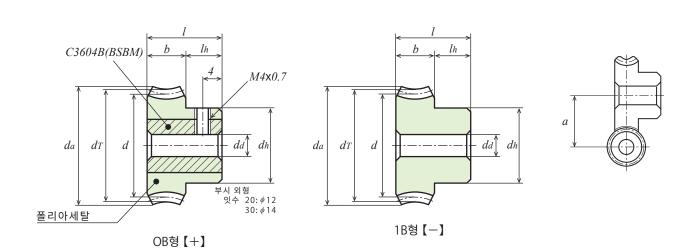
상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	x	dΤ	da		b	dd(H8)	dh	lh	l	а		W(g)
G1DB 20 + R2	1:10	20	φ 20	-0.079	φ 22	φ 23				ø 16			18	R2	15.0
G1DB 20 + R1	1:20	20	φ 20	-0.019	φ 22	φ 23	0B	8	ø 6	φ16	9	17	18	R1	15.0
G1DB 30 + R1	1:30	30	φ 30	-0.029	φ 32	φ 33				φ 20			23	R1	25.7
G1D 20 — R2	1:10	20	φ 20	-0.079	φ 22	φ 23.5			ø 6	φ17			18	R2	6.0
G1D 20 — R1	1:20	20	φ 20	-0.019	φ 22	φ 23.5			ø 6	φ 17			18	R1	6.0
G1D 30 — R2	1:15	30	φ 30	-0.118	φ 32	φ 33.5			ø 6	ϕ 22			23	R2	14.0
G1D 30 — R1	1:30	30	φ 30	-0.029	φ 32	φ 33.5			ø 6	ϕ 22			23	R1	14.0
G1D 40 — R1	1:40	40	φ 40	-0.039	φ 42	φ 43.5	1B	10	ø 8	ϕ 25	8	18	28	R1	22.2
G1D 50 — R1	1:50	50	φ 50	-0.048	φ 52	φ 53.5			ø 8	ø 30			33	R1	34.7
G1D 60 — R1	1:60	60	φ 60	-0.058	φ 62	φ 63.5			φ 10	φ 30			38	R1	46.0
G1D 80 — R1	1:80	80	φ 80	-0.078	φ 82	φ 83.5			ø 10	ϕ 40			48	R1	84.0
G1D 100 — R1	1:100	100	φ100	-0.098	φ102	φ103.5			φ 10	 \$\phi 40			58	R1	125.0

- 정밀도 재질 압력각 기어 가공 방법 백래시① 청색 POM 대응하는 JIS 규격 없음 20도 절삭 표 참조
- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수 및 정밀도의 변화가 발생합니다.
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	x	dΤ	da		b	dd	dh	lh	l	а		W(g)
G1BP 20 — R2	1:10	20	φ 20	-0.079	φ 22	φ 23.5			\$ 5	φ17			18	R2	6.8
G1BP 20 — R1	1:20	20	φ 20	-0.019	φ 22	φ 23.5			φ 5	φ17			18	R1	6.8
G1BP 30 — R2	1:15	30	φ 30	-0.118	φ 32	φ 33.5			φ 6	<i>φ</i> 22			23	R2	13.9
G1BP 30 — R1	1:30	30	φ 30	-0.029	φ 32	φ 33.5			φ 6	<i>φ</i> 22			23	R1	13.9
G1BP 40 — R1	1:40	40	φ 40	-0.039	φ 42	φ 43.5	1B	10	ø 8	φ30	8	18	28	R1	24.9
G1BP 50 — R1	1:50	50	φ 50	-0.048	φ 52	φ 53.5			ø 8	φ35			33	R1	37.8
G1BP 60 — R1	1:60	60	φ 60	-0.058	φ 62	φ 63.5			ø 8	φ40			38	R1	53.4
G1BP 80 — R1	1:80	80	φ 80	-0.078	φ 82	φ 83.5			φ 10	φ50			48	R1	91.7
G1BP 100 — R1	1:100	100	φ100	-0.098	φ102	φ103.5			φ10	φ60			58	R1	141.3

노백래시 기어

단위 : mm


정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	정밀 성형압연

★표면 처리는 하지 않았습니다.

[+] 에는 나사 구멍, 세트 스크류 포함. [=] 에는 키 홈, 키 재료가 포함되어 있습니다.

상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	쳥	치폭	구멍 직경	허브 외경	허브	길이	전장	키홈	앞선각	중량
		Z	d	da		b	dd(H8)	dh	lhL	lhR	l	$b2 \times t2$	γ	W(g)
W1S R1 $=$ A					Α	25	ø 8	-	-	-	25	3 × 1.4	3°35′	28.0
W1S R1 + B	R	1			В	17	ø 6	φ15.85	-	7	32	-	3°35′	42.0
W1S R1 + B - 8	l v	'			В	17	ø 8	φ15.85	-	7	32	-	3°35′	42.0
W1S R1 — L					L	25	-	φ13(h8)	25	50	100	-	3°35′	120.0
W1S R2 $=$ A					Α	25	ø 8	-	-	-	25	3×1.4	7°11′	28.0
W1S R2 + B	R	2			В	16.5	ø 6	φ15.85	-	7	32	-	7°11′	42.0
W1S R2 + B - 8	L/		ø 16	ø 18	В	16.5	ø 8	φ15.85	-	7	32	-	7°11′	42.0
W1S R2 — L					L	25	-	φ13(h8)	25	50	100	-	7°11′	120.0
W1S L1 = A					Α	25	ø 8	-	-	-	25	3×1.4	3°35′	28.0
W1S L1 + B	L	1			В	17	φ 6	φ15.85	-	7	32	-	3°35′	42.0
W1S L1 — L					L	25	-	φ13(h8)	25	50	100	-	3°35′	120.0
W1S L2 + B		2			В	16.5	ø 6	φ15.85	-	7	32	-	7°11′	42.0
W1S L2 — L	L				L	25	-	φ13(h8)	25	50	100	-	7°11′	120.0

사프 기능	백래시①		면강도②	!위: N·m) ᄎ	용전달토크(단	별 웜 휠의 허용	웜 회전속도	
상품 기호	(단위: mm)	1,800 rpm	1,500 rpm	1,200 rpm	1,000 rpm	500 rpm	250 rpm	100 rpm
G1BP 20 — R2		0.62	0.62	0.62	0.63	0.63	0.63	0.63
G1BP 20 — R1		0.62	0.62	0.62	0.62	0.63	0.63	0.63
G1BP 30 — R2		0.93	0.93	0.93	0.94	0.95	0.95	0.95
G1BP 30 — R1	0.08~0.20	0.92	0.92	0.93	0.93	0.95	0.95	0.95
G1BP 40 — R1	0.06~0.20	1.23	1.23	1.24	1.24	1.26	1.26	1.26
G1BP 50 — R1		1.54	1.54	1.55	1.55	1.58	1.58	1.58
G1BP 60 — R1		1.85	1.85	1.86	1.86	1.89	1.89	1.89
G1BP 80 — R1		2.47	2.47	2.48	2.49	2.52	2.52	2.52
G1BP 100 — R1	0.15~0.30	3.08	3.08	3.10	3.11	3.15	3.15	3.15

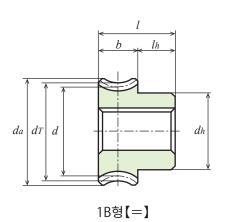
치직각 모듈 1

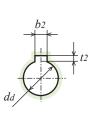
(보통이)

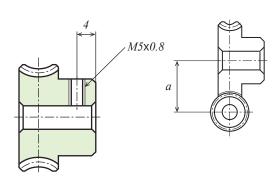
단위 : mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	CAC702(알루미늄 청동주물) C6191BE(알루미늄 청동)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다. 【十】에는 나사 구멍, 세트 스크류 포함.【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.


	-1.011	61.1	-141	1					사업니다.	4111	41		_, _	-141	Olal.	
	기어비	잇수	감합 피치원	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	감합 중심거리	웜의 나선 방향 및	중량
상품 기호			직경		10	' 0			10	-10				0 11	나사산 수	
	и	Z	d	x	dт	da		b	dd(H8)	dh	lh	l	$b2 \times t2$	а		W(g)
G1A 20R2+6	1:10			-0.079					φ 6				-		R2	35.0
G1A 20R2+8	1:10			-0.079					ø 8				-		R2	32.0
G1A 20R2= 8	1:10			-0.079					φ 8				3 × 1.4		R2	31.7
G1A 20R1 + 6	1:20	20	420	-0.019	122	422.5			φ 6	417			-	1.0	R1	35.0
G1A 20R1 + 8	1:20	20	<i>φ</i> 20	-0.019	<i>ф</i> 22	φ23.5			ø 8	ø 17			-	18	R1	32.0
G1A 20R1 = 8	1:20			-0.019					ø 8				3 × 1.4		R1	31.7
G1A 20L2 + 6	1:10			-0.079					φ 6				-		L2	35.0
G1A 20L1 + 6	1:20			-0.019					φ 6				-		L1	35.0
G1A 30R2+6	1:15			-0.118					φ 6				-		R2	73.0
G1A 30R2+8	1:15			-0.118					ø 8				-		R2	69.5
G1A 30R2= 10	1:15			-0.118					φ 10				3 × 1.4		R2	66.0
G1A 30R1 + 6	1:30	30	φ30	-0.029	φ32	φ33.5			φ 6	<i>φ</i> 22			-	23	R1	73.0
G1A 30R1 + 8	1:30	30	Ψ30	-0.029	Ψ3Ζ	φυυ.υ			ø 8	ΨΖΖ			-	23	R1	69.5
G1A 30R1 = 10	1:30			-0.029			1B	10	φ 10		8	18	3 × 1.4		R1	66.0
G1A 30L2 + 6	1:15			-0.118			ID	10	φ 6		0	10	-		L2	73.0
G1A 30L1 + 6	1:30			-0.029					φ 6				-		L1	73.0
G1A 40R2+8	1:20			-0.158					ø 8				-		R2	121.0
G1A 40R1 + 8	1:40			-0.039					ø 8				-		R1	121.0
G1A 40R1 + 10	1:40	40	<i>φ</i> 40	-0.039	φ42	φ43.5			φ 10	φ 25			-	28	R1	119.5
G1A 40R1 = 10	1:40	40	Ψ40	-0.039	Ψ42	φ45.5			φ10	Ψ23			3 × 1.4	20	R1	118.0
G1A 40L2 + 8	1:20			-0.158					ø 8				-		L2	121.0
G1A 40L1 + 8	1:40			-0.039					ø 8				-		L1	120.0
G1A 50R2+8	1:25			-0.197					ø 8				-		R2	190.0
G1A 50R1 + 8	1:50			-0.048					ø 8				-		R1	190.0
G1A 50R1 + 10	1:50	50	φ50	-0.048	φ52	φ53.5			ø 10	φ30			-	33	R1	187.5
G1A 50R1 = 12	1:50	30	Ψ30	-0.048	ΨΊΖ	Ψ.υ.υ.			φ12	ΨΟυ			4 × 1.8))	R1	185.0
G1A 50L2 + 8	1:25			-0.197					ø 8				-		L2	190.0
G1A 50L1 + 8	1:50			-0.048					ø 8				-		L1	190.0


인포메이션


기 어 박 스

노백래시 기어

평 기 어

1B형	[+	
-----	----	--

	웜 회전속도	별 웜 휠의 허용	용전달토크 _{(단}	위: N·m) 치	면강도②		백래시①	사표 기속
100 rpm	250 rpm	500 rpm	1,000 rpm	1,200 rpm	1,500 rpm	1,800 rpm	(단위: mm)	상품 기호
2.185	1.793	1.479	1.185	1.107	1.009	0.980		G1A 20R2+6
2.322	1.930	1.597	1.303	1.225	1.146	1.078		G1A 20R1+6
2.185	1.793	1.479	1.185	1.107	1.009	0.980		G1A 20L2 + 6
2.322	1.930	1.597	1.303	1.225	1.146	1.078		G1A 20L1 + 6
4.488	3.547	2.900	2.312	2.175	1.989	1.852		G1A 30R2+6
4.978	4.184	3.528	2.891	2.724	2.548	2.401		G1A 30R1 + 6
4.488	3.547	2.900	2.312	2.175	1.989	1.852		G1A 30L2 + 6
4.978	4.184	3.528	2.891	2.724	2.548	2.401	0.08~0.20	G1A 30L1 + 6
8.339	6.918	5.742	4.684	4.390	4.096	3.861	0.06~0.20	G1A 40R2+8
8.496	7.212	6.164	5.086	4.792	4.488	4.243		G1A 40R1 + 8
8.339	6.918	5.742	4.684	4.390	4.096	3.861		G1A 40L2 + 8
8.496	7.212	6.164	5.086	4.792	4.488	4.243		G1A 40L1 + 8
12.965	10.838	8.878	7.271	6.830	6.379	6.017		G1A 50R2+8
12.926	11.054	9.476	7.859	7.408	6.948	6.585		G1A 50R1 + 8
12.965	10.838	8.878	7.271	6.830	6.379	6.017		G1A 50L2 + 8
12.926	11.054	9.476	7.859	7.408	6.948	6.585		G1A 50L1 + 8

마 이 터 기 어

치직각 모듈 1.5

b

B형【一】

lh

dd

단위:mm

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	SUS304	20도	정밀 성형압연

★표면 처리는 하지 않았습니다.

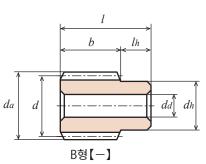
da d

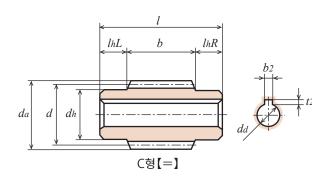
단위 : mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	백색 POM③	20도	절삭	표 참조

- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★본 상품의 허용 토크값 및 백래시에 대해서는 청색 POM 상품의 상응하는 수치를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수 및 정밀도의 변화가 발생합니다.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.
- ③1B 제품은 흰색 POM으로만 구성되어 있습니다. OB 제품은 흰색 POM에 황동(C3604B) 부시가 들어 있습니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	x	dT	da		b	dd	dh	lh	l	а		W(g)
G1.5DB 20 — R2	1:10	20	φ30	-0.072	φ33	φ34.3	OB	10	φ 8	φ22	10	20	27.5	R2	35.0
G1.5DB 20 — R1	1:20	20	Ψ30	-0.018	Ψ33	Ψ34.3	UD	10	Ψο	Ψ22	10	20	27.3	R1	35.0
G1.5D 20 — R2	1:10	20	ø 30	-0.072	φ 33	φ35.3	1B	15	ø 8	\$ 25	10	25	27.5	R2	21.0
G1.5D 30 — R2	1:15	30	ø 45	-0.109	<i>φ</i> 48	φ50.3	ID	13	ø 10	ø 30	10	25	35	n2	42.0

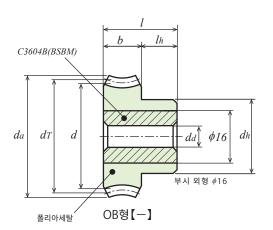


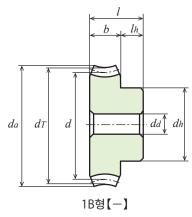

단위:mm

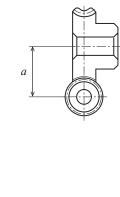
정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	청색 POM	20도	절삭	표 참조

- ★본 허용전달동력표의 테이블은 LEWIS식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ★소재 특성상 경년 변화, 온도 변화 등에 의해 치수및 정밀도의 변화가 발생합니다.
- ★청색 POM의 상세 내용은 22페이지를 참조하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

	Sen 되는 1 에테는 B 로기 이 스크로 BB 기기 .														
상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	ᅇ	치폭	구멍 직경	허브 외경	허브 길이	전장	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	Z	d	х	dT	da		b	dd	dh	lh	l	а		W(g)
G1.5BP 20 — R2	1:10	20	ø 30	-0.072	φ33	φ35.3			φ 6	φ 25	10	25	27.5	R2	22.0
G1.5BP 20 — R1	1:20	20	ø 30	-0.018	φ33	φ35.3			ø 6	φ 25	10	25	27.5	R1	22.0
G1.5BP 30 — R2	1:15	30	φ 45	-0.109	φ48	φ50.3	1B	15	φ 8	φ 30	10	25	35	R2	43.4
G1.5BP 30 — R1	1:30	30	\$45	-0.027	φ48	φ50.3	I D	13	φ 8	φ 30	10	25	35	R1	43.4
G1.5BP 40 — R1	1:40	40	φ60	-0.036	φ63	φ65.3			φ 10	φ40	13	28	42.5	R1	81.6
G1.5BP 50 — R1	1:50	50	φ 75	-0.045	<i>φ</i> 78	\$0.3 pt			φ 10	φ 50	13	28	50	R1	128.5






단위 : mm			
정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	정밀 성형압연

★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.

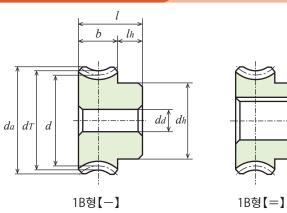
지 에는 가 금, 가 세표?														
상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브	길이	전장	키홈	앞선각	중량
		Z	d	da		b	dd(H8)	dh	lhL	lhR	l	$b2 \times t2$	γ	W(kg)
W1.5S R1 — B		1			В	30	ø 10		-	13	43	-	3°26′	0.12
W1.5S R1 — CF		1			C	35	ø 12		10	10	55	-	3°26′	0.14
W1.5SR1 = C	R	1			C	35	ø 12		10	10	55	4 × 1.8	3°26′	0.13
W1.5S R2 — B		2			В	30	ø 10		-	13	43	-	6°54′	0.12
W1.5S R2 = C		2	ø 25	ø 28	C	35	ø 12	φ20	10	10	55	4 × 1.8	6°54′	0.13
W1.5S L1 — B		1			В	30	ø 10		-	13	43	-	3°26′	0.12
W1.5SL1 = C		1			C	35	ø 12		10	10	55	4 × 1.8	3°26′	0.13
W1.5S L2 — B	L	2			В	30	ø 10		-	13	43	-	6°54′	0.12
W1.5S L2 = C		2			С	35	φ12		10	10	55	4 × 1.8	6°54′	0.13

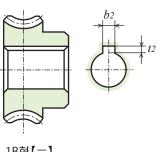
① ① , 상품	백래시①		웜 회전속도별 웜 휠의 허용전달토크 (단위: N・m) 치면강도 ②										
nm) Ö늄	(단위: mm)	1,800 rpm	1,500 rpm	1,200 rpm	1,000 rpm	500 rpm	250 rpm	100 rpm					
G1.5BP 2		1.19	1.19	1.20	1.20	1.21	1.22	1.22					
G1.5BP 2		1.18	1.18	1.19	1.19	1.21	1.21	1.21					
G1.5BP 3	0.08~0.20	1.78	1.79	1.79	1.79	1.82	1.83	1.83					
G1.5BP 3	0.06~0.20	1.77	1.78	1.78	1.78	1.81	1.82	1.82					
G1.5BP 4		2.36	2.37	2.38	2.38	2.41	2.43	2.43					
G1.5BP 5		2.95	2.96	2.97	2.97	3.02	3.04	3.04					

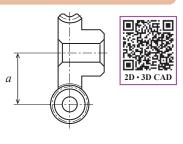
N : 웜 G : 웜 휠

치직각 모듈 1.5

(보통이)




단위 : mm


	11 • 111111				
	정밀도	재질	압력각	기어 가공 방법	백래시①
다	H응하는 JIS 규격 없음	CAC702(알루미늄 청동주물) C6191BE(알루미늄 청동)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	감합 중심거리	월의 나선 방향 및 나사산 수	중량				
	и	Z	d	x	dT	da		b	dd(H8)	dh	lh	l	$b2 \times t2$	а		W(kg)				
G1.5A 20R2 — 8	1:10			-0.072					ø 8				-		R2	0.11				
G1.5A 20R2 = 12	1:10			-0.072					φ12				4 × 1.8		R2	0.10				
G1.5A 20R1 — 8	1:20	20	φ30	-0.018	φ33	φ35.3			ø 8	<i>φ</i> 25			-	27.5	R1	0.11				
G1.5A 20R1 = 12	1:20	20	Ψ30	-0.018	ψυυ	ψ33.3			φ12	Ψ25			4 × 1.8	27.5	R1	0.11				
G1.5A 20L2 — 8	1:10			-0.072			1B	15	ø 8		10	25	-		L2	0.11				
G1.5A 20L1 — 8	1:20			-0.018			IB	15	ø 8		10	25	-		L1	0.11				
G1.5A 30R2 — 10	1:15			-0.109					φ10				-		R2	0.23				
G1.5A 30R1 — 10	1:30	30	AAE	-0.027	φ48	4502			φ10	420			-	35	R1	0.23				
G1.5A 30R1 = 15	1:30	30	φ 45	-0.027	ψ48	φ50.3			ø 15	φ30	φ30)					5 × 2.3	33	R1	0.18
G1.5A 30L1 — 10	1:30			-0.027					φ10				-		L1	0.23				

	웜 회전속도	별 웜 휠의 허용		백래시①	상품 기호			
100 rpm	250 rpm	500 rpm	1,000 rpm	1,200 rpm	1,500 rpm	1,800 rpm	(단위: mm)	성품 기호
6.801	5.370	4.390	3.498	3.273	3.008	2.802		G1.5A 20R2 — 8
7.036	5.762	4.762	3.851	3.635	3.381	3.185		G1.5A 20R1 — 8
6.801	5.370	4.390	3.498	3.273	3.008	2.802		G1.5A 20L2 — 8
7.036	5.762	4.762	3.851	3.635	3.381	3.185	0.08~0.20	G1.5A 20L1 — 8
14.700	11.858	9.741	7.830	7.389	6.840	6.409		G1.5A 30R2 - 10
15.092	12.544	10.486	8.545	8.085	7.546	7.114		G1.5A 30R1 — 10
15.092	12.544	10.486	8.545	8.085	7.546	7.114		G1.5A 30L1 — 10

치직각 모듈 2

(보통이)

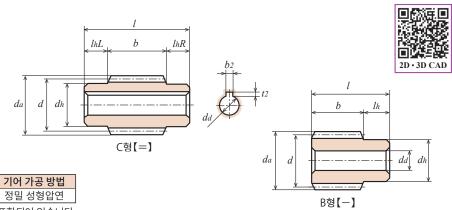
단위 : mm

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	정밀 성형압연

★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.

ATENTIC THE BALL	□ 1 1· K		□/ · · ±											
상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브	길이	전장	키홈	앞선각	중량
		z	d	da		b	dd(H8)	dh	lhL	lhR	l	$b2 \times t2$	γ	W(kg)
W2S R1 — B		1			В	35	φ12		-	15	50	-	3°42′	0.22
W2S R1 — CF		1			C	41	φ14		12	12	65	-	3°42′	0.25
W2SR1 = C	R	1	φ 31	φ 35	C	41	φ14	ø 25	12	12	65	5 × 2.3	3°42′	0.24
W2S R2 — B		2			В	35	φ12		-	15	50	-	7°25′	0.22
W2SR2 = C		2			C	41	φ14		12	12	65	5 × 2.3	7°25′	0.24

단위 : mm

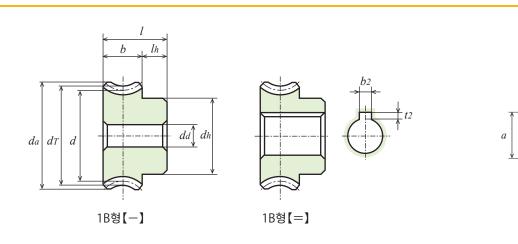

_ 11				
정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	CAC702 (알루미늄 청동주물)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

	상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	영	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	감합 중심거리	웜의 나선방향 및 나사산 수	중량
		и	Z	d	x	dT	da		b	dd(H8)	dh	lh	l	$b2 \times t2$	а		W(kg)
G2A	20R2 — 10	1:10			-0.084					 \$\psi 10\$				-		R2	0.26
G2A	20R2 = 15	1:10			-0.084					\$ 15				5 × 2.3		R2	0.23
G2A	20R1 — 10	1:20	20	<i>φ</i> 40	-0.020	φ 44	φ 47				φ32			-	35.5	R1	0.26
G2A	20R1 = 15	1:20	20	Ψ40	-0.020	φ 44	Ψ 47			\$ 15	Ψ32			5 × 2.3	33.3	R1	0.23
G2A	20L2 — 10	1:10			-0.084					 <i> </i>				-		L2	0.26
G2A	20L1 — 10	1:20			-0.020			1B	20	φ 10		15	35	-		L1	0.26
G2A	25R1 — 12	1:25	25	φ50	-0.026	φ 54	φ 57	ID	20	φ12	φ38	13	33	-	40.5	R1	0.41
G2A	25L1 — 12	1 . 23	23	Ψ30	-0.020	Ψ 54	Ψ37			ΨΙΖ	Ψ30			-	40.5	L1	0.41
G2A	30R2 — 12	1:15			-0.126					φ12				-		R2	0.56
G2A	30R1 — 12	1:30	30	<i>φ</i> 60	-0.031	φ 64	φ 67			φ12	φ40			-	45.5	R1	0.56
G2A	30R1 = 18	1:30	30	ΨΟΟ	-0.031	ψ 04	ΨΟΛ			<i>ф</i> 18	Ψ40			6 × 2.8	45.5	R1	0.53
G2A	30L1 — 12	1:30			-0.031					φ12				-		L1	0.56

<u>단위 : mm</u>

정밀도



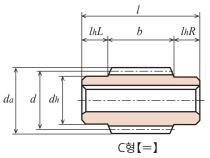
대응하는 JIS 규격 없음	S45C	20도	정밀 성형압연			
	니다. 【=】에는	키 홈, 키 재료기	 · 포함되어 있습니다.			

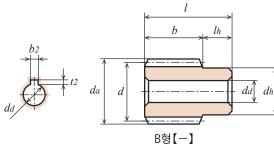
압력각

재질

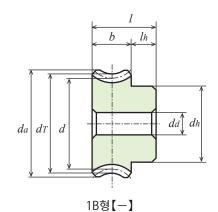
상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브	길이	전장	키홈	앞선각	중량
		z	d	da		b	dd(H8)	dh	lhL	lhR	l	$b2 \times t2$	γ	W(kg)
W2S L1 — B		1			В	35	φ12		-	15	50	-	3°42′	0.22
W2SL1 = C		L 1	φ31	φ35 ·	C	41	φ14	φ 25	12	12	65	5 × 2.3	3°42′	0.24
W2S L2 — B]		Ψ51		В	35	φ12	Ψ23	-	15	50	-	7°25′	0.22
W2SL2 = C		2			C	41	φ14		12	12	65	5 × 2.3	7°25′	0.24

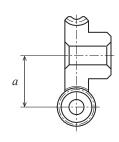



상품 기호	백래시①		월 회전속도별 월 휠의 허용전달토크(단위: N·m) 치면강도 ②												
요품 기호	(단위: mm)	1,800 rpm	rpm rpm rpm		1,000 rpm	500 rpm	250 rpm	100 rpm							
G2A 20R2 - 10		5.880	6.370	6.860	7.350	9.310	11.466	14.504							
G2A 20R1 - 10		6.664	7.154	7.644	8.134	10.094	12.250	14.949							
G2A 20L2 - 10		5.880	6.370	6.860	7.350	9.310	11.466	14.504							
G2A 20L1 — 10	0.08~0.20	6.664	7.154	7.644	8.134	10.094	12.250	12.936							
G2A 25R1 - 12	0.06~0.20	10.486	11.172	11.956	12.642	15.582	18.816	22.932							
G2A 25L1 — 12		10.486	11.172	11.956	12.642	15.582	18.816	22.932							
G2A 30R1 - 12		14.994	15.974	17.150	18.130	22.246	26.656	32.144							
G2A 30L1 — 12		14.994	15.974	17.150	18.130	22.246	26.656	32.144							



치직각 모듈 2.5


단위:mm


정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	절삭

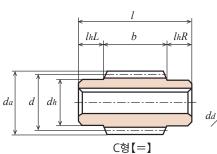
★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.

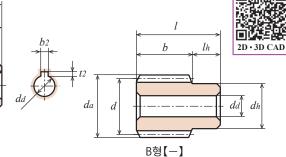
상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브	길이	전장	키홈	앞선각	중량
		Z	d	da		b	dd(H8)	dh	lhL	lhR	l	$b2 \times t2$	γ	W(kg)
W2.5S R1 — B		1			В	42	φ14		-	18	60	-	3°52′	0.37
W2.5S R1 = C		1			C	47	ø 16		14	14	75	5 × 2.3	3°52′	0.41
W2.5S R2 — B	R	2	φ37	φ42	В	42	φ14	φ30	-	18	60	-	7°46′	0.37
W2.5S R2 — CF		2	Ψ57	Ψ42	C	47	ø 16	Ψ30	14	14	75	-	7°46′	0.42
W2.5S R2 = C		2			C	47	ø 16		14	14	75	5 × 2.3	7°46′	0.41
W2.5S L1 — B	L	1			В	42	<i>ф</i> 14		-	18	60	-	3°52′	0.37

단위 : mm

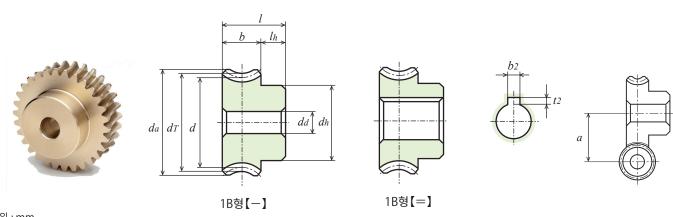
정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	CAC702 (알루미늄 청동주물)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오. ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.


상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	감합 중심거리	웜의 나선 방향 및 나사산 수	중량
	и	z	d	x	dΤ	da		b	dd(H8)	dh	lh	l	а		W(kg)
G2.5A 20R2 — 12	1:10	20	φ 50	-0.092	φ 55	φ 58.8			φ12	<i>φ</i> 40			43.5	R2	0.50
G2.5A 20R1 — 12	1:20	20	Ψ 30	-0.022	Ψ 33	φ 58.8		24	Ψ12	Ψ40			43.5	R1	0.50
G2.5A 30R2 — 14	1:15			-0.138			1B		<i>φ</i> 14	φ14 φ50	16	40		R2	1.02
G2.5A 30R1 — 14	1:30	30	φ 75	-0.034	ø 80	φ 83.8					φ50		56	R1	1.02
G2.5A 30L1 — 14	1:30		Ĺ	-0.034										L1	1.02


상품 기호		웜 회전속도	별 웜 휠의 허용	용전달토크(_딘	위: N·m) 치	면강도②	
영품 기오	100 rpm	250 rpm	500 rpm	1,000 rpm	1,200 rpm	1,500 rpm	1,800 rpm
G2.5A 20R2 — 12	26.166	20.580	16.758	13.328	12.446	11.368	10.486
G2.5A 20R1 — 12	27.048	22.050	18.130	14.700	13.818	12.838	11.956
G2.5A 30R2 - 14	56.448	45.276	37.142	29.792	28.028	25.970	24.010
G2.5A 30R1 — 14	58.016	47.922	39.984	32.536	30.772	28.616	26.656
G2.5A 30L1 — 14	58.016	47.922	39.984	32.536	30.772	28.616	26.656

백래시① (단위: mm)
0.08~0.20
0.15~0.3



<u>단위 : mm</u>

정밀도	재질	압력각	기어 가공 방법
대응하는 JIS 규격 없음	S45C	20도	절삭

★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.

상품 기호	나선 방향	나사산 수	기준원 직 경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브	길이	전장	키홈	앞선각	중량
		z	d	da		b	dd(H8)	dh	lhL	lhR	l	$b2 \times t2$	γ	W(kg)
W3S R1 — B		1			В	50	ø 16		-	20	70	-	3°55′	0.62
W3S R1 — CF		1		φ50	C	55	φ 20		15	15	85	-	3°55′	0.67
W3SR1 = C	R	1			C	55	<i>φ</i> 20		15	15	85	6 × 2.8	3°55′	0.66
W3S R2 — B		2	φ44		В	50	ø 16	φ 36	-	20	70	-	7°50′	0.62
W3S R2 — CF		2	ψ44	Ψ50	C	55	φ 20	Ψ30	15	15	85	-	7°50′	0.67
W3SR2 = C		2			C	55	φ 20		15	15	85	6 × 2.8	7°50′	0.66
W3S L1 — B	1	1			В	50	ø 16		-	20	70	-	3°55′	0.62
W3SL1 = C		'			C	55	φ 20		15	15	85	6 × 2.8	3°55′	0.66

단위: mm

정밀도	재질	압력각	기어 가공 방법	백래시①
대응하는 JIS 규격 없음	CAC702 (알루미늄 청동주물)	20도	절삭	표 참조

- ★표면 처리는 하지 않았습니다. 【=】에는 키 홈, 키 재료가 포함되어 있습니다.
- ★본 허용전달동력표의 테이블은 JGMA식을 사용합니다. 단위 환산 방법은 참고자료 20페이지를 확인하십시오.
- ①상응 웜과 웜 휠이 맞물릴 때의 백래시입니다(원주 방향의 백래시임).
- ②웜의 회전수에 대한 웜 휠의 허용 토크값입니다.

상품 기호	기어비	잇수	감합 피치원 직경	전위 계수	목의 직경	이끝원 직 경	형	치폭	구멍 직경	허브 외경	허브 길이	전장	키홈	감합 중심거리	월의 나선 방향 및 나사산 수	중량
	и	z	d	x	dт	da		b	dd(H8)	dh	lh	l	$b2 \times t2$	а		W(kg)
G3A 20R2 - 16	10	20		-0.094					ø 16				-		R2	0.80
G3A 20R1 — 16			φ 60		φ 66	φ 70.5			ø 16	φ48			-	52	R1	0.80
G3A 20R1 = 20	20	20	Ψ 00	-0.023	φυσ	ψ /0.5	70.5 1B	28	<i>φ</i> 20	ψ40	Ψ40	45	6 × 2.8	32	R1	0.77
G3A 20L1 — 16									ø 16		17		-		L1	0.80
G3A 25R1 — 16	25	25	φ 75	-0.029	A 01	4 05 5			<i>φ</i> 16	455			-	59.5	R1	1.22
G3A 25L1 — 16	23	23	φ /5	-0.029	29 φ 81 φ	φ 85.5)		<i>φ</i> 16 <i>φ</i> 55				-	39.3	L1	1.22

상품 기호		웜 회전속도	별 웜 휠의 허용	용전달토크(단	!위: N·m) ᄎ	면강도②		
영품 기오	100 rpm	250 rpm	500 rpm	1,000 rpm	1,200 rpm	1,500 rpm	1,800 rpm	
G3A 20R2 — 16	42.532	33.418	26.950	21.560	20.188	18.228	16.758	
G3A 20R1 — 16	44.100	35.868	29.302	23.716	22.344	20.580	19.012	
G3A 20L1 — 16	44.100	35.868	29.302	23.716	22.344	20.580	19.012	
G3A 25R1 — 16	67.326	55.076	45.276	36.848	34.790	31.948	29.694	
G3A 25L1 — 16	67.326	55.076	45.276	36.848	34.790	31.948	29.694	ΙL

백래시① (단위: mm)	
0.15~0.30	

Memo

References (for KG Metric gears)

For detailed information on gears, please refer to the separate "Technical Data"

Contents

Ι.	(1) Module m (Unit: mm)	
	(2) Diametral pitch P or DP	· 1
	(3) Circular pitch <i>CP</i> ·······	· 1
2.	Advise on gear assembly ······	. 3
3.	Centre distance for spur and helical gears	. 4
	(1) Accuracy standard for spur and helical gears	• 4
	(2) Centre distance: Shortest distance from centre of axes of Parallel spur gear pa	
	or gear pair with Non-parallel and Non-intersecting axes	• 4
4.	Parallelism of axis for spur and helical gears	• 4
	(1) Application range ······	• 4
	(2) Definition of terms ······	
	(3) Allowable value ······	• 5
5.	Measurement of the backlash	. 7
	(1) Backlash of Bevel gear pair	• 7
	(2) Backlash of Worm gear pair ·····	. 8
6.	Tooth bearings ·····	. 9
7.	Gear efficiency	11
8.	Lubricating oil for gears	12
	(1) Purpose of using lubricating oil	12
		12
		13
		14
	(5) Combination of gear materials	14
9.	Cause and solution for noise and oscillation	15
10	. The vocabulary of gear and gear terms	16

11. Interpretation of Allowable capability torque table.	1/
(1) Bending Strength and Surface Durability for Spur and Helical gears	
(2) Bending strength and Surface durability for Bevel gears	18
(3) Surface durability of Cylindrical worm gear pair	18
12. While examination of Bending strength from the Allowable transfer	
capability table ······	19
For example 1. To calculate Allowable transfer torque: T[N.m] ······	19
For example 2. To select KG-STOCK GEARS from usage condition of Spur gear. ······	20
The Conversion formula of Power ·····	20
13. Conversion table for SI units (International System of Units)	21
14. Standardizing the coordination between ISO and JIS	22
Introduction	22
Precision of KG STOCK GEARS	22
Hardness conversion table	24
Approximate conversion values compared with Vickers hardness of Steel	24
Approximate converted values compared with Rockwell hardness for Steel······	26
Commonly used fitting tolerances for bore dimensions	28
Commonly used fitting tolerances for axis dimensions	30
Metric coarse and fine screw threads,	
and reference pilot hole dimensions	32
Spot facing and Thread hole for Hexagon socket head cap screws	33
Shape and dimensions of keyway for parallel key	34
C-type retaining ring for shaft (reference)	37
C-type retaining ring for hole (reference)	38
E-type retaining ring (reference)	39
Explanation of material notation	39

1. Fundamental dimensions for various sizes of Tooth profile

There are three types of formulas to calculate various sizes of Tooth profile.

(1) Module *m* (Unit: mm)

Reference pitch divided by π is module, which defines the size of tooth in metric gear. If value of Reference diameter d(mm) divided by Number of teeth z increases, tooth capacity increases proportionately.

Module
$$m = \frac{\text{Reference diameter } d}{\text{Number of teeth } z}$$
 (mm) Tip (Outside) diameter is defined as da ,

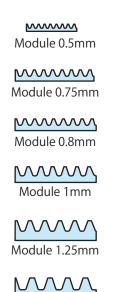
calculation formula is
$$m = \frac{da}{z+2}$$
 . Refer to Fig. 1-1 for a full-scale drawing.

(2) Diametral pitch P or DP

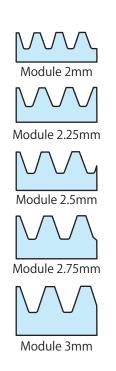
Diametral pitch is size of tooth expressed in teeth per inch of pitch diameter. Formula of calculation is given as Number of teeth z divided by Reference diameter d (inch). Capacity of tooth profile increases and decreases inversely proportional to the numerical sum.

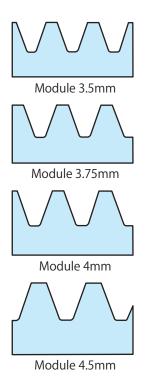
$$DP = \frac{\text{Number of teeth } z}{\text{Reference diameter } d \text{ (inch)}} \text{ (An absolute number)} \qquad \text{Tip (Outside) diameter defined as } da_{q},$$

Calculation formula of
$$DP = \frac{z+2}{d_a(\text{in})}$$


There is a relationship between module and Diametral pitch. (Comparison between module and Diametral pitch)

$$m = \frac{25.4}{DP}$$
 (mm) $DP = \frac{25.4}{m}$


(3) Circular pitch *CP*


This is length of centre distance between adjacent teeth divided by arc circle of pitch circle. Calculated by circumference of pitch circle divided by number of teeth.

$$CP = \frac{\text{Circumference of Pitch circle}(\pi \times d)}{\text{Number of teeth } z} \quad (mm)$$

Module 1.5mm

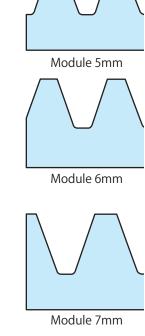


Fig. 1-1 Full-scale drawing of module

Note that π is ratio of the circumference of a circle to its diameter as π =3.14159

Where Tip(outside) diameter da, calculation of $CP = \frac{\pi \times da}{z+2}$ (mm)

The 3 categories for size of Tooth profile mentioned above are widely used. In particular, Circular pitch CP is used to control traveling distance and positioning.

The standardization of module is shown by the following classification. Introduced in Japanese Industrial Standards

JIS B 1701-2: 1999 Cylindrical gear- Involute tooth profile and Article 2-Module and Appendix of the same standard (stipulation). Also shown below is classification not stipulated for Involute tooth profile cylindrical gear below module 1 in ISO 54.

Table 1-1. Standard value for module of Cylindrical gear.

Unit: mm

I	II	I	II	I	II	I	II
0.1		1			5.5	25	
	0.15		1.125	6			28
0.2		1.25			(6.5)	32	
	0.25		1.375		7		36
0.3		1.5		8		40	
	0.35		1.75		9		45
0.4		2		10		50	
	0.45		2.25		11		
0.5		2.5		12			
	0.55		2.75		14		
0.6		3		16			
	0.7		3.5		18		
	0.75	4		20			
0.8			4.5		22		
	0.9	5					

It is advisable to select column-*I* of module (priority selection) as far as possible.

It is not advisable to select the module 6.5 as seen in column-II.

The standardization of module for Bevel gear is shown by the following classification. Introduced in JIS B 1706-2: 1999 Straight bevel gear- Article 2-Module and Diametral pitch and Appendix of the same standard (stipulation). Also shown below is classification not stipulated for Straight bevel gear below module 1 in ISO 678. However the Diametral pitch is omitted here.

Table 1-2. Standard value for module of straight bevel gear.

Unit · mm

					ווווו . וווווו
I	II	I	II	I	II
0.3		1			3.5
	0.35		1.125	4	
0.4		1.25			4.5
	0.45		1.375	5	
0.5		1.5			5.5
	0.55		1.75	6	
0.6		2			(6.5)
	0.7		2.25		7
	0.75	2.5		8	
0.8			2.75		9
	0.9	3		10	

It is advisable to select column-I of module (priority selection) as far as possible.

It is not advisable to select the module 6.5 as seen in column-II.

Table 1-3. Comparison tables between module and Diametral pitch.

Unit: mm

Module	9	8.467	8	7.257	7	6.35	6	5.08	5	4.233	4
Diametral pitch	2.822	3	3.175	3.5	3.629	4	4.233	5	5.08	6	6.35
Tooth depth	20.25	19.05	18.00	16.33	15.75	14.29	13.50	11.43	11.25	9.52	9.00
Pitch	28.27	26.60	25.13	22.80	21.99	19.95	18.85	15.96	15.71	13.30	12.57

Module	3.629	3.5	3.175	3	2.822	2.54	2.5	2.309	2.25	2.117	2
Diametral pitch	7	7.257	8	8.47	9	10	10.16	11	11.289	12	12.70
Tooth depth	8.17	7.88	7.14	6.75	6.35	5.72	5.63	5.20	5.06	4.76	4.50
Pitch	11.40	11.00	9.98	9.43	8.87	7.98	7.85	7.25	7.07	6.65	6.28

Module	1.814	1.75	1.588	1.5	1.411	1.27	1.25	1	0.8	0.75	0.5
Diametral pitch	14	14.514	16	16.933	18	20	20.32	25.4	31.75	33.867	50.8
Tooth depth	4.08	3.94	3.57	3.38	3.17	2.86	2.81	2.25	1.80	1.69	1.13
Pitch	5.70	5.50	4.99	4.71	4.43	3.99	3.93	3.14	2.51	2.36	1.57

Note that Tooth depth is calculated with Bottom clearance as $C = 0.25 \times \text{module}$ (Unit: mm)

2. Advice on gear assembly

When assembling the gear pair, please note the following recommended points.

(1) Beware of gear with scratches and rust, handle gear with care.

Small scratch marks may cause noise.

(2) Measure the backlash.

Backlash regardless big or small causes noise. It is necessary to maintain proper backlash. If not, it is necessary to adjust centre distance. For details on KG-Backlash, please refer to Information page for each products.

(3) Confirm tooth bearing.

Noise and oscillation is caused by poor tooth contact. Poor tooth bearing also harms the durability of the gear. Please refer to section 6 in References for more on tooth contact.

(4) Use suitable type of lubricating oil in proper amounts.

Refer to section 8 in References for suitable type of lubricating oil in proper amounts.

(5) Perform warm up and test run.

Importance of worm gear test run

We recommend that warm up and test run be performed before actual operations in order to improve hardness and strength of tooth flank.

(When applying Heat treatment to pinion only) Especially for Worm gear pair, warm up and test run is recommended to improve area of tooth bearing and surface strength.

Tooth profile for Worm gear pair has complicated curved surface compared with other gears making it difficult to fabricate Worm gear pair with improved accuracy. There are limitations to surface roughness when processed with lath only.

It is necessary to perform warm up and test run for Worm gear pair. Do not apply full load or close to full load to Worm gear pair or scuffing will occur easily.

For Warm up and Test run, gives improved evenness of tooth flank and increased tooth contact area (per square measure), which reduces the load (per square measure). It will also improve wear resistance against work hardening of tooth flank.

Therefore it provides a longer lifespan for the gear and reduces the noise level and oscillation.

How to worm gear test run

Method of Warm up and Test run. Firstly check the tooth contact while applying empty load and then gradually increase load to the gear.

We recommend changing all the lubricating oil after warm up and test run. Subsequently we recommend that the lubricating oil be changed every 6 months or 25,000 hours which ever comes first.

(6) In addition, take note of dynamic balance and assembling method as recommended.

Please make final adjustments according to the actual operation status.

3. Centre distance for Spur and Helical gears

Gear assembly with accurate working centre distance is recommended for Spur and Helical gears. Fig. 3-1 shows an extract from the Allowable deviations of Centre distance for Spur and Helical gears as defined in JGMA 1101-1 (2000 Japan Gear Manufacturing Association).

Allowable tolerance for Centre distance

(1) Accuracy standard for Spur and Helical gears

Table 3-1 shows Allowable deviation of Centre distance for classes N3 to N12 gears of JIS B 1702-1 and JIS B 1702-2 (covers only ground and hobbing gears)

(2) Centre distance: Shortest distance from centre of axes of Parallel spur gear pair or gear pair with Non-parallel and Non-intersecting axes.

For example,

1. Case of spur gear

Module is 0.5, Number of teeth is 20: Half of reference diameter is 5

Module is 0.5, Number of teeth is 25: Half of reference diameter is 6.25

Center distance above is 11.25mm

2. Case of Helical gear (Normal module), Refer to the product page for reference diameter of the standard product.

Module is 1.5, Number of teeth is 13: Half of reference diameter is 13.79

Module is 1.5, Number of teeth is 26: Half of reference diameter is 27.575

Center distance above is 41.365mm

Table 3-1. Allowable tolerances of Centre distance for the gear

*The above chart uses \pm symbol. It is recommended to use positive side tolerances for External gear pair and negative side tolerance for Internal gear pair.

Unit: µm

System of accuracy a = Centre distance (mm)	N3, N4	N5, N6	N7, N8	N9, N10	N11, N12
$5.0 < a \le 20.0$	± 6	± 10	± 16	± 26	± 65
20.0 < a ≤ 50.0	± 8	± 12	± 20	± 31	± 80
50.0 < a ≤ 125.0	± 12	± 20	± 32	± 50	± 125
125.0 < a ≤ 280.0	± 16	± 26	± 40	± 65	± 160
$280.0 < a \le 560.0$	± 22	± 35	± 55	± 88	± 220
$560.0 < a \le 1,000.0$	± 28	± 45	± 70	± 115	± 280
$1,000.0 < a \le 1,600.0$	± 39	± 62	± 98	± 155	± 390
$1,600.0 < a \le 2,500.0$	± 55	± 88	± 140	± 220	± 550
$2,500.0 < a \le 4,000.0$	± 84	± 130	± 205	± 330	± 825

4. Parallelism of axes for Spur and Helical gears

Extract from JGMA1102 (2000) is as follows.

0. Preface: This standard stipulates Allowable value of parallel accuracy for Spur and Helical gears. Basically, these standards are consistant with recommended values from ISO/TR10064-3 (1996).

(1) Application range

This standard stipulates the parallel accuracy for steel-made Involute spur and helical gears. Therefore gears covered by this standard are simply called Gear.

1) Normal module: 0.5 to 70.0 (mm)

2) Reference diameter: 5.0 to 10,000.0 (mm)

3) Facewidth: From 4.0 to 1,000.0 (mm)

Remark 1. Double helical gear axis is also covered.

Remark 2. The above mentioned Standard is guoted from:

ISO/TR 10064-3 (1996) Cylindrical gears- Code of inspection practice- Part 3

JIS B 0102 (1999) International gear notation - Symbols for geometrical data

JIS B 1702-1 (1998) Cylindrical gears- ISO System of accuracy Classification-Article 1:

Definition and allowable values of deviations relavent to corresponding flanks of the gear teeth.

ISO/TR 10064-3 (1996) Cylindrical gears- Code of Inspection Practice- Part 3

참고자료

(2) Definition of terms

Definition for this standard is from JIS B 0102 (1999) (Terms of Tooth Flank-Geometric Definition) and following details.

- 1) Parallel accuracy of axis: Composes of accuracy of parallel deviation and Non-parallel and Non-intersection deviations.
- 2) Parallel deviation of axis: Distance between C and 0⁽¹⁾ (Refer to Fig. 4-1) where both ends of measurement distance L on the a-axis on one side of the gear are points A and B; and Flat face H is surface to include one of the points A and one of shaft centre b (b-axis); and flat face V is surface through point A and parallel to b and perpendicular to flat face H, and orthogonal projection of point B to H is C.
 - Note(1): Point 0 is base of tolerance among perpendicular flat face S, V, H and B.
- 3) Refer to Fig.4-1, **deviation for Non-parallel and Non-intersecting axes**: Distance between points 0 and D where D is orthogonal projection of point B to V, referring to above (2).

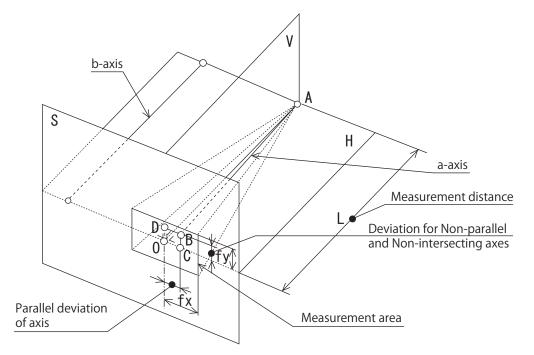


Fig. 4-1 Deviations for Parallel axis, Non-parallel and Non-intersecting axes.

(3) Allowable value

Allowable value for parallel accuracy of gear axis is met with System of accuracy N10 to N12 in JIS B1702-1 (1998) as follows

Allowable value of parallel deviation for axis fx
 Calculating fx for measuring span L of gear axis is as follows,

$$f_X = \frac{L}{h} f_{X'}$$

Hereby, L: Measuring span (mm)

b: Facewidth (mm), choose smaller dimension of Facewidth (mm) between pinion and gear.

fx': Refer to Table 1 (μ m)

2) Allowable value of deviation for Axes of Non-parallel and Non-intersecting *fy*. Calculation *fy* for measuring span L of gear axis is as follows,

$$fy = \frac{L}{h}fy'$$

Hereby, L: Measuring span (mm)

b: Facewidth (mm), choose smaller dimension of Facewidth (mm) between pinion and gear.

fy': Refer to Table 2 (μm)

Remark

Depending on purpose of usage and System of accuracy class, which is different from the gear, Allowable value of deviation of parallelism accuracy of axis can be used.

Table 4-1. Allowable values of parallel deviations f_X for axis per Facewidth

Unit: μ m

Reference diameter d	Facewidth b (mm)						Syste	m of Acc	uracy					
(mm)	racewidth b (mm)	N0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
	4 ≦ b ≦ 10	1.1	1.5	2.2	3.1	4.3	6.0	8.5	12	17	24	35	49	69
$5 \le d \le 20$	10 < b ≦ 20	1.2	1.7	2.4	3.4	4.9	7.0	9.5	14	19	28	39	55	78
	20 < b ≤ 40	1.4	2.0	2.8	3.9	5.5	8.0	11	16	22	31	45	63	89
	$4 \le b \le 10$	1.1	1.6	2.2	3.2	4.5	6.5	9.0	13	18	25	36	51	72
20 < d ≦ 50	10 < b ≦ 20	1.3	1.8	2.5	3.6	5.0	7.0	10	14	20	29	40	57	81
	20 < b ≤ 40	1.4	2.0	2.9	4.1	5.5	8.0	11	16	23	32	46	65	92
	4 ≦ b ≦ 10	1.2	1.7	2.4	3.3	4.7	6.5	9.5	13	19	27	38	53	76
50 < d ≦ 125	$10 < b \le 20$	1.3	1.9	2.6	3.7	5.5	7.5	11	15	21	30	42	60	84
30 < 0 ≦ 123	20 < b ≤ 40	1.5	2.1	3.0	4.2	6.0	8.5	12	17	24	34	48	68	95
	40 < b ≦ 80	1.7	2.5	3.5	4.9	7.0	10	14	20	28	39	56	79	111
	4 ≦ b ≦ 10	1.3	1.8	2.5	3.6	5.0	7.0	10	14	20	29	40	57	81
125 < d ≤ 280	$10 < b \le 20$	1.4	2.0	2.8	4.0	5.5	8.0	11	16	22	32	45	63	90
123 < U ≧ 200	$20 < b \le 40$	1.6	2.2	3.2	4.5	6.5	9.0	13	18	25	36	50	71	101
	40 < b ≦ 80	1.8	2.6	3.6	5.0	7.5	10	15	21	29	41	58	82	117
	10 < b ≦ 20	1.5	2.1	3.0	4.3	6.0	8.5	12	17	24	34	48	68	97
280 < d ≦ 560	20 < b ≤ 40	1.7	2.4	3.4	4.8	6.5	9.5	13	19	27	38	54	76	108
200 < 0 ≦ 500	40 < b ≤ 80	1.9	2.7	3.9	5.5	7.5	11	15	22	31	44	62	87	124
	80 < b ≤ 160	2.3	3.2	4.6	6.5	9.0	13	18	26	36	52	73	103	146

Table 4-2. Allowable values of Non-parallel and Non-intersecting deviations fy' for axis per Facewidth

Unit: μ m

														μ
Reference diameter d	Facewidth b (mm)						Syste	m of Acc	uracy					
(mm)	racewiath b (IIIII)	N0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
	4 ≦ b ≦ 10	0.5	0.8	1.1	1.5	2.2	3.1	4.3	6.0	8.5	12	17	24	35
$5 \le d \le 20$	10 < b ≤ 20	0.6	0.9	1.2	1.7	2.4	3.4	4.9	7.0	9.5	14	19	28	39
	20 < b ≤ 40	0.7	1.0	1.4	2.0	2.8	3.9	5.5	8.0	11	16	22	31	45
	4 ≦ b ≦ 10	0.6	0.8	1.1	1.6	2.2	3.2	4.5	6.5	9.0	13	18	25	36
20 < d ≦ 50	10 < b ≤ 20	0.6	0.9	1.3	1.8	2.5	3.6	5.0	7.0	10	14	20	29	40
	20 < b ≤ 40	0.7	1.0	1.4	2.0	2.9	4.1	5.5	8.0	11	16	23	32	46
	4 ≦ b ≦ 10	0.6	0.8	1.2	1.7	2.4	3.3	4.7	6.5	9.5	13	19	27	38
50 < d ≦ r125	10 < b ≤ 20	0.7	0.9	1.3	1.9	2.6	3.7	5.5	7.5	11	15	21	30	42
30 < 0 ≦ 1123	20 < b ≤ 40	0.7	1.1	1.5	2.1	3.0	4.2	6.0	8.5	12	17	24	34	48
	40 < b ≤ 80	0.9	1.2	1.7	2.5	3.5	4.9	7.0	10	14	20	28	39	56
	4 ≦ b ≦ 10	0.6	0.9	1.3	1.8	2.5	3.5	5.0	7.0	10	14	20	29	40
125 < d ≤ 280	10 < b ≤ 20	0.7	1.0	1.4	2.0	2.8	4.0	5.5	8.0	11	16	22	32	45
123 < U ≧ 200	20 < b ≤ 40	0.8	1.1	1.6	2.2	3.2	4.5	6.5	9.0	13	18	25	36	50
	40 < b ≤ 80	0.9	1.3	1.8	2.6	3.6	5.0	7.5	10	15	21	29	41	58
	10 < b ≤ 20	0.8	1.1	1.5	2.1	3.0	4.3	6.0	8.5	12	17	24	34	48
280 < d ≦ 560	20 < b ≤ 40	0.8	1.2	1.7	2.4	3.4	4.8	6.5	9.5	13	19	27	38	54
	40 < b ≤ 80	1.0	1.4	1.9	2.7	3.9	5.5	7.5	11	15	22	31	44	62

5. Measurement of the backlash

(1) Backlash of Bevel gear pair

To Measure the backlash for Bevel gear pair, there are two (2) types of measurements. Circumferential backlash j_t and normal backlash j_t , which is the same for Spur and Helical gears.

Fix the pinion and put an indicator to outer gear to measure.

Normal pressure angle α_n and centre (mean) gear tooth of helix angle β_m of Spiral bevel gear have the following relationship between j_t and j_n .

$$j_n = j_t \cos \alpha_n \cos \beta_m$$
 $j_t = j_n / \cos \alpha_n \cos \beta_m$

(The above calculation formula is for Spiral bevel gear. For Straight bevel gear, it is $\cos \beta_m = 1$)

Circumferential backlash for Bevel gear pair is stipulated in JIS B 1705.

In addition to this, there is another method to assemble the Bevel gear with a designated Locating distance. Fix a gear and move the Pinion in axis direction. Measure the amount of movement with an indicator.

Bevel gear has the following relationship between Circumferential backlash j_t and Locating direction j_x .

 $j_x = j_t/2 \tan \alpha_n \sin \delta_1$ Straight bevel gear $j_x = j_u/2 \tan d_t \sin \delta_1$ Spiral bevel gear

Hereby

 j_{tt} : Circumferential backlash at Transverse plane $j_{tt}=j_{t}/\cos i n e \ \alpha_{t}$

 α_t : Transverse pressure angle $\alpha_t = \tan^{-1}(\tan \alpha_n / \cos \beta)$

For example, Straight bevel gear with Pressure angle 20° and gear ratio 1:1. Assuming that Circumferential backlash j_t is 1.0mm therefore backlash of Locating direction is 1.94mm. Which means it can measure minute backlash to about twice the accuracy.

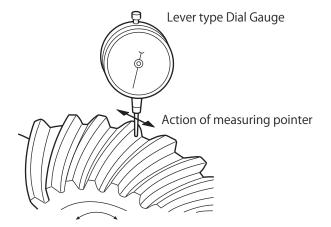


Fig. 5-1 Measurement method of backlash for the Bevel gear (Circumference direction)

Jt: Circumferential backlash

Jx: Amount the move the pinion in axis direction

Gear fixed



Fig.5-2 Move the pinion in axis direction to measure the backlash.

(2) Backlash of Worm gear pair

Generally the Worm gear is fixed and indicator is placed to flank of Worm wheel for backlash measurement. This is the same method for both Spur and Helical gears pair.

Shown in backlash value for each product page, value for KG-Worm gear pair with assembled designated centre distance. Due to undefined backlash for Worm gear in JIS currently.

When using worm gear pair for accurate locating and positioning, it is necessary to keep backlash to a minimum. Providing large backlash for power transmission is recommend due to expansion caused by generation of heat. Even though the backlash may be larger, performance of worm gear pair will almost be the same.

Racing angle of Worm gear caused by backlash become a crucial problem occasionally.

Below is the explanation of the calculation formula for racing angle of Worm gear instead of backlash of Worm wheel.

Place an indicator to flank of Worm Wheel as show in Fig. 5-3 to measure circumferential backlash.

For example,
Module is 2.0,
Gear ratio 1: 30,
Reference diameter of Worm gear is 31.0 mm,
Lead angle of Worm gear is 3°42",
Lead of Worm gear is 6.2963,
Measurement amount of Circumferential backlash is 0.2 mm.

Calculation formula is as follows.

(Lead) : (360°) = (Measured circumferential backlash) : (Racing angle of Worm gear) therefore,

Racing angle of Worm gear =
$$\frac{360^{\circ} \times \text{Circumferential backlash}}{\text{Lead}} = 360^{\circ} \times 0.2 / 6.2963$$

= $11^{\circ}27'$

Worm gear provides the racing of 11°27′.

(Lead of Worm gear: It is the distance of a point on the flank as it moves forward in axis direction when the Worm gear turns one revolution.)

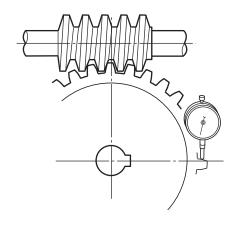


Fig. 5-3 Method of measurement for Worm gear pair (Circumference direction)

6. Tooth bearings

Regardless of how accurate the gear itself may be, poor tooth bearing not only causes oscillation and noise but also have bad effect on gear's life span.

Refer to Fig. 6-1. Extracted **Tooth bearing on gear from JIS B 1741-1977 (old)**

JIS B1741 (old) Tooth bearing on Gear stipulates percentage of tooth bearing mark as follows.

As for Tooth trace direction, it is percentage (%) of mean value bc of Length of tooth bearing for Effective length of trace - b'. As for Tooth depth direction, it is percentage (%) of mean value lc of tooth bearing width for Working depth- h'.

Note* For edge of gear tooth with chamfering, Effective length of trace is after deducting chamfered area. For different Effective lengths of Tooth trace between Pinion and Gear, take the shorter side.

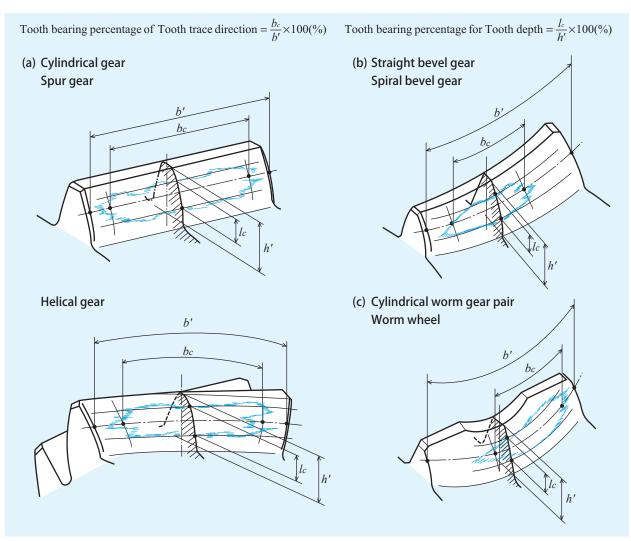


Fig. 6-1 Tooth bearing

Refer to Fig. 6-2 for Bevel gear with Crowning and empty load. It is desireable that centre of tooth bearing in Tooth trace direction is about 60% of Length of tooth trace from heel.

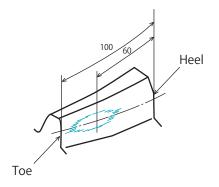


Fig. 6-2 Tooth bearing for Bevel gear with Crowning.

Percentage of tooth bearing for Worm gear pair is for Worm wheel engaged with Worm gear.

In general, Tooth bearing to inflow side of flank of Worm wheel is not desirable. It is desirable for Tooth bearing centre in Tooth trace direction to be biased towards outflow side to make clearance at inflow side. (Refer to Fig. 6-3)

Fig. 6-3 Tooth bearing for Worm wheel

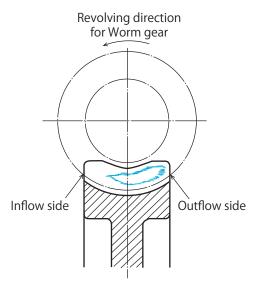


Fig. 6-4 Inflow clearance for Worm gear pair

{A few problems of lubricating oil for Worm gear pair and research work for machine. Volume 8, No. 4 (1956) written by Dr. Waguri and Dr. Ueno from Yokendo Co. Ltd.}

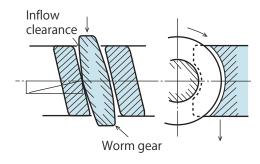


Fig. 6-5 Line of contact for Worm gear pair (2 number of threads) and Tooth bearing for standard Worm gear. Quoted literature is the same as Fig. 6-4.

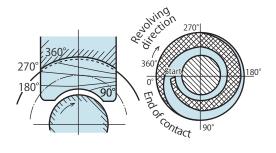
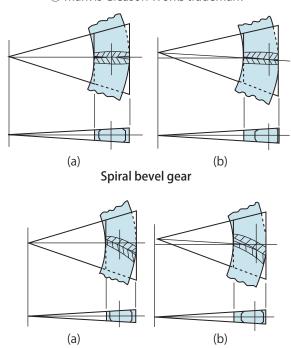
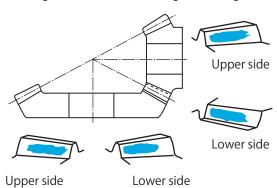


Fig. 6-6 Engagement for Bevel gear with Crowning {Gleason Company, INSTALLATION OF BEVEL GEARS (1965)

Coniflex® Bevel Gear

(Straight bevel gear with Crowning)

® mark is Gleason Works trademark

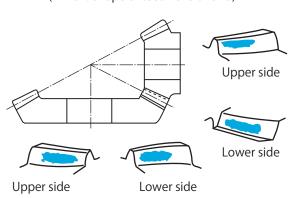

Fig. (a) shows proper assembly method, (b) is assembled off centre from location of Top cone. Please observe the difference in position for Tooth bearing.

Fig.6-7 Ideal tooth bearing for Bevel gear

Spiral bevel gear

(Pinion: Shape of teeth is left hand)

Tables 6.1 to 6.4 represents the recommended tooth bearing categories according to gear accuracy grades.

Table 6-1. Percentage of tooth bearing for Cylindrical gear (Spur and Helical gears)

Class	Percentage of tooth bearing			
	Tooth trace direction	Tooth depth direction		
Α	Above 70% of Effective length of Tooth trace	Above 40% of Effective length of Tooth profile		
В	Above 50% of Effective length of Tooth trace	Above 30% of Effective length of Tooth profile		
		Above 20% of Effective length of Tooth profile		

Table 6-3. Percentage of tooth bearing for Bevel gear

	Class	Percentage of tooth bearing				
		Tooth trace direction	Tooth depth direction			
	Α	Above 50% of effective length of Tooth trace	Above 40% of Effective length of Tooth profile			
	В	Above 35% of Effective length of Tooth trace	Above 30% of Effective length of Tooth profile			
	С	Above 25% of Effective length of Tooth trace	Above 20% of Effective length of Tooth profile			

Table 6-2. Percentage of tooth bearing for Worm gear pair (Worm wheel)

Class	Percentage of tooth bearing				
Class	Tooth trace direction	Tooth depth direction			
Α	Above 50% of Effective length of Tooth trace	Above 40% of Effective length of Tooth profile			
В	Above 35% of Effective length of Tooth trace	Above 30% of Effective length of Tooth profile			
С	Above 20% of Effective length of Tooth trace	Above 20% of Effective length of Tooth profile			

Table 6-4. Table for Tooth bearing classification and System of accuracy

System of accuracy for Class Class JIS B 1702-1960 (old)		System of accuracy class for Bevel gear JIS B 1704-1973	
Α	1,2	1, 2	
В	3, 4	3,4	
С	5, 6	5, 6	

7. Gear efficiency

(Reference for gears only)

Туре	s of gear	Efficiency of gear
Spu	ur gear	97 - 99%
Heli	cal gear	97 - 99%
Bevel gear		96 - 99%
M/	Single thread	45 - 55% *
Worm gear	Double thread	55 - 65% *

 $^{*\}mbox{Above}$ efficiency values are for KG STOCK GEARS only

8. Lubricating oil for Gears

(1) Purpose of using lubricating oil

Purpose of using lubricating oil for longer life of gear is as follows,

- 1) Avoid metal contact (without oil film) to flank.
- 2) Reduce frictional heat from flank
- 3) Reduce vibration and noise.

In addition, better efficiency with less oscillation and noise can be expected.

Insufficient lubricating oil to flank can cause high oscillation and noise in a short time. Scuffing will occur with the increasing temperature, resulting in damage to the bearing. To prevent such problems, apply suitable lubricating oil to the gear is necessary. Proceed with proper method and amount to gear.

(2) Method of lubricating oil

Classifications of lubricating oil to gears are as follows,

- 1) Grease lubricating method
- 2) Splash lubricating method (Oil bath or Splash lubrication)
- 3) Forced lubricating method

Selection of Method of lubricating oil can be by types of gears, Circumferential velocity, surface pressure (load applied to gear), finishing condition of flank, hardness of material and combination of materials. However, Circumferential velocity is usually used.

Table 8-1 indicates guide for selecting gear's lubricating method by circumferential velocity.

Table 8-1 (1) For Spur, Helical and Bevel gears

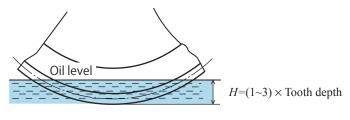
Lubrication method	Circumferential velocity (m/s)				
Lubrication method	0	5	10	15	20
Grease lubricating method					
Splash lubricating method	←				
Forced lubricating method			<		

Table 8-1 (2) For Worm gear pair and Hypoid gears

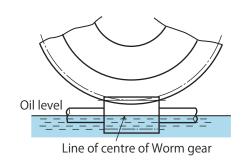
Lubrication method	Circumferential velocity (m/s)				
Lubrication method	0	5	10	15	20
Grease lubricating method		>			
Splash lubricating method	←		>		
Forced lubricating method		<			

Table 8-1. Guide for selecting gear lubricating method by circumferential velocity.

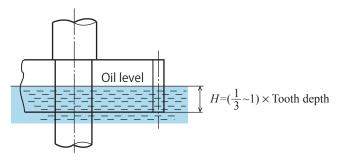
How to calculate Circumferential velocity

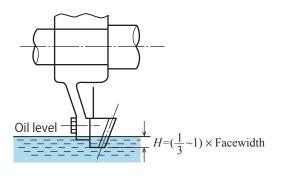

Circumferential velocity (m/s) = $\frac{\pi \times \text{Reference diameter (mm)} \times \text{The number of revolution (rpm)}}{1000 \times 60}$

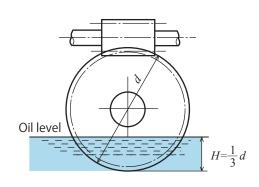
*Please be careful about the units of numerical values.


(3) Proper level of lubricating oil

1) Splash lubricating method (Oil bath or Splash lubricating)


Amount of lubricating oil for soaking each type of gear is different. The mixer resistance and windage are increased when large amount of lubricating oil are used for soaking the gear. Fig. 8-1 shows the proper level of lubricating oil for soaking the gear.


(a) Spur and Helical gears (Horizontal axis)


(d₁) Worm gear pair (Lower position of Worm gear)

(b) Spur and Helical gears (Perpendicular axis)

(c) Bevel and Hypoid gears

(d₂) Worm gear pair (Upper position of Worm gear)

Fig. 8-1 Soaking level of gear in gearbox

2) Forced lubricating method Spraying oil:

In general, temperature of lubricating oil should not exceed 8°C when lubricating oil flows onto working area of gear. Criterion for facewidth per cm is 0.51/min for low speed and 11/min for high speed. Lubricating oil for high speed, use following empirical formula.

Oil level(l/min) = $0.6 + 2 \times 10^{-3} \cdot mv$

Hereby

m: Module (mm)

v: Circumferential velocity (m/s) of Pitch circle

How to spray:

Spray before the starting area of gear engagement with lubricating oil perpendicular to flank. In rare instances for high speed, spray in the direction towards the end of the engagement.

To prevent temperature of oil from increasing, the collected oil should go through a cooling process using cooling equipment before being reused.

(4) Features of Polyacetal gear

Strength of plastic gear compared with metal gear excluding external factors is 1/6 to 1/9. However, it is necessary to take factors like temperature, humidity and others into considerations.

Table 8-2. Circumferential speed and Limitation of frictional speed

Lubrication		Without lubricating oil	Lubricating oil
Circumferential speed for Spur and Bevel gears	m/s	6	12
Frictional speed for Worm gear pair	m/s	1	2.5

Lowest usage temperature limitation -38°C

Backlash for plastic gear

Plastic material has extremely smaller thermal conductivity and larger thermal expansion factor compared with metals. Plastic gear pair has higher tendency to change dimension compared with metal gear. Therefore KG has intentionally fabricated wider backlash plastic gears as compared with metal gears.

(5) Combination of gear materials

The combination of materials for plastic gear pair, assuming combination between Polyacetal, metal material factor is 1.0. When combining two Polyacetals, material factor is 0.75. Therefore gear strength for Polyacetal gear pair becomes 75%.

We believe that engagement between Polyacetal and metal gears are best combination.

However, note that maximum surface roughness Ra1 6

at flank for metal gear is advised to prevent wear for plastic gears.

9. Cause and solution for noise and oscillation

During operation of machine, make sure that gearing sound can be heard. 500 to 5,000 Hz is comfortable sound frequency for humans. Even if it is not loud, depending on the frequency component or the environment where the gears are used, such sound may feel unpleasant. Occurrence of noise is often blamed on the gear. However, noise problems are not solely from gear but may also include causes from designing error to lubrication. Refer to Fig. 9-1 for cause and solution.

Refer to Fig. 1 to reduce the noise level by following solutions.

- 1) Improve the accuracies of gear and gear assembly. → (Preventing at source)
- 2) For gear, axis and gearbox, provide suitable material and design to reduce noise. → (Reduce the cause of noise level) (avoid resonance and guick attenuation)
- 3) Provide a sealed type of gearbox to shut in the noise. \rightarrow (Shield and cover)

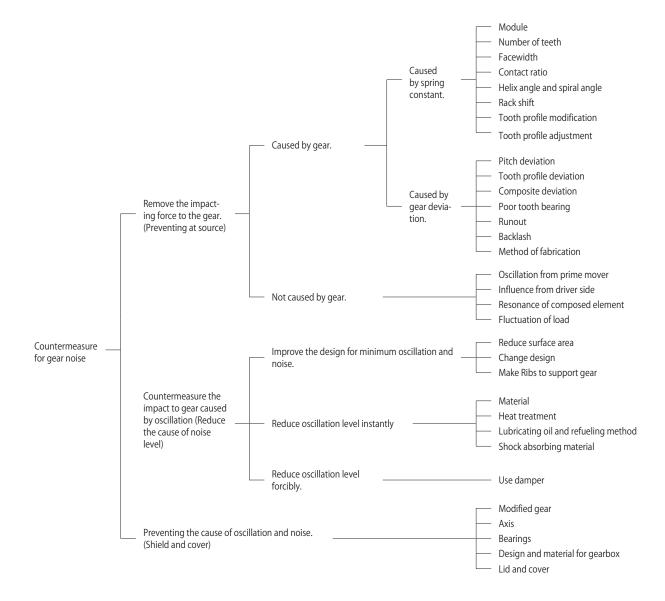


Fig. 9-1 Cause and solution for gear noise

참고자료

10. The vocabulary of gear and gear terms.

We have been adopting the symbol of JIS.

The Vocabulary of each dimension for the gear's drawing in various usages includes many different fields. KG has been adopting the symbols as there is reference literature of JIS standard and gear.

The Vocabulary of Gear and Gear terms.

With regard to the Vocabulary of gear for gear calculation, define JIS B 0121-1999(Gear vocabulary). With regard to the Gear terms, define JIS B 0102(Gear terms)

The relative dimension of the Rectilinear and Circumference

The relative dimension of the Rectilinear and Circumference			
Gear Terms	Vocabularies		
center distance	а		
when you call pitch	P		
reference pitch	P		
transverse pitch	P_t		
normal pitch	P_n		
axial pitch	P_x		
base pitch	P_b		
transverse base pitch	P_{bt}		
normal base pitch	P_{bn}		
tooth depth	h		
addendum	h_a		
dedendum	h_f		
chordal addendum	$\frac{\ddot{h}}{h}$		
intermeshing tooth depth	h'		
when you call tooth thickness	S		
tooth thickness	S		
base circle	S _b		
chordal tooth thickness	S		
sector span	w		
spacewidth	e		
bottom clearance	С		
circumferential backlash	j_i		
normal backlash	jn		
facewidth	b		
effective facewidth	b ' or b_w		
lead	P_z		
length of path of contact	g_a		
length of approach path	g_f		
length of recess path	g_{α}		
overlap length	g_{β}		
when you call diameter	d		
reference diameter	d		
working pitch diameter	d ' or d_w		
tip diameter	d_a		
base diameter	d_b		
root diameter	d_f		
when you call radius	r		
reference radius	r		
intermeshing pitch radius	r or r_w		
tip radius	r_a		
base radius	r_b		
root radius	r_f		
curvature radius	ρ		
when you call cone distance	R		
cone distance	R_e		
mean cone distance	R_m		
inner cone distance	R_i		
back cone distance	R_{ν}		
locating distance	A		

The Angulars

Gear Terms	Vocabularies
when you call pressure angle	α
reference pressure angle	α
intermeshing pressure angle	$lpha$ ' or $lpha_{\scriptscriptstyle W}$
cutter pressure angle	α_o
transverse pressure angle	α_t
normal pressure angle	α_n
axial pressure angle	α_x
when you call helix angle	β
reference cylinder helix angle	β
tip cylinder helix angle	β_a
base cylinder helix angle	eta_b
when you call lead angle	γ
reference cylinder lead angle	γ
tip cylinder lead angle	γ_a
base cylinder lead angle	$\frac{\gamma_b}{\Sigma}$
shaft angle	
when you call angle	δ
pitch angle	δ
tip angle	δ_a
root angle	δ_{f}
addendum angle	θ_a
dedendum angle	$ heta_{f}$
transverse angle of transmission	ϕ^{α}
overlap angle	ϕ_{β}
total angle of transmission	ϕ_{γ}
angle pitch of crown gear	τ
involute a	inv α

The Number of teeth and Gear ratio

Gear Terms	Vocabularies
number of teeth	Z
equivalent number of teeth	Z_{v}
number of thread	z_1
gear ratio	и
transmission ratio	i
module	m
transverse module	m_t
normal module	m_n
axial module	m_x
contact ratio	ε
transverse contact ratio	\mathcal{E}^{α}
overlap contact ratio	\mathcal{E}^{β}
total contact ratio	\mathcal{E}^{γ}
specific sliding	σ
angular velocity	ω
linear velocity	v
revolution per minute	n
rack shift coefficient	x
center distance modification coefficient	y

11. Interpretation of Allowable capability torque table.

The Bending Strength, Surface Durability and Allowable Transfer Capability Torque of Worm Wheel are introduced by using JGMA (Japan Gear Manufacturers Association) formula except Poly Acetal material. This JGMA formula does not apply to every gear, or some is reference only. Therefore refer to the below classification of reference 11-1 for Kind of the gear and Module size.

Applicable range for JGMA formula (Reference 11-1)

Kind of Gears	JGMA standard	Range of Module	Pitch Diameter
Spur gear	JGMA401 — 01	1.5 ∼ 25mm	Pitch diameter 25 \sim 3200mm
Helical gear	JGMA402 — 01	1.5 2 2 111111	Fitch diameter 25. S200mm
Bevel gear	JGMA403 — 01	Outertransverse module	Below 1600mm of Outer pitch diameter 1600mm 以下
Spiral bevel gear	JGMA404 — 01	1.5 ∼ 25mm	Below 1000mm of Outer pitch diameter 1000mm 以下
Worm gear pair	JGMA405 — 01	Metric axial module $1.0 \sim 25$ mm	Below 900mm Pitch diameter of Worm wheel 900mm 以下

(1) Bending Strength and Surface Durability for Spur and Helical gears.

Material	SCM435	S4	5C			Doly
Descriptions	Induction hardening	_	Induction hardening	(¹) SUS304	(¹) C3604B	Poly Acetal
Calculation	Calculation for	Louis				
Calculation	Calculation for	formula				
Matching gear		_				
Stress of Allowable Bending $: \sigma F_{lim}$	36.5kgf/mm ²	21.0kgf/mm ²	25.0kgf/mm ²	10.5kgf/mm ²	4.2kgf/mm ²	3.4kgf/mm ²
Stress of Allowable Hertz : σH_{lim}	121kgf/mm ²	_	106.5kgf/mm ²	_	_	_
The number of times of engagement between two gears during life span	Above 10 to the power of 7. $(K_L=1.0)$					_
Impact from motor side.		Flat	load			_
Impact from load		Average	impact		(K ₀ =1.25)	_
Lubricating system and Oil viscosity		Oil Lubrication.	100 cSt (50°C)		$(Z_L=1.0)$	_
Method of supporting gear	Double supporting with plane symmetry to both bearing					
Safety Factor of Tooth Breakage $: S_F$	1.2					_
Factor of safety at Surface strength: S_H		1.	15			_
Load direction	One-way direction					

Regarding the amount of allowable transfer capability, load direction is the reversible and the middle gear become 2/3 (including rack pinion). Surface Durability in Allowable transfer capability table that the formula does not apply to Idler gear or mid gear engaged with 2 gears. Note (1) Sub standard JGMA401-01 and JGMA402-01 equivalent to JGMA 6101-01 and JGMA6102-01.

The Amount of Allowable transfer torque [N.m] at the number of revolution per minute n=100 [N.m] to each reference compare with Bending strength of Allowable transfer capability table (Range: Module 1.0 to 5.0 with ISO C45 carbon steel) in KG-catalogue.

(2) Bending strength and Surface durability for Bevel gears. Material SCM435 SCM440

Material	SCM435 SCM440 S4			5C					
Descriptions	Induction hardening	Ground tooth Induction hardening	-	Induction hardening	(2) SUS304				
Calculation	Calci	Calculation for Bending strength of Bevel gears as JGMA 403-01.							
Calculation	Calc	Calculation for Surface durablity of Bevel gears as JGMA 404-01.							
Matching gear		Nominativ	e Matching gea	r.					
Stress of Allowable Bending $: \sigma F_{lim}$	31.0kgf/mm ²	10.5kgf/mm ²							
Stress of Allowable Hertz : σH_{lim}	109.0kgf/mm ²	115.0kgf/mm ²	54.0kgf/mm ²	85.0kgf/mm ²	_				
The number of times of engagement between two gears during life span	Above 10 to the power of 7.								
Impact from motor side.	Flat load								
Impact from load		Aver	age impact		(<i>K</i> ₀ =1.25)				
Lubricating system and Oil viscosity		Oil Lubricat	ion. 100 cSt(50°	C)					
					$(Z_L=1.0)$				
Stiffness of gear shaft and gearbox.		<u> </u>	tandard						
Supporting condition of the gear		Overh	nang condition						
		$(K_{M}\beta=1.8)$ $(K_{M}\beta$							
Coefficient of reliability of Tooth Breakage $:K_R$	1.2								
Coefficient of reliability at Surface strength : C_R			1.15						
Load direction		One-	way direction						

Regarding the amount of allowable transfer capability, load direction is the reversible and the middle gear become 2/3. Note (2) Sub standard JGMA403-01 and JGMA404-01 equivalent to JGMA 6101-01 and JGMA6102-01.

(3) Surface durability of Cylindrical worm gear pair.

Material of Wheel Descriptions	C3604B Brass	Brass Cast iron Aluminur						
Calculation	Calculation for	Calculation for Surface strength of Cylindrical worm gear pair.						
Coefficient of Allowable Stress at Surface strength : σF_{lim}	0.42 0.63 0.56							
Effective life period	26,000 hours							
Oil Lubrication.	Provided extreme additive lubricant oil with proper viscosity. $(Z_L=1)$							
Lubricating system	Oil bath Lubrication (Z							
Surface contact	This Surface contact is	This Surface contact is equivalent to classification A of JIS B1741 (Surface contact) $(K_c=$						
Starting condition		Starting torque should below 200 % from rating torque and the number of starting time should less than 2 times. $(K_S=1.0)$						
Impact from motor side.		Flat load						
Impact from load		Flat load	$(K_h=1.0)$					

Regarding the amount of allowable transfer capability, load direction is the reversible and the middle gear become 2/3. Note () Sub standard JGMA403-01 and JGMA404-01 equivalent to JGMA 6101-01 and JGMA6102-01.

12. While examination of Bending strength from the Allowable transfer capability table, Surface strength check are necessary too.

To calculate Allowable transfer torque of KG STOCK GEARS.
To select KG-STOCK GEARS from usage condition of Spur gear.

For example 1. To calculate Allowable transfer torque: T[N.m]

- (1) For example, calculating KG STOCK GEAR S2S 40B-2016
 - 1) Module M2.0 3) Face width 20mm
 - 2) No. of teeth z=40 4) Bore 16mm
- (2) Usage condition of Spur gear.
 - 1) Gear ratio of Spur gear u=1:1
- 2) The number of revolution n=100 rpm
- 3) Providing conditions with usage of gear for strength calculation. Please refer to Calculation for Bending strength of Spur and

Helical gears as JGMA401-01.

- a) The gear is in gearbox with lubricant oil.
- b) Bearing in gearbox should position on both sides. Bearings are plane symmetry.
- c) Receiving load from a motor side is a flat load or less.
- d) Receiving impact from a load side is an Average or less.
- e) During gear life period, the number of times for set of gear engagement is below 10⁷ times.
- (3) To calculate Allowable torque from Allowable transfer capability table (kW) with Bending strength in KG-catalogue.
- 1) Base on Usage Candition of Spur Gear stated above (1) and (2) that obtain a numerical value from Allowable transfer capability table in KG-catalogue.

KW=1.61[kW]

2) Convert to Torque [N.m] from power kW[kW]

Gained T=9549.7
$$\frac{kW}{n}$$
 = 9549.7 $\times \frac{1.61}{100}$ =153.75[N.m]

Therefore selected S2S 38B-2016F as Allowable transfer torque T=153.75[N.m]

This gear can be used unless exceed range of Input torque T=153.75[N.m]

For example 2. To select KG-STOCK GEARS from usage condition of Spur gear.

(1) Usage condition of Spur gear. (Give us the specification by customer)

- 1) Action to Spur gear with maximum normal torque is T=142 [N.m] included factor of safety.
- 2) The number of revolution n=100 rpm
 3) Face width of Spur gear b=10-30 [mm]
 4) Center distance of Spur gear a=70-100 [mm]
- 5) Gear ratio of Spur gear u=1:1
- 6) Providing conditions with usage of gear for strength calculation. Please refer to Calculation for Bending strength of Spur and Helical gears as JGMA401-01.
 - a) The gear is in gearbox with lubricant oil.
 - d) Bearing in gearbox should position on both sides. Bearings are plane symmetry.
 - c) Receiving load from a motor side is a flat load or less.
 - d) Receiving impact from a load side is an Average or less.
 - e) During gear life period, the number of times for set of gear engagement is below 10⁷ times.
- (2) Convert to Power kW [kW] of Allowable transfer capability table with Bending strength from axial torque T [N.m] with action to Spur gear.

$$kW = \frac{T.n}{9549.7} = \frac{142 \times 100}{9549.7} = 1.487[kW]$$

- (3) To select KG-STOCK GEARS
 - 1) Selected condition of Spur gear.
 - a) Module M=2.0 (eg)
 - b) No. of teeth Center distance a=70-100 [mm]

Gear ratio u=1:1

Therefore we verify the No. of teeth of 35-50z.

- c) Face width b=10-30 [mm] d) The number of revolution n=100 rpm
- e) Power kW=1.487 [kW]
- 2) Selection of KG STOCK GEARS
 - a) Please refer the page for Module 2.0 and Number of teeth 35 to 50 from the catalogue of KG-Spur gear.
 - b) Refer to Allowable transfer capability table (kW) of Bending strength.

The number of revolution

Observing the column of n=100 rpm for your selection.

Power

Look up numerical value of kW=1.487 [kW] or more

Concluded,

On condition that Number of teeth: z= 38[z], Face width: b=20 [mm] and material: S45C

Obtained kW=1.51 [kW] from Allowable transfer capability table.

Compared with action to Spur gear with maximum normal torque is T=142 [N.m] included factor of safety.

Can be judged (Allowable transfer capability) \geq (Normal power).

c) Can be searched your suitable S2S 38B-2016 as our recommendation only.

The Conversion formula of Power

Calculate Torque from
 T : Torque [N ⋅ m]

$$T = 9549.7 \frac{\text{k}W}{n} \quad \Leftrightarrow \quad \text{k}W = \frac{T \cdot n}{9549.7}$$

T: Torque [kgf • m]

$$T = 973.8 \frac{\text{kW}}{n} \Leftrightarrow \text{kW} = \frac{T \cdot n}{973.8}$$

T: Torque [kgf • m]

$$T = \frac{Ft \cdot r}{1000} \quad \Leftrightarrow \quad Ft = \frac{1000 \cdot T}{r}$$

2) Convert to Standard Integer

1[W]=1[N · m/s]

Hereby n: Revolution per minute rpm

r : Reference radius [mm]

(In case of Shifted gears as working Radius)

T: Torque [N • m] kW: Power [kW]

Ft : Tangential Force of pitch circle [N]

친그지료

13. Conversion table for SI units (International System of Units)

	N	dyn	kgf
Force	1	1 × 10 ⁵	1.019 72 × 10 ⁻¹
Force	1×10^{-5}	1	1.019 72 × 10 ⁻⁶
	9.806 65	9.806 65 × 10 ⁵	1

	Pa	bar	kgf/cm²	atm	mmH ₂ O	mmHg or Torr
	1	1 × 10 ⁻⁵	1.019 72 × 10 ⁻⁵	9.869 23 × 10 ⁻⁶	1.01972×10^{-1}	7.500 62 × 10 ⁻³
	1×10^5	1	1.019 72	9.869 23 × 10 ⁻¹	1.01972×10^{4}	7.500 62 × 10 ²
Pressure	$9.806\ 65 \times 10^{4}$	9.806 65 × 10 ⁻¹	1	9.678 41 × 10 ⁻¹	1×10^4	7.355 59 × 10 ²
	$1.013\ 25 \times 10^{5}$	1.013 25	1.033 23	1	$1.033\ 23 \times 10^4$	7.600 00 × 10 ²
	9.806 65	9.806 65 × 10 ⁻⁵	1 × 10 ⁻⁴	9.678 41 × 10 ⁻⁵	1	7.355 59 × 10 ⁻²
	$1.333\ 22 \times 10^{2}$	1.333 22 × 10 ⁻³	1.359 51 × 10 ⁻³	1.315 79 × 10 ⁻³	1.359 51 × 10	1

Note IPa=IN/m²

	Pa	Mpa or N/mm²	kfg/mm²	kgf/cm²
	1	1 × 10 ⁻⁶	1.01972×10^{-7}	1.019 72 × 10 ⁻⁵
Stress	1×10^{6}	1	1.01972×10^{-1}	1.019 72 × 10
	9.80665×10^{6}	9.806 65	1	1 × 10 ²
	9.80665×10^{4}	9.806 65 × 10 ⁻²	1×10^{-2}	1

	Pa∙s	cP	Р
Coefficient of	1	1 × 10 ³	1 × 10
viscosity	1×10^{-3}	1	1 × 10 ⁻²
	1×10^{-1}	1×10^{2}	1

Note $IP = Idyn \cdot s/cm^2 = Ig/cm \cdot S$, $IPa \cdot s = IN \cdot s/m^2$, $ICP = ImPa \cdot s$

14. Standardizing the coordination between ISO and JIS

Introduction

Firstly, as standardizing at the coordination of ISO standard from JIS standard, most of JIS-standard (included Technical report) has been making revision and replacement.

In due time JIS standard and JGMA standard (Japan Gear Manufacturers Association) for the gears shall be revised to a new edition as time to come. However JIS standard and JGMA standard are not complete and some standard was abolished when we started the new edition of KG catalogue. However an old JIS and JGMA standard are essential reference of gears for KG-new catalogue.

Therefore we had adopted the latest JIS and JGMA standard as latest as possible in our new edition KG-catalogue. However if we found inexplicability and nonexistence standard, we introduced the old and new standards to our new edition KG-catalogue.

With respect to the new edition of ISO, JIS and JGMA standards, new edition KG-catalogue is unable to adopt the latest revised ISO, JIS and JGMA standards. We seek your understanding for our latest edition of KG-catalogue.

Precision of KG STOCK GEARS.

The Two Regulations had enacted that JIS B 1702-1:1998 (Cylindrical gears - Precision and Classification Article 1: Definition of Error and Amount of Permissible for a Gear flank) and JIS B 1702-2:1998 (Cylindrical gears - Precision and Classification Article 2: Error of Tooth to Tooth Working, Definition of Run out and Amount of Precision) in place of JIS B 1702: 1995, confirmed (Precision for the Spur and Helical gears) was discontinued after so many years used.

When new JIS compared with old JIS B 1702, the new JIS is unable to be equivalent to the Old JIS class 4 detail, due to different classification of Module and Reference diameter (call Pitch Diameter of old JIS).

The rough outline of the theory is New JIS precision class = Old JIS precision class plus(+) 4, however comparatively range of small or big number of teeth are unable to cover the above classification.

Comparison of new and old gear's terms

•	3
JIS B0102 : 1999	Old JIS B0102 : 1993
reference diameter	pitch diameter
tooth depth	whole depth
working tooth depth	working depth
pitch angle	pitch cone angle
tip angle	tip cone angle
root angle	root cone angle
spiral angle	helix angel
locating distance	mounting distance

Some of the old standard still remain unchanged in our new KG-catalogue for the Dimensions of the Gears.

System of accuracy of KG-STOCK GEARS based on JIS B 1702-1 standards are as follows.

Single pitch deviation	JIS B1702-1 class 7
Total cumulative deviation	JIS B1702-1 class 8
Tooth profile deviation	JIS B1702-1 class 8
Run out	JIS B1702-2 class 8 (For reference)

Although we are able to provide the gear with JIS B1702-1 class 8 for tooth profile deviation and runout. In order to maintain the demand so that economically price to be as competitive as possible. Therefore, we manufacturing by equivalent at the JIS B1702-1 class 8 gear.

Accuracy class of standard gears

Gear type	Series code	Material	Accuracy class
Cuorin de corre a corr	SG	SCM435 • 440	JIS B1702-1 class N5
Ground spur gear	SGR	S45C	JIS B1702-1 class N6
Spur gear	S	S45C	JIS B1702-1 class N8
		SUS304	JIS B1702-1 class N9
Spur gear / Helical gear	S•H	Brass ※ 1	JIS B1702-1 class N9
		Poly Acetal	JIS B1702-1 class N9 to N10 ※ 2
Ground spiral miter gear / Ground spiral bevel gear	MG BG	SCM440	JIS B1704 class 1
Ground spiral miter gear	MGE	SCM435 • 440	JIS B1704 class 2
		S45C	JIS B1704 class 3
		S45C (Hardened products)	JIS B1704 class 4
Straight miter gear / Straight bevel gear	M • B	SUS304	JIS B1704 class 4
		Brass	JIS B1704 class 4
		Poly Acetal	JIS B1704 class 5 to 6 ※ 2

 $[\]ensuremath{\,\%\,}$ 1 Excludes gear-shaped A1 and A2 types.

^{** 2} Accuracy at the time of manufacture. Because of the material characteristics, the dimensions and accuracy change with time and due to temperature changes.

Hardness conversion table

Approximate conversion values compared with Vickers hardness of Steel

Vickers hardness Standard ball Hult-gren ball Tungsten carbide ball Scale A Load 60kgf Diamond cone penetrator Scale B Load 100kgf 1/16 inch pall 940 - - - 85·6 - 920 - - - 85·3 - 900 - - - 85·0 - 880 - - (767) 84·7 - 860 - - (757) 84·4 - 840 - - (745) 84·1 - 820 - - (733) 83·8 - 800 - - (722) 83·4 - 780 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (Scale C Load 150kgf Diamond cone penetrator 68·0 67·5 67·0 66·4 65·9 65·3 64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3 57·8	Scale D Load 100kgf Diamond cone penetrator 76.9 76.5 76.1 75.7 75.3 74.8 74.3 73.8 73.8 73.3 72.6 72.1 71.5 70.8 70.5 70.1	15-N Scale Load 15 kgf 93·2 93·0 92·9 92·7 92·5 92·3 92·1 91·8 91·5 91·2 91·0 90·7 90·3 90·1 89·8	30-N Scale Load 30 kgf 84·4 84·0 83·6 83·1 82·7 82·2 81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	45-N Scale Load 45 kgf 75.4 74.8 74.2 73.6 73.1 72.2 71.8 71.0 70.2 69.4 68.6 67.7 66.7	97 96 95 93 92 91 90 88 87 86 84 83 81	strength (Approx. value) MPa (kgf/mm²) (1)	940 920 900 880 860 840 820 800 780 760 740 720 700
920 - - - 85·3 - 900 - - - 85·0 - 880 - - (767) 84·7 - 860 - - (757) 84·4 - 840 - - (745) 84·1 - 820 - - (733) 83·8 - 800 - - (722) 83·4 - 780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	67·5 67·0 66·4 65·9 65·3 64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	76·5 76·1 75·7 75·3 74·8 74·3 73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1	93·0 92·9 92·7 92·5 92·3 92·1 91·8 91·5 91·2 91·0 90·7 90·3 90·1	84·0 83·6 83·1 82·7 82·2 81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	74·8 74·2 73·6 73·1 72·2 71·8 71·0 70·2 69·4 68·6 67·7 66·7	96 95 93 92 91 90 88 87 86	- - - - -	920 900 880 860 840 820 800 780 760
900 - - - 85·0 - 880 - - (767) 84·7 - 860 - - (757) 84·4 - 840 - - (745) 84·1 - 820 - - (733) 83·8 - 800 - - (722) 83·4 - 780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	67·0 66·4 65·9 65·3 64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	76·1 75·7 75·3 74·8 74·3 73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1	92.9 92.7 92.5 92.3 92.1 91.8 91.5 91.2 91.0 90.7 90.3 90.1	83·6 83·1 82·7 82·2 81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	74·2 73·6 73·1 72·2 71·8 71·0 70·2 69·4 68·6 67·7 66·7	95 93 92 91 90 88 87 86	- - -	900 880 860 840 820 800 780 760
880 - - (767) 84·7 - 860 - - (757) 84·4 - 840 - - (745) 84·1 - 820 - - (733) 83·8 - 800 - - (722) 83·4 - 780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	66·4 65·9 65·3 64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	75·7 75·3 74·8 74·3 73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1 69·8	92·7 92·5 92·3 92·1 91·8 91·5 91·2 91·0 90·7 90·3 90·1	83·1 82·7 82·2 81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	73·6 73·1 72·2 71·8 71·0 70·2 69·4 68·6 67·7 66·7	93 92 91 90 88 87 86 84 83	- - -	880 860 840 820 800 780 760 740 720
860 - - (757) 84·4 - 840 - - (745) 84·1 - 820 - - (733) 83·8 - 800 - - (722) 83·4 - 780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	65·9 65·3 64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	75·3 74·8 74·3 73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1	92·5 92·3 92·1 91·8 91·5 91·2 91·0 90·7 90·3 90·1	82·7 82·2 81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	73·1 72·2 71·8 71·0 70·2 69·4 68·6 67·7 66·7	92 91 90 88 87 86 84 83	- - -	860 840 820 800 780 760 740 720
840 - - (745) 84·1 - 820 - - (733) 83·8 - 800 - - (722) 83·4 - 780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	65·3 64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	74·8 74·3 73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1	92·3 92·1 91·8 91·5 91·2 91·0 90·7 90·3 90·1	82·2 81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	72·2 71·8 71·0 70·2 69·4 68·6 67·7 66·7	91 90 88 87 86 84 83	- - -	840 820 800 780 760 740 720
820 - - (733) 83 · 8 - 800 - - (722) 83 · 4 - 780 - - (710) 83 · 0 - 760 - - (698) 82 · 6 - 740 - - (684) 82 · 2 - 720 - - (670) 81 · 8 - 700 - 615 (656) 81 · 3 - 690 - 610 (647) 81 · 1 -	64·7 64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	74·3 73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1	92·1 91·8 91·5 91·2 91·0 90·7 90·3 90·1	81·7 81·1 80·4 79·7 79·1 78·4 77·6 77·2	71·8 71·0 70·2 69·4 68·6 67·7 66·7	90 88 87 86 84 83		820 800 780 760 740 720
800 - - (722) 83·4 - 780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	64·0 63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	73·8 73·3 72·6 72·1 71·5 70·8 70·5 70·1	91·8 91·5 91·2 91·0 90·7 90·3 90·1	81·1 80·4 79·7 79·1 78·4 77·6 77·2	71·0 70·2 69·4 68·6 67·7 66·7	88 87 86 84 83		800 780 760 740 720
780 - - (710) 83·0 - 760 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	63·3 62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	73·3 72·6 72·1 71·5 70·8 70·5 70·1	91·5 91·2 91·0 90·7 90·3 90·1	80·4 79·7 79·1 78·4 77·6 77·2	70·2 69·4 68·6 67·7 66·7	87 86 84 83		780 760 740 720
760 - - (698) 82·6 - 740 - - (684) 82·2 - 720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	62·5 61·8 61·0 60·1 59·7 59·2 58·8 58·3	72·6 72·1 71·5 70·8 70·5 70·1	91·2 91·0 90·7 90·3 90·1	79·7 79·1 78·4 77·6 77·2	69·4 68·6 67·7 66·7	86 84 83	- - - -	760 740 720
740 (684) 82·2 - 720 (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	61·8 61·0 60·1 59·7 59·2 58·8 58·3	72·1 71·5 70·8 70·5 70·1	91·0 90·7 90·3 90·1	79·1 78·4 77·6 77·2	68·6 67·7 66·7	84 83	- - -	740 720
720 - - (670) 81·8 - 700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	61·0 60·1 59·7 59·2 58·8 58·3	71.5 70.8 70.5 70.1	90·7 90·3 90·1	78·4 77·6 77·2	67·7 66·7	83		720
700 - 615 (656) 81·3 - 690 - 610 (647) 81·1 -	60·1 59·7 59·2 58·8 58·3	70·8 70·5 70·1 69·8	90·3 90·1	77·6 77·2	66.7		-	
690 - 610 (647) 81.1 -	59·7 59·2 58·8 58·3	70·5 70·1 69·8	90 • 1	77•2		81	_	700
	59·2 58·8 58·3	70·1 69·8			66.2			, 00
680 - 603 (638) 80.8 -	58·8 58·3	69.8	89•8	760		-	-	690
	58.3			76•8	65.7	80	-	680
670 - 597 630 80.6 -			89.7	76•4	65.3	-	-	670
660 - 590 620 80.3 -	57.8	69•4	89.5	75•9	64.7	79	-	660
650 - 585 611 80.0 -	1 0	69.0	89.2	75•5	64•1	-	-	650
640 - 578 601 79.8 -	57.3	68.7	89.0	75•1	63.5	77	-	640
630 - 571 591 79.5 -	56.8	68.3	88•8	74.6	63.0	-	_	630
620 - 564 582 79.2 -	56.3	67.9	88.5	74・2	62.4	75	-	620
610 - 557 573 78.9 -	55.7	67.5	88.2	73.6	61.7	-	-	610
600 - 550 564 78.6 -	55.2	67.0	88.0	73 • 2	61.2	74	-	600
590 - 542 554 78.4 -	54.7	66.7	87.8	72.7	60.5	-	2055 (210)	590
580 - 535 545 78.0 -	54.1	66•2	87.5	72・1	59•9	72	2020 (206)	580
570 - 527 535 77.8 -	53.6	65.8	87.2	71.7	59.3	-	1985 (202)	570
560 - 519 525 77.4 -	53.0	65.4	86.9	71.2	58.6	71	1950 (199)	560
550 (505) 512 517 77.0 -	52.3	64.8	86.6	70.5	57.8	-	1905 (194)	550
540 (496) 503 507 76.7 -	51.7	64•4	86.3	70.0	57.0	69	1860 (190)	540
530 (488) 495 497 76.4 -	51.1	63.9	86.0	69.5	56•2	-	1825 (186)	530
520 (480) 487 488 76.1 -	50.5	63.5	85.7	69.0	55.6	67	1795 (183)	520
510 (473) 479 479 75.7	49.8	62.9	85.4	68.3	54.7	-	1750 (179)	510
500 (465) 471 471 75.3 -	49 • 1	62.2	85.0	67.7	53.9	66	1705 (174)	500
490 (456) 460 460 74.9 -	48 • 4	61.6	84.7	67 • 1	53 • 1	-	1660 (169)	490
480 448 452 452 74.5 -	47.7	61.3	84.3	66•4	52•2	64	1620 (165)	480
470 441 442 442 74.1 -	46.9	60.7	83.9	65.7	51.3	-	1570 (160)	470
460 433 433 73.6 -	46.1	60.1	83.6	64.9	50.4	62	1530 (156)	460
450 425 425 425 73.3 -	45.3	59•4	83.2	64.3	49•4	-	1495 (153)	450
440 415 415 72.8 -	44.5	58.8	82.8	63.5	48•4	59	1460 (149)	440
430 405 405 405 72.3 -	43.6	58•2	82.3	62.7	47•4	-	1410 (144)	430
420 397 397 397 71.8 -	42.7	57.5	81.8	61.9	46.4	57	1370 (140)	420
410 388 388 388 71.4 -	41.8	56.8	81.4	61.1	45.3	-	1330 (136)	410
400 379 379 379 70.8 -	40.8	56.0	81.0	60.2	44.1	55	1290 (131)	400
390 369 369 369 70·3 - 380 360 360 380 69·8 (110·0)	39·8 38·8	55·2 54·4	80·3 79·8	59·3 58·4	42·9 41·7	- 52	1240 (127) 1205 (123)	390 380
370 350 350 350 69.2 -	37.7	53.6	79.2	57.4	40.4	-	1170 (120)	370
360 341 341 341 68.7 (109.0)	36.6	52.8	78·6	56.4	39.1	50	1130 (115)	360
350 331 331 68.1 -	35.5	51.9	78.0	55.4	37.8	-	1095 (112)	350
340 322 322 67·6 (108·0)	34.4	51.1	77·4	54.4	36.5	47	1070 (109)	340
330 313 313 67.0 -	33.3	50.2	76.8	53.6	35•2	-	1035 (105)	330

Approximate conversion values compared with Vickers hardness for Steel

		inell hardne			Rockwell I	nardness (2)			superficial I			Tensile	
Vickers hardness	Standard ball	Hult-gren ball	Tungsten carbide ball	Scale A Load 60kgf Diamond cone penetrator	Scale B Load 100kgf 1/16 inch Ball	Scale C Load 150kgf Diamond cone penetrator	Scale D Load 100kgf Diamond cone penetrator	15-N Scale Load 15 kgf	30-N Scale Load 30 kgf	45-N Scale Load 45 kgf	Shore hardness	strength (Approx. value) MPa (kgf/mm²) (1)	Vickers hardness Load
320	303	303	303	66•4	(107.0)	33.2	49•4	76.2	52.3	33.9	45	1005 (103)	320
310	294	294	294	65.8	-	31.0	48•4	75.6	51.3	32.5	-	980 (100)	310
300	284	284	284	65 • 2	(105.5)	29.8	47.5	74•9	50.2	31.1	42	950 (97)	300
295	280	280	280	64.8	-	29.2	47 • 1	74.6	49.7	30•4	-	935 (96)	295
290	275	275	275	64.5	(104.5)	28.5	46•5	74•2	49•0	29.5	41	915 (94)	290
285	270	270	270	64•2	-	27.8	46.0	73.8	48•4	28.7	-	905 (92)	285
280	265	265	265	63.8	(103.5)	27 • 1	45.3	73 • 4	47.8	27.9	40	890 (91)	280
275	261	261	261	63.5	-	26•4	44.9	73.0	47•2	27 • 1	-	875 (89)	275
270	256	256	256	63 • 1	(102.0)	25.6	44.3	72.6	46•4	26.2	38	855 (87)	270
265	252	252	252	62.7	-	24.8	43.7	72•1	45.7	25•2	-	840 (86)	265
260	247	247	247	62•4	(101.0)	24.0	43 • 1	71.6	45.0	24.3	37	825 (84)	260
255	243	243	243	62.0	-	23 • 1	42.2	71 • 1	44.2	23.2	-	805 (82)	255
250	238	238	238	61.6	99.5	22.2	41.7	70.6	43 • 4	22.2	36	795 (81)	250
245	233	233	233	61.2	-	21.3	41 · 1	70 • 1	42.5	21.1	-	780 (79)	245
240	228	228	228	60.7	98•1	20.3	40.3	69.6	41.7	19•9	34	765 (78)	240
230	219	219	219	-	96•7	(18•0)	-	-	-	-	33	730 (75)	230
220	209	209	209	-	95•0	(15•7)	-	-	-	-	32	695 (71)	220
210	200	200	200	-	93•4	(13•4)	-	-	-	-	30	670 (68)	210
200	190	190	190	-	91.5	(11.0)	-	-	-	-	29	635 (65)	200
190	181	181	181	-	89•5	(8.5)	-	-	-	-	28	605 (62)	190
180	171	171	171	-	87•1	(6.0)	-	-	-	-	26	580 (59)	180
170	162	162	162	-	85•0	(3.0)	-	-	-	-	25	545 (56)	170
160	152	152	152	-	81.7	(0.0)	-	-	-	-	24	515 (53)	160
150	143	143	143	-	78•7	-	-	-	-	-	22	490 (50)	150
140	133	133	133	-	75•0	-	-	-	-	-	21	455 (46)	140
130	124	124	124	-	71•2	-	-	-	-	-	20	425 (44)	130
120	114	114	114	-	66•7	-	-	-	-	-	-	390 (40)	120
110	105	105	105	-	62•3	-	-	-	-	-	-	-	110
100	95	95	95	-	56•2	-	-	-	-	-	-	-	100
95	90	90	90	-	52•0	-	-	-	-	-	-	-	95
90	86	86	86	-	48•0	-	-	-	-	-	-	-	90
85	81	81	81	-	41.0	-	-	-	-	-	-	-	85

Remark: Bold figure indicates values from Table 1 of ASTM E 140. (SAE-ASM-ASTM combined and adjusted)

Note: (1) Units and Numerical values in brackets () are converted from psi conversion table of JIS Z 8438 with 1MPa = 1N/ mm²

(2) Figures in brackets () from table are seldom used and mainly for reference only.

(3) Iron and Steel quoted from JIS hand book

Approximate converted values compared with Rockwell hardness for Steel (1)

			rinell hardne nm ball 300		Rock	well hardn	ess ⁽²⁾		superficial nd cone pen			Tensile	
Rockwell Scale C hardness	Vickers hardness	Standard ball	Hult-gren ball	Tungsten carbide ball	Scale A Load 60kgf Diamond cone penetrator	Scale B Load 100kgf 1/16 inch Ball	Scale D Load 100kgf Diamond cone penetrator	15-N Scale Load 15 kgf	30-N Scale Load 30 kgf	45-N Scale Load 45 kgf	Shore hardness	strength (Approx. value) MPa (kgf/mm²) (1)	Rockwell Scale C hardness
68	940	-	-	-	85.6	-	76.9	93.2	84.4	75•4	97	-	68
67	900	-	-	-	85.0	-	76•1	92.9	83.6	74•2	95	-	67
66	865	-	-	-	84.5	-	75•4	92.5	82.8	73•3	92	-	66
65	832	-	-	(739)	83.9	-	74.5	92•2	81.9	72.0	91	-	65
64	800	-	-	(722)	83 • 4	-	73.8	91.8	81 • 1	71.0	88	-	64
63	772	-	-	(705)	82.8	-	73.0	91•4	80 • 1	69•9	87	-	63
62	746	-	-	(688)	82.3	-	72.2	91•1	79•3	68.8	85	-	62
61	720	-	-	(670)	81.8	-	71.5	90.7	78•4	67•7	83	-	61
60	697	-	613	(654)	81.2	-	70.7	90.2	77.5	66.6	81	-	60
59	674	-	599	(634)	80.7	-	69.9	89.8	76.6	65.5	80	-	59
58	653	-	587	615	80.1	-	69.2	89.3	75.7	64.3	78	-	58
57	633	-	575	595	79·6 79·0	-	68·5 67·7	88.9	74·8 73·9	63.2	76	-	57
56 55	613 595	_	561 546	577 560	79·0 78·5	-	66.9	88·3 87·9	73.9	62·0 60·9	75 74	2075 (212)	56 55
54	577	_	534	543	78.0	_	66.1	87.4	72.0	59.8	72	2075 (212)	54
53	560	_	519	525	77.4	_	65.4	86.9	71.2	58.6	71	1950 (199)	53
52	544	(500)	508	512	76.8	_	64.6	86.4	70.2	57.4	69	1880 (192)	52
51	528	(487)	494	496	76.3	_	63.8	85.9	69.4	56.1	68	1820 (186)	51
50	513	(475)	481	481	75.9	_	63 1	85.5	68.5	55.0	67	1760 (179)	50
49	498	(464)	469	469	75.2	_	62.1	85.0	67.6	53.8	66	1695 (173)	49
48	484	451	455	455	74.7	_	61.4	84.5	66.7	52.5	64	1635 (167)	48
47	471	442	443	443	74 • 1	-	60.8	83.9	65.8	51.4	63	1580 (161)	47
46	458	432	432	432	73.6	-	60.0	83.5	64.8	50.3	62	1530 (156)	46
45	446	421	421	421	73 • 1	-	59•2	83.0	64.0	49.0	60	1480 (151)	45
44	434	409	409	409	72.5	-	58.5	82.5	63 • 1	47.8	58	1435 (146)	44
43	423	400	400	400	72.0	-	57•7	82.0	62.2	46.7	57	1385 (141)	43
42	412	390	390	390	71.5	-	56.9	81.5	61.3	45.5	56	1340 (136)	42
41	402	381	381	381	70•9	-	56.2	80.9	60•4	44•3	55	1295 (132)	41
40	392	371	371	371	70•4	-	55•4	80•4	59.5	43 • 1	54	1250 (127)	40
39	382	362	362	362	69.9	-	54.6	79•9	58.6	41.9	52	1215 (124)	39
38	372	353	353	353	69•4	-	53.8	79•4	57.7	40.8	51	1180 (120)	38
37	363	344	344	344	68.9	-	53 • 1	78•8	56.8	39.6	50	1160 (118)	37
36	354	336	336	336	68•4	(109•0)	52.3	78•3	55.9	38•4	49	1115 (114)	36
35	345	327	327	327	67.9	(108•5)	51.5	77.7	55.0	37.2	48	1080 (110)	35
34	336	319	319	319	67.4	(108•0)	50.8	77.2	54.2	36.1	47	1055 (108)	34
33	327	311	311	311	66.8	(107.5)	50.0	76.6	53.3	34.9	46	1025 (105)	33
32	318	301	301	301	66.3	(107•0)	49.2	76.1	52.1	33.7	44	1000 (102)	32
31	310	294	294	294	65.8	(106•0)	48 • 4	75.6	51.3	32.5	43	980 (100)	31
30	302	286	286	286	65.3	(105•5)	47.7	75.0	50.4	31.3	42	950 (97)	30
29	294	279	279	279	64.7	(104•5)	47.0	74.5	49.5	30·1	41	930 (95)	29

Approximate converted values compared with Rockwell hardness for Steel (1)

			inell hardne nm ball 3000		Rock	well hardn	ess ⁽²⁾		superficial and cone pen			Tensile	
Rockwell Scale C hardness	Vickers hardness	Standard ball	Hult-gren ball	Tungsten carbide ball	Scale A Load 60kgf Diamond cone penetrator	Scale B Load 100kgf 1/16 inch Ball	Scale D Load 100kgf Diamond cone penetrator	15-N Scale Load 15 kgf	30-N Scale Load 30 kgf	45-N Scale Load 45 kgf	Shore hardness	strength (Approx. value) MPa (kgf/mm²) (1)	Rockwell Scale C hardness
28	286	271	271	271	64.3	(104.0)	46.1	73.9	48.6	28.9	41	910 (93)	28
27	279	264	264	264	63.8	(103•0)	45.2	73.3	47.7	27.8	40	880 (90)	27
26	272	258	258	258	63.3	(102•5)	44.6	72.8	46.8	26.7	38	860 (88)	26
25	266	253	253	253	62.8	(101.5)	43.8	72.2	45.9	25.5	38	840 (86)	25
24	260	247	247	247	62•4	(101.0)	43 • 1	71.6	45.0	24.3	37	825 (84)	24
23	254	243	243	243	62.0	100•0	42.1	71.0	44.0	23 • 1	36	805 (82)	23
22	248	237	237	237	61.5	99•0	41.6	70.5	43 • 2	22.0	35	785 (80)	22
21	243	231	231	231	61.0	98•5	40.9	69.9	42.3	20.7	35	770 (79)	21
20	238	226	226	226	60.5	97•8	40 • 1	69.4	41.5	19.6	34	760 (77)	20
(18)	230	219	219	219	-	96•7	-	-	-	-	33	730 (75)	(18)
(16)	222	212	212	212	-	95•5	-	-	-	-	32	705 (72)	(16)
(14)	213	203	203	203	-	93•9	-	-	-	-	31	675 (69)	(14)
(12)	204	194	194	194	-	92•3	-	-	-	-	29	650 (66)	(12)
(10)	196	187	187	187	-	90•7	-	-	-	-	28	620 (63)	(10)
(8)	188	179	179	179	-	89•5	-	-	-	-	27	600 (61)	(8)
(6)	180	171	171	161	-	87•1	-	-	-	-	26	580 (59)	(6)
(4)	173	165	165	165	-	85•5	-	-	-	-	25	550 (56)	(4)
(2)	166	158	158	158	-	83•5	-	-	-	-	24	530 (54)	(2)
(0)	160	152	152	152	-	81.7	-	-	-	-	24	515 (53)	(0)

Note: (1) Units and Numerical values in bracket () is converted from psi conversion table of JIS Z 8438 with 1Mpa = 1N/ mm² (2) Figures in brackets () from table are seldom used and mainly for reference only. (3) Iron and Steel quoted from JIS hand book

Commonly used fitting tolerances for bore dimensions

Unit: μ m

	nsions m)	В	С			D			Е			F		(G			Н			
· ·	Below	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	Н6	H7	H8 H	19	H10	H11
_	3	+180	+85	+100	+34	+45	+60	+24	+28	+39	+12	+16	+20	+8	+12	+6	+10	+14 +	25	+40	+60
	3	+140	+6		- 10	+20			+14		- 40	+6			2			0			
3	6	+188 +140	+100 +7		+48	+60 +30	+78	+32	+38 +20	+50	+18	+22	+28	+12	+16 -4	+8	+12	+18 +	30	+48	+75
			+116		+62	+76	+98	+40	+47	+61	+22	+28	+35	+14	+20	+9	+15		36	+58	+90
6	10	+150	+8	0		+40			+25			+13		+	-5			0			
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18	+27 +	43	+70	+110
14	18	+150	+9	5		+50			+32			+16		+	-6			0			
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21	+33 +	52	+84	+130
24	30	+160				+65			+40			+20		+	-7			0			
30	40	+270 +170	+182		⊥110	+142	⊥1 9 0	+75	⊥80	+112	+41	+50	+64	±25	+34	+16	+25	+39 +	62	±100	⊥160
			+192		1117	+80	1100	173	+50	1112	''	+25	104		.9	110	123	0	02	1100	1100
40	50	+180	+13	30																	
50	65	+310 +190	+214 +14		+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30	+46 +	74 -	+120	+190
65	80	+320 +200	+224 +1			+100			+60			+30		+	10			0			
80	100	+360 +220	+257 +17		+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35	+54 +	.87 -	+140	+220
100	120	+380 +240	+267 +18			+120			+72			+36		+	12						0
120	140	+420 +260	+300																		
140	160	+440 +280	+310		+208	+245 +145	+305	+125	+148 +85	+185	+68	+83 +43	+106		+54 14	+25	+40	+63 +1	00 -	+160	+250
160	180	+470 +310	+330																		
180	200	+525 +340		+425																	
200	225	+565 +380	+375	+445	+242	+285 +170	+355	+146	+172 +100	+215	+79	+96 +50	+122		+61 15	+29	+46	+72 +1	15 -	+185	+290
225	250	+605 +420	+395 +28																		
250	280	+690 +480	+430 +30		+271	+320	+400	+162	+191	+240	+88	+108	+137	+49	+69	+32	+52	+81 +1	30 -	+210	+320
280	315	+750 +540	+460 +33			+190			+110			+56		+	17			0			
315	355	+830 +600	+500 +36		+299	+350	+440	+182	+214	+265	+98	+119	+151	+54	+75	+36	+57	+89 +1	40 -	+230	+360
355	400		+540 +40	+630		+210			+125			+62			18			0			
400	450		+595	+690	+327	+385	+480	+198	+232	+290	+108	+131	+165	+60	+83	+40	+63	+97 +1	55 -	+250	+400
450	500		+635	+730	1321	+230	1-100	1170	+135	1270	1 100	+68	1103		20	1 10	100	0	<i>JJ</i> -	. 230	1-100
Remar	k : For e	ach ce	ll in the	table	above.	values	in the	top rov	w show	s uppe	r limit	of toler	ance a	nd valu	es in th	ne botto	om row	shows lo	wer l	imit o	f toler-

참 고 자료

Commonly used fitting tolerances for bore dimensions

 $\mathsf{Unit} : \mu\mathsf{m}$

Dimei (m	nsions im)		J	s		ŀ	(٨	1	N	I	F)	R	S	Т	U	Χ
Above	Below	Js6	Js7	Js8	Js9	K6	K7	M6	M7	N6	N7	P6	P7	R7	S7	T7	U7	Х7
-	3	± 3	± 5	± 7	± 12.5	0 -6	0 -10	-2 -8	-2 -12	-4 -10	-4 -14	-6 -12	-6 -16	-10 -20	-14 -24	-	-18 -28	-20 -30
						+2	+3	-1	0	-10	-14	-12	-10	-11	-15		-19	-24
3	6	± 4	± 6	± 9	± 15	-6	-9	-9	-12	-13	-16	-17	-20	-23	-27	-	-31	-36
6	10	± 4.5	± 7.5	± 11	± 18	+2 -7	+5 -10	-3 -12	0 -15	-7 -16	-4 -19	-12 -21	-9 -24	-13 -28	-17 -32	-	-22 -37	-28 -43
10	14					,	10		- 13	- 10				20	32		37	-33
10	14	± 5.5	± 9	± 13.5	± 21.5	+2	+6	-4 15	0	-9 20	-5	-15	-11	-16	-21	-	-26	-51
14	18					-9	-12	-15	-18	-20	-23	-26	-29	-34	-39		-44	-38 -56
18	24															_	-33	-46
		± 6.5	± 10.5	± 16.5	± 26	+2 -11	+6 -15	-4 -17	0 -21	-11 -24	-7 -28	-18 -31	-14 -35	-20 -41	-27 -48	-33	-54 -40	-67 -56
24	30					-11	-13	-17	-21	-24	-20	-31	-33	-41	-4 0	-53 -54	- 4 0	-77
30	40															-39	-51	
		± 8	± 12.5	± 19.5	± 31	+3 -13	+7 -18	-4 -20	0 -25	-12 -28	-8 -33	-21 -37	-17 -42	-25 -50	-31 -59	-64 -45	-76 -61	-
40	50					-13	-10	-20	-23	-20	-33	-3/	-42	-50	-59	- 4 5 -70	-86	
50	65													-30	-42	-55	-76	
	05	± 9.5	± 15	± 23	± 37	+4	+9	-5 24	0	-14	-9 -39	-26 -45	-21 -51	-60 -32	-72 -48	-85 -64	-106 -91	-
65	80					-15	-21	-24	-30	-33	-39	-4 5	-51	-52 -62	- 4 6	-0 4 -94	-91 -121	
80	100													-38	-58	-78	-111	
	100	± 11	± 17.5	± 27	± 43.5	+4	+10	-6	0	-16	-10	-30	-21	-73	-93	-113	-146	-
100	120					-18	-25	-28	-35	-38	-45	-52	-59	-41 -76	-66 -101	-91 -126	-131 -166	
120	140													-48	-77	-107	100	
120	140													-88	-117	-147		
140	160	± 12.5	± 20	± 31.5	± 50	+4 -21	+12 -28	-8 -33	0 -40	-20 -45	-12 -52	-36 -61	-28 -68	-50 -90	-85 -125	-119 -159	-	-
						-21	-20	-33	-40	-43	-32	-01	-00	-53	-93	-139		
160	180													-93	-133	-171		
180	200													-60	-105			
						+5	+13	-8	0	-22	-14	-41	-33	-106 -63	-151 -113			
200	225	± 14.5	± 23	± 36	± 57.5	-24	-33	-37	-46	-51	-60	-70	-79	-109	-159	-	-	-
225	250													-67	-123			
														-113 -74	-169			
250	280	± 16	± 26	± 40 F	± cr	+5	+16	-9	0	-25	-14	-47	-36	-126				
280	315	± 16	± 26	± 405	± 65	-27	-36	-41	-52	-57	-66	-79	-88	-78	-	-	-	-
														-130 -87				
315	355				. 70	+7	+17	-10	0	-26	-16	-51	-41	-144				
355	400	± 18	± 28.5	± 44.5	± /0	-29	-40	-46	-57	-62	-73	-87	-93	-93	-	-	-	-
														-150				
400	450				<u> </u>	+8	+18	-10	0	-27	-17	-55	-45	-103 -166				
450	500	± 20	± 31.5	± 48.5	± 77.5	-32	-45	-50	-63	-67	-80	-95	-108	-109	-	-	-	-
		1 11:	the tab	1!										-172	L			

Commonly used fitting tolerances for axis dimensions

Unit: μ m

Dimer (m			j	S			k	r	n	n	р	r	S	t	u	х
Above	Below	js5	js6	js7	js8	k5	k6	m5	m6	n6	р6	r6	s6	t6	u6	хб
_	2	± 2	⊥ 2	4 F	<u> </u>	+4	+6	+6	+8	+10	+12	+16	+20	-	+24	+26
	3	± 2	± 3	± 5	± 7		0		-2	+4	+6	+10	+14		+18	+20
3	6	± 2.5	± 4	± 6	± 9	+6	+9	+9	+12	+16	+20	+23	+27	-	+31	+36
						+7	+10	+12	+15	+8	+12	+15 +28	+19	-	+23 +37	+28 +43
6	10	± 3	± 4.5	± 7.5	± 11		+1		-6	+10	+15	+19	+23		+28	+34
10	14															+51
10	14	± 4	± 5.5	± 9	± 13.5	+9	+12	+15	+18	+23	+29	+34	+39	_	+44	+40
14	18					+	⊦ 1	+	-7	+12	+18	+23	+28		+33	+56
															+54	+45 +67
18	24		1.65		1.165	+11	+15	+17	+21	+28	+35	+41	+48	-	+41	+54
24	30	± 4.5	± 6.5	± 10.5	± 16.5	+	- 2	+	-8	+15	+22	+28	+35	+54	+61	+77
														+41	+48	+64
30	40					+13	. 10	+20	+25	122	+42	+50	+59	+64 +48	+76 +60	
		± 5.5	± 8	± 12.5	± 19.5		+18 +2		+23 -9	+33 +17	+42	+34	+39	+70	+86	-
40	50						_				120		5	+54	+70	
50	65											+60	+72	+85	+106	
	05	± 6.5	± 9.5	± 15	± 23	+15	+21	+24	+30	+30	+51	+41	+53	+66	+87	-
65	80					4	⊦ 2	+	11	+20	+32	+62 +43	+78 +59	+94 +75	+121 +102	
												+73	+93	+113	+102	
80	100	1.75		1 17 5	1 27	+18	+25	+28	+35	+45	+59	+51	+71	+104	+124	
100	120	± 7.5	± 11	± 17.5	± 27	4	⊦ 3	+	13	+23	+37	+76	+101	+126	+166	-
100	120											+54	+79	+104	+144	
120	140											+88 +63	+117 +92	+147 +122		
		-				+21	+28	+33	+40	+52	+68	+90	+125	+159		
140	160	± 9	± 12.5	± 20	± 31.5		+3		15	+27	+43	+65	+100	+134	-	-
160	180											+93	+133	+171		
												+68	+108	+146		
180	200											+106 +77	+151 +122			
						+24	+33	+37	+46	+60	+79	+109	+159			
200	225	± 10	± 14.5	± 23	± 36	-	⊦ 4	+	17	+31	+50	+80	+130	-	-	-
225	250											+113	+169			
												+84	+140			
250	280					+27	+36	+43	+52	+66	+88	+126 +94				
200	245	± 11.5	± 16	± 26	± 40.5		+4		20	+34	+56	+130	-	-	-	-
280	315											+98				
315	355											+144				
		± 12.5	± 18	± 28.5	± 44.5	+29	+40	+46	+57	+73 +37	+98 +62	+108	-	-	-	-
355	400					-	⊦4	+	21	+37	+02	+114				
400	450											+166				
400	450	± 13.5	± 20	± 31.5	± 48.5	+32	+45	+50	+63	+80	+108	+126	_	_	_	_
450	500	5.5			_ 10.5	+	+5	+	23	+40	+68	+172				
Domark.	For oach	coll in th	o table a	hove va	Luce in the	o top ro:	ı, ch ovic i	unn ar lim	it of tolo	rance and	d values :	+132	tom rous	shows le	Lucr limi	of tolor

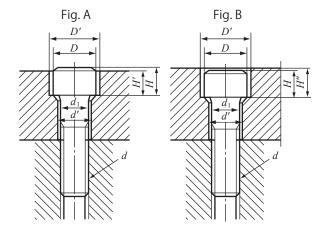
추그 지로

Commonly used fitting tolerances for axis dimensions

Unit: μ m

	nsions im)	b	С	d		е			f		Ġ	9				h			
	Below	b9	с9	d8 d9	e7	e8	e9	f6	f7	f8	g5	g6	h5	h6	h7	h8	h9	h10	h11
_	3	-140	-60	-20		-14			-6		-	2				0			
	3	-165	-85	-34 -45	-24	-28	-39	-12	-16	-20	-6	-8	-4	-6	-10	-14	-25	-40	-60
3	6	-140	-70	-30		-20			-10			4				0			
		-170	-100	-48 -60	-32	-38	-50	-18	-22	-28	-9	-12	-5	-8	-12	-18 0	-30	-48	-75
6	10	-150 -186	-80 -116	-40 -62 -76	-40	-25 -47	-61	-22	-13 -28	-35	-11	5 -14	-6	-9	-15	-22	-36	-58	-90
		100	110	02 70	70		- 01	22		- 33	- ''	- 17	0		13			- 30	
10	14	-150	-95	-50		-32			-16		-	6				0			
14	18	-193	-138	-77 -93	-50	-59	-75	-27	-34	-43	-14	-17	-8	-11	-18	-27	-43	-70	-110
14	10																		
18	24																		
		-160	-110	-65		-40	00	22	-20	F2		7		12	21	0		0.4	120
24	30	-212	-162	-98 -117	-61	-73	-92	-33	-41	-53	-16	-20	-9	-13	-21	-33	-52	-84	-130
		-170	-120																
30	40	-232	-182	-80		-50			-25		_	9				0			
		-180	-130	-119 -142	-75	-89	-112	-41	-50	-64		-25	-11	-16	-25	-39	-62	-100	-160
40	50	-242	-192																
50	65	-190	-140																
30	03	-264	-214	-100		-60			-30		-1	10				0			
65	80	-200	-150	-146 -174	-90	-106	-134	-49	-60	-76	-23	-29	-13	-19	-30	-46	-74	-120	-190
		-274	-224																
80	100	-220	-170	120		72			26			12				0			
		-307 -240	-257 -180	-120 -174 -207	-107	-72 -126	-150	-58	-36 -71	-90		12 -34	-15	-22	-35	0 -54	_07	-140	-220
100	120	-327	-267	-1/4 -20/	-107	-120	-139	-36	-/ 1	-90	-2/	-34	-13	-22	-33	-34	-07	-140	-220
		-260	-200																
120	140	-360	-300																
1.40	160	-280	-210	-145		-85			-43		-1	14				0			
140	160	-380	-310	-208 -245	-125	-148	-185	-68	-83	-106	-32	-39	-18	-25	-40	-63	-100	-160	-250
160	180	-310	-230																
100	100	-410	-330																
180	200	-340	-240																
		-455 -380	-355	170		100			Γ0			1.5				0			
200	225	-360 -495	-260 -375	-170 -242 -285	-146	-100 -172	-215	-79	-50 -96	-122	-35	-44	-20	-29	-46	0 -72	-115	-185	-290
		-420	-280	242 203	140	172	213	'	70	122	33	77	20	2)	70	72	115	103	270
225	250	-535	-395																
250	200	-480	-300																
250	280	-610	-430	-190		-110			-56		-	17				0			
280	315	-540	-330	-271 -320	-162	-191	-240	-88	-108	-137	-40	-49	-23	-32	-52	-81	-130	-210	-320
200	213	-670	-460																
315	355	-600	-360																
		-710	-500	-210	100	-125	265		-62	151		18	3.5	26	F-7	0	1 40	220	260
355	400	-680	-400 540	-299 -350	-182	-214	-265	-98	-119	-151	-43	-54	-25	-36	-57	-89	-140	-230	-260
		-820 -760	-540 -440																
400	450	-760 -915	- 44 0 -595	-230		-135			-68		_:	20				0			
		-840	-480	-327 -385	-198	-232	-290	-108	-131	-165		-60	-27	-40	-63	-97	-155	-250	-400
450	500	-995	-635	==: 555			_,,								33				
				table above, v		41 4		l	15		1			Ale e le es				11. 14	<u> </u>

참고자


Metric coarse and fine screw threads, and reference pilot hole dimensions

Unit ' mm

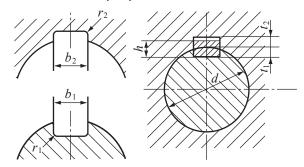
Nominal threads		Pit	tch		Reference pilot h	
Nominal timeaus	Coarse screw		Fine screw	T	Coarse screw	Helisert
M1	0.25	0.2			0.75	
M1.1	0.25	0.2			0.85	
M1.2	0.25	0.2			0.95	
M1.4	0.3	0.2			1.1	
M1.6	0.35	0.2			1.25	
M1.8	0.35	0.2			1.45	
M2	0.4	0.25			1.6	2.1
M2.2	0.45	0.25			1.75	2.4
M2.5	0.45	0.35			2.1	2.6
M3	0.5	0.35			2.5	3.1
M3.5	0.6	0.35			2.9	3.7
M4	0.7	0.5			3.3	4.2
M4.5	0.75	0.5			3.8	3.6
M5	0.8	0.5			4.2	5.2
M6	1	0.75			5	6.3
M8	1.25	0.75	1		6.8	8.4
M10	1.5	0.75	1	1.25	8.5	10.5
M12	1.75	1	1.25	1.5	10.3	12.5
M14	2	1	1.25	1.5	12	14.5
M16	2	1	1.5	1.5	14	16.5
M18	2.5	1	1.5	2	15.5	19
M20	2.5	1	1.5	2	17.5	21
M22	2.5	1	1.5	2	19.5	23
M24	3	1	1.5	2	21	25
M27	3	1	1.5	2	24	28
M30	3.5	1	1.5	2	26.5	31

Extracted from JIS B0205, 0207

Following details are for reference only and not part of JIS standard. \\

Spot facing and Thread hole for Hexagon socket head cap screws

Unit: mm

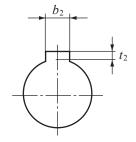

Nominal thread (d)	М3	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30	M33	M36	M39	M42	M45	M48	M52
d_1	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30	33	36	39	42	45	48	52
d'	3.4	4.5	5.5	6.6	9	11	14	16	18	20	22	24	26	30	33	36	39	42	45	48	52	56
D	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45	50	54	58	63	68	72	78
D'	6.5	8	9.5	11	14	17.5	20	23	26	29	32	35	39	43	48	54	58	62	67	72	76	82
Н	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30	33	36	39	42	45	48	52
H'	2.7	3.6	4.6	5.5	7.4	9.2	11	12.8	14.5	16.5	18.5	20.5	22.5	25	28	31	34	37	39	42	45	49
H"	3.3	4.4	5.4	6.5	8.6	10.8	13	15.2	17.5	19.5	21.5	23.5	25.5	29	32	35	38	41	44	47	50	54

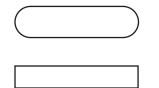
Remark: Thread holes (d') provide Class 2 from JIS B 1001 (Thread holes and Spot facing holes)

참고장

Shape and dimensions of keyway for parallel key

Cross section of keyway



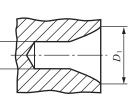

Unit: mm

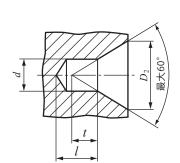
Normal	Basic		ng fit		nal fit	Tight fit		Basic	Basic		Suitable	Corresponding
size of key	dimentions	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₁	<i>b</i> ₂	b_1 and b_2	r_1 and r_2	dimentions		Tolelance of t1 and t2	shaft dia.	KG gear bore
$b \times h$	of b_1 and b_2	Tolerance (H9)	Tolerance (D 10)	Tolerance (N 9)	Tolerance (Js9)	Tolerance (P9)		of t1	of t2	Of thanks	d (Reference)	dia.
2 × 2	2	+0.025	+0.060	-0.004	± 0.0125	-0.006		1.2	1.0		6~8	
3 × 3	3	0	+0.020	-0.029	_ ± 0.0125	-0.031	0.08 ~ 0.16	1.8	1.4		8 ~ 10	8,10
4 × 4	4							2.5	1.8	+0.1 0	10 ~ 12	12
5 × 5	5	+0.030 0	+0.078 -0.030	0 -0.030	± 0.0150	-0.012 -0.042		3.0	2.3		12 ~ 17	14,15,16
6 × 6	6						0.16 ~ 0.25	3.5	2.8		17 ~ 22	18,20,22
(7 × 7)	7						0.10 0.23	4.0	3.3		20 ~ 25	
8 × 7	8	+0.036 0	+0.098 +0.040	0 -0.036	± 0.0180	-0.015 -0.051		4.0	3.3		22 ~ 30	25,28,30
10 × 8	10							5.0	3.3		30 ∼ 38	32,35
12 × 8	12							5.0	3.3		38 ~ 44	40
14 × 9	14	+0.043	+0.120 +0.050	0	± 0.0215	-0.018 -0.061	0.25 ~ 0.40	5.5	3.8		44 ~ 50	45,50
(15 × 10)	15	0	+0.050	-0.043	1 0.0213	-0.061	0.23 0.40	5.0	5.3	+0.2	50 ∼ 55	
16 × 10	16							6.0	4.3	0	50 ∼ 58	
18 × 11	18							7.0	4.4		58 ~ 65	
20 × 12	20							7.5	4.9		65 ~ 75	
22 × 14	22	+0.052	+0.149 +0.065	0	± 0.0260	-0.022		9.0	5.4		75 ~ 85	
(24 × 16)	24	0	+0.065	-0.052	1 0.0200	-0.074	0.40 ~ 0.60	8.0	8.4		80 ~ 90	
25 × 14	25						0.40 0.00	9.0	5.4		85 ~ 95	
28 × 16	28							10.0	6.4		95 ~ 110	
32 × 18	32							11.0	7.4		110 ~ 130	
(35 × 22)	35							11.0	11.4		125 ~ 140	
36 × 20	36							12.0	8.4		130 ~ 150	
(38 × 24)	38	+0.062	+0.180	0	± 0.0310	-0.026		12.0	12.4		140 ~ 160	
40 × 22	40	0	+0.080	-0.062	2 0.0310	-0.088	0.70 ~ 1.00	13.0	9.4		150 ~ 170	
(42 × 26)	42							13.0	13.4		160 ~ 180	
45 × 25	45							15.0	10.4	+0.3 0	170 ~ 200	
50 × 28	50							17.0	11.4		200 ~ 230	
56 × 32	56							20.0	12.4		230 ~ 260	
63 × 32	63	+0.074	+0.220	0	± 0.0370	-0.032	1.20 ~ 1.60	20.0	12.4		260 ~ 290	
70 × 36	70	0	+0.100	-0.072	_ ⊥ 0.03/0	-0.106		22.0	14.4		290 ~ 330	
80 × 40	80							25.0	15.4		330 ~ 380	
90 × 45	90	+0.087	+0.260	0	± 0.0435	-0.037	2.00 ~ 2.50	28.0	17.4		380 ~ 440	
100 × 50	100	0	+0.120	-0.087		-0.124		31.0	19.5		440 ~ 500	

Based on JIS B 1301

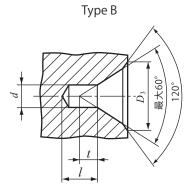
Parallel key and Key Way
Dimensions and tolerances for KG-gear with Key way are equivalent to JIS B1301.

Tolerances for Key


$b \times t$	3 × 3	4 × 4	5 × 5	6 × 6	8 × 7	10 × 8	12 × 8	14 × 9
<i>b</i> Tolerance (h)	h9	h9	h9	h9	h9	h9	h9	h9
t Tolerance (h)	h9	h9	h9	h9	h11	h11	h11	h11


Key way for KG-STOCK GEARS

Dimensions	Bore dimensions	Key way		Width		Depth
Dimensions	bore diffierisions	$b_2 \times t_2$	<i>b</i> ₂	Tolerance Js 9	t2	Tolerance
φ 8 ~ φ10	φ 8	3 × 1.4	3	± 0.0125	1.4	
φδίοψιο	<i>φ</i> 10	3 × 1.4	3	⊥ 0.0123	1.4	
ϕ 10 \sim ϕ 12	φ12	4 × 1.8	4		1.8	
	<i>φ</i> 14					. 0.1
ϕ 12 \sim ϕ 17	<i>φ</i> 15	5×2.3	5		2.3	+0.1
	<i>φ</i> 16			± 0.015		· ·
	<i>φ</i> 18					
ϕ 17 \sim ϕ 22	<i>φ</i> 20	6×2.8	6		2.8	
	φ22					
	φ25					
ϕ 22 \sim ϕ 30	<i>φ</i> 28	8×3.3	8		3.3	
	<i>φ</i> 30			± 0.018		
420 a . 420	φ32	10 × 3.3	10		3.3	+0.2
ϕ 30 \sim ϕ 38	φ35	10 × 3.3	10		3.3	0
ϕ 38 \sim ϕ 44	<i>φ</i> 40	12 × 3.3	12		3.3	
ϕ 44 \sim ϕ 50	φ45	14 × 3.8	14	± 0.0215	3.8	
φ 44 $\sim \varphi$ 50	φ50	14 × 3.6	14		3.0	


Centre bore JIS B1011

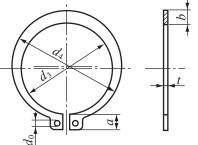
Type R

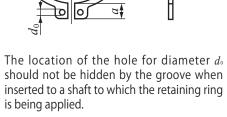
Type A

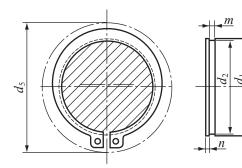
Form with circular arc Form without chamfering (Drilling centre bore from JIS B4304) (Drilling centre bore from JIS B4304)

Form with chamfering (Drilling centre bore from JIS B4304)

Note*: Length '1' is based on centre drill but length must be longer than dimension 't'.

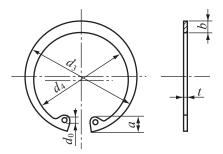

Centre bore (recommended)


Unit:mm

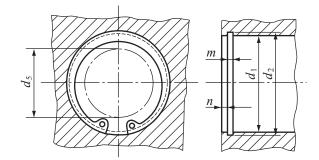

			Туре		
Nominal d	Type R JIS B4304	Typ JIS B			oe B 4304
	D ₁ Nominal	D ₂ Nominal	t Reference	D ₃ Nominal	t Reference
(0.5)		1.06	0.5		
(0.63)		1.32	0.6		
(8.0)		1.70	0.7		
1.0	2.12	2.12	0.9	3.15	0.9
(1.25)	2.65	2.65	1.1	4	1.1
1.6	3.35	3.35	1.4	5	1.4
2.0	4.25	4.25	1.8	6.3	1.8
2.5	5.3	5.30	2.2	8	2.2
3.15	6.7	6.70	2.8	10	2.8
4.0	8.5	8.50	3.5	12.5	3.5
(5.0)	10.6	10.60	4.4	16	4.4
6.3	13.2	13.20	5.5	18	5.5
(8.0)	17.0	17.00	7.0	22.4	7.0
10.0	21.2	21.20	8.7	28	8.7

Using figures in bracket () is not advisable.

C-type retaining ring for shaft (reference)


 $\it ds$ is the maximum diameter of the outer circumference when inserting a retaining ring into a shaft.

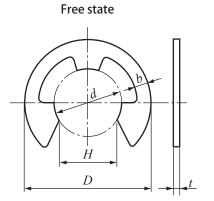
Unit: mm

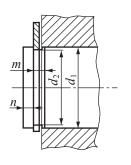

Normal	diameter			D.	taining *i*	NG.					Applicab	lo chaft (#	oforonco)		Unit: mm		
Normal	uiameter		<u></u>	Retaining ring						Applicable shaft (reference)							
1	2	Basic	Toloranco	Basic	T.1	b	а	<i>d</i> ₀ (Min.)	d ⁵	d1	Basic	Toloronco	Basic	Tolerance	<i>n</i> (Min.)		
		dimension	Tolerance	dimension	Tolerance			(141111.)			dimension		dimension	Tolerance	(141111.)		
10		9.3	± 0.15			1.6	3	1.2	17	10	9.6	0 -0.09					
	11	10.2	0.13			1.8	3.1	1.2	18	11	10.5						
12		11.1] _		1.8	3.2	1.5	19	12	11.5						
14		12.9	1	1	± 0.05	2	3.4		22	14	13.4		1.15				
15		13.8				2.1	3.5		23	15	14.3	0					
16		14.7	± 0.18			2.2	3.6	1.7	24	16	15.2	0 -0.11					
17		15.7				2.2	3.7		25	17	16.2						
18		16.5				2.6	3.8		26	18	17						
	19	17.5				2.7	3.8		27	19	18				1.5		
20		18.5				2.7	3.9		28	20	19						
22		20.5		1.2		2.7	4.1		31	22	21		1.35				
	24	22.2				3.1	4.2	2	33	24	22.9	_					
25		23.2	± 0.2		± 0.06	3.1	4.3	-	34	25	23.9	0 -0.21					
	26	24.2	- 0.2			3.1	4.4		35	26	24.9						
28		25.9				3.1	4.6		38	28	26.6						
30		27.9		1.6		3.5	4.8		40	30	28.6		1.75	+0.14 0			
32		29.6		1.0		3.5	5		43	32	30.3		1.75	0			
35		32.2				4	5.4		46	35	33						
	36	33.2	± 0.25			4	5.4		47	36	34						
	38	35.2				4.5	5.6		50	38	36						
40		37		1.8		4.5	5.8		53	40	38	0 -0.25	1.95				
	42	38.5		1.0		4.5	6.2		55	42	39.5		1.55				
45		41.5	± 0.4		± 0.07	4.8	6.3		58	45	42.5				2		
	48	44.5			_ 0.07	4.8	6.5	2.5	62	48	45.5				_		
50		45.8				5	6.7	2.5	64	50	47		_				
55		50.8		2		5	7		70	55	52		2.2				
	56	51.8		_		5	7		71	56	53						
60		55.8	-			5.5	7.2		75	60	57	٥					
65		60.8	± 0.45			6.4	7.4		81	65	62	0 -0.3					
70		65.5	_ 0	2.5	± 0.08	6.4	7.8		86	70	67		2.7		2.5		
75		70.5		2.0	_ 0.00	7	7.9		92	75	72				2.0		
80		74.5				7.4	8.2		97	80	76.5						
85		79.5				8	8.4		103	85	81.5						
90		84.5		3		8	8.7		108	90	86.5	0 25	3.2		3		
95		89.5		-		8.6	9.1		114	95	91.5	-0.35	J.2	+0.18	_		
100		94.5	± 0.55		± 0.09	9	9.5	3	119	100	96.5			0 +0.16			
	105	98				9.5	9.8		125	105	101	0					
110		103	-	4		9.5	10		131	110	106	-0.54	4.2		4		
120		113				10.3	10.9		143	120	116						

참 고 자료

C-type retaining ring for hole (reference)

The location of the hole for diameter d_0 should not be hidden by the groove when inserted to a shaft to which the retaining ring is being applied.


 $d_{\rm s}$ is the minimum diameter of the inner circumference when fitting a retaining ring into a hole.


Unit: mm

Nor	mal			R	etaining rir	ng				Applicable shaft (reference)							
diam			d3		t	ь	а	d_0				<u>l</u> 2		n			
1	2	Basic di- mension	Tolerance	Basic dimension	Tolerance	Approx.	Approx.	Min.	d ⁵	$d^{_1}$	Basic dimension	Tolerance	Basic dimension	Tolerance	(Min.)		
10		10.7				1.8	3.1	1.7	3	10	10.4						
11		11.8	1			1.8	3.2	1.2	4	11	11.4						
12		13.0	1			1.8	3.3	1.5	5	12	12.5						
	13	14.1	± 0.18			1.8	3.5	1.5	6	13	13.6	+ 0.11					
14		15.1				2.0	3.6		7	14	14.6	0					
	15	16.2		1	± 0.05	2.0	3.6		8	15	15.7		1 15				
16		17.3		1	0.05	2.0	3.7	1.7	8	16	16.8		1.15				
	17	18.3				2.0	3.8		9	17	17.8						
18		19.5				2.5	4.0		10	18	19.0				1.5		
19		20.5				2.5	4.0		11	19	20.0				1.5		
20		21.5	± 0.20			2.5	4.0		12	20	21.0						
22		23.5				2.5	4.1		13	22	23.0	+ 0.21 0]			
	24	25.9				2.5	4.3	2	15	24	25.2	0					
25		26.9				3.0	4.4		16	25	26.2						
	26	27.9		1.2		3.0	4.6		16	26	27.2		1.35				
28		30.1		1.2		3.0	4.6		18	28	29.4		1.55				
30		32.1			± 0.06	3.0	4.7		20	30	31.4						
32		34.4			_ 0.00	3.5	5.2		21	32	33.7]]			
35		37.8	± 0.25			3.5	5.2		24	35	37.0						
	36	38.8		1.6		3.5	5.2		25	36	38.0	1.025	1.75	+ 0.14 0			
37		39.8		1.0		3.5	5.2		26	37	39.0	+ 0.25 0	1.75	0			
	38	40.8				4.0	5.3		27	38	40.0						
40		43.5				4.0	5.7		28	40	42.5						
42		45.5	± 0.4	1.8	4.5		5.8		30	42	44.5		1.95				
45		48.5					5.9		33	45	47.5						
47		50.5				6.1		34	47	49.5		-		2			
	48	51.5	-			4.5	6.2		35	48	50.5				_		
50		54.2			± 0.07	4.5	6.5		37	50	53.0						
52		56.2				5.1	6.5	2.5	39	52	55.0						
55		59.2				5.1	6.5		41	55	58.0						
	56	60.2		2		5.1	6.6		42	56	59.0		2.2				
60		64.2	± 0.45			5.5	6.8		46	60	63.0	+ 0.30					
62		66.2				5.5	6.9		48	62	65.0	+ 0.30 0					
	63	67.2	-			5.5	6.9		49	63	66.0						
	65	69.2	-			5.5	7.0		50	65	68.0						
68	70	72.5	-			6.0	7.4		53	68	71.0						
72	70	74.5	-	2.5	± 0.08	6.0	7.4		55	70	73.0		2.7		2.5		
72 75		76.5	-			6.6	7.4 7.8		57 60	72 75	75.0						
		79.5		-							78.0		-				
80		85.5	1			7.0 7.0	8.0		64 69	80 85	83.5						
90		90.5 95.5	-			7.0	8.0 8.3		73	90	88.5 93.5	+ 0.35					
95		100.5	-	3		8.0	8.5		77	95	98.5	- 0.55	3.2		3		
100		100.5	± 0.55			8.3	8.8		82	100	103.5						
100	105		1	-	-	8.9	9.1	2	86	105	103.3			1 010			
110	105	112.0 117.0	-		± 0.09	8.9	10.2	3	89	110	-	+ 0.54		+ 0.18			
110	112	117.0	-			8.9	10.2		90	110	114.0 116.0			"			
	115	122.0		4		9.5	10.2		90	115	119.0		4.2		4		
120	113	127.0	± 0.65			9.5	10.2		98	120	124.0	+ 0.63	-				
125		132.0	- 0.03			10.0	10.7	3.5	103	125	124.0	+ 0.63 0					
123	L	132.0		1		10.0	10.7	ر.ر	105	123	122.0						

침고지료

E-type retaining ring (reference)

Used state

Example shape

Unit: mm

	Retaining ring										Applicable shaft (reference)							
Normal	C	l	1	D H		t b		Division of d ₁		d_2		m						
diameter	Basic dimension	Tolerance	Basic dimension	Tolerance	Basic dimension	Tolerance	Basic dimension	Tolerance	Approx.	Above	Below	Basic dimension	Tolerance	Basic dimension	Tolerance	(Min.)		
0.8	0.8	0 -0.08	2	± 0.1	0.7		0.2	± 0.02	0.3	1	1.4	0.8	+0.05 0	0.3		0.4		
1.2	1.2		3		1		0.3	± 0.025	0.4	1.4	2	1.2		0.4	+0.05	0.6		
1.5	1.5		4		1.3	0 -0.25	0.4		0.6	2	2.5	1.5			0	0.8		
2	2	0 -0.09	5		1.7	-0.25	0.4	± 0.03	0.7	2.5	3.2	2	+0.06	0.5				
2.5	2.5	0.05	6		2.1		0.4		0.8	3.2	4	2.5				1		
3	3		7		2.6		0.6		0.9	4	5	3						
4	4		9		3.5		0.6		1.1	5	7	4	. 0 075	0.7				
5	5	0 -0.12	11	± 0.2	4.3	0 -0.3	0.6		1.2	6	8	5	+0.075		1	1.2		
6	6	01.12	12		5.2	0.5	0.8	± 0.04	1.4	7	9	6			+0.1 0			
7	7		14		6.1		0.8		1.6	8	11	7		0.9		1.5		
8	8	0	16		6.9	0	0.8		1.8	9	12	8	+0.09	0.5		1.8		
9	9	-0.15	18		7.8	-0.35	0.8		2	10	14	9	0			2		
10	10		20		8.7		1	± 0.05	2.2	11	15	10		1.15				
12	12	0	23		10.4		1	- 0.03	2.4	13	18	12	+0.11	1.13		2.5		
15	15	-0.18	29		13	0	1.6	± 0.06	2.8	16	24	15	0	1.75	+0.14	3		
19	19	0	37	± 0.3	16.5	-0.45	1.6	_ 0.00	4	20	31	19	+0.13	1./3	0	3.5		
24	24	-0.21	44		20.8	0 -0.5	2	± 0.07	5	25	38	24	0	2.2		4		

Explanation of material notation

Explanation of material notation for KG standard products								
Material grade	Types of KG standard gears used	Material name / Standard number						
S45C	Spur gear, Helical gear, Rack gear, Miter gear / Bevel gear (straight / spiral), B-LOCK Miter gear (straight), Worm, Anti-backlash spur gear	Carbon steel JIS G 4051						
SCM435	Ground spur gear, Ground miter gear / Ground bevel gear (spiral), Anti- backlash ground spur gear, Anti-backlash spur gear	Chrome molybdenum steel JIS G 4053						
SCM440	backiash ground spur gear, Anti-backiash spur gear	JIS G 4033						
SUS304 SUS304L	Spur gear, Helical gear, Rack gear, Miter gear / Bevel gear (straight), MIM (metal injection molding) miter gear, B-LOCK miter gear (straight), Worm, Anti-backlash spur gear	Stainless steel JIS G 4303						
C3604B C3771B C3713P	Spur gear, Rack gear, Miter gear / Bevel gear (straight), Worm	Brass JIS H 3250 JIS H 3100						
C6191BE	Worm Wheel	Aluminum bronze JIS H 3250						
CAC702	Worm Wheel	Aluminum bronze casting JIS H 5120						
A5056	Anti-backlash spur gear	Aluminum JIS H 4040						
POM (Polyacetal)	Spur gear, Helical gear, Rack gear, Miter gear (straight), Worm Wheel	Acetal resin						

KG standard gears are manufactured using the above JIS materials. Depending on availability, the above materials may be substituted with materials of equivalent specifications without prior notice.

The chemical composition may differ from other standards, so the above information is just for reference purposes. Please note that some products have surface treatments such as black oxide and alumite treatment.

Parts other than gears, such as springs and retaining rings for anti-backlash spur gears, gear box bodies and bearings, set screws, cap bolts, etc., are excluded.

편집·발행 / 쿄이쿠 기어 공업 주식회사

URL: http://www.kggear.co.jp/

문의 E-mail:export@kggear.co.jp

Head Office 1-8-3, Higashi-ueno Taito-ku Tokyo Japan. 110-0015

Tokyo branch 4-13-21-3F, Taito Taito-ku Tokyo Japan. 110-0016

TEL: (81)-3-5812-4337 FAX: (81)-3-5812-4339

Overseas Sales Department TEL: (81)-3-5812-4338

9F SC Sakaisuji Honmachi Bld Osaka branch

1-4-15,Kita-kyuhoujimachi Chuo-ku Osaka-city Japan.541-0057

TEL: (81)-6-4705-8177 FAX: (81)-6-4705-8188

Nagoya branch 2-24-9,Ichiban Atsuta-ku Nagoya-city Aichi Japan.456-0053

TEL: (81)-52-652-7211 FAX: (81)-52-652-7213

Factory 14-9-13, Minami-sakaemachi Kasukabe-city Saitama Japan. 344-0057

TEL: (81)-48-754-5842 FAX: (81)-48-754-1299

KYOUIKU GEAR MFG.CO.,LTD.

대리점

동경지점

해외영업부

ISO14001

초판 1 쇄 인쇄 : 2023년 11월 8일

2쇄 인쇄: 2024년 8월 1일

카스카베공장 오오사카지점 나고야지점

카스카베공장